

Early praise for Deploying with JRuby 9K

Joe has pulled together a great collection of deployment knowledge from his years
of experience building and supporting JRuby applications. He’s an expert on this
subject and Deploying with JRuby 9k is the definitive text for getting JRuby appli-
cations up and running.

➤ Charles Oliver Nutter
JRuby co-lead

Deploying with JRuby 9k answers the most frequently asked questions about real-
world use of JRuby. Whether you’re coming to JRuby from Ruby or Java, Joe fills
in all the gaps you’ll need to deploy JRuby with confidence.

➤ Tom Enebo
JRuby co-lead

I’ve been working with JRuby for years and I still learned several immediately
actionable steps to improve the performance and maintenance of real-world
JRuby apps.

➤ Matt Margolis
director, application development at Getty Images

Deploying with JRuby 9k is full of practical and actionable advice about how to
get the most benefit out of the JVM when running your Ruby app on JRuby.

➤ Chris Seaton
Oracle Labs and JRuby contributor

Deploying with JRuby 9k is the essential guide for anyone building Ruby applica-
tions on the JVM. It’s loaded with tips, tricks, and best practices that newcomers
and experts can learn from.

➤ Terence Lee
Ruby task force member at Heroku

As a developer of MRI, I get super jealous reading about the JVM ecosystem and
tooling. With this book, Joe has finally made that ecosystem approachable for
JRuby applications.

➤ Zachary Scott
Ruby-core member and maintainer of Sinatra

Deploying with JRuby 9k
Deliver Scalable Web Apps Using the JVM

Joe Kutner

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-169-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix
Preface xi

1. Getting Started with JRuby 1
What Makes JRuby So Great? 2
Preparing Your Environment 4
Introducing Warbler 7
Creating a JRuby Microservice 10
Wrapping Up 15

2. Creating a Deployment Environment 17
Installing Docker 17
Getting Started with Docker 20
Creating a Docker Image 22
Deploying to the Cloud 24
Wrapping Up 27

3. Deploying a Rails Application 29
What Is Traditional Deployment? 29
Porting to JRuby 30
Configuring Rails for Production 34
Creating the Deployment Environment 36
Deploying to the Public Cloud 40
Deploying to Private Infrastructure 41
Wrapping Up 48

4. Consuming Backing Services with JRuby 49
What Are Backing Services? 49
Storing Sessions in Memcached 50
Running Background Jobs with Sidekiq 56

Message Passing with RabbitMQ 62
Wrapping Up 71

5. Deploying JRuby in the Enterprise 73
What Is an Application Server? 74
Getting Started with TorqueBox 75
Scheduling a Recurring Job 77
Using the Cache 78
Deploying to the Public Cloud 81
Deploying to Private Infrastructure 81
Using a Commercially Supported Server 83
Wrapping Up 86

6. Managing a JRuby Application 87
Creating a Memory Leak 87
Inspecting the Runtime with VisualVM 88
Inspecting the Runtime with JMX 93
Invoking MBeans Programmatically 96
Creating a Management Bean 98
Using the JRuby Profiler 100
Analyzing a Heap Dump 103
Wrapping Up 107

7. Tuning a JRuby Application 109
Setting the Heap Size 109
Setting Metaspace Size 111
Configuring Heap Generations 112
Choosing a Garbage Collector 114
Benchmarking the Garbage Collector 116
Using invokedynamic 120
Wrapping Up 121

8. Monitoring JRuby in Production 123
Installing the New Relic Gem 123
Creating a New Relic Alert 126
Handling Errors with Rollbar 127
Customizing Rollbar Reporting 131
Wrapping Up 132

9. Using a Continuous Integration Server 133
Installing Jenkins 133
Installing Jenkins Plugins 134

Contents • vi

Creating a Git Depot 135
Creating a Jenkins Job 136
Enabling Continuous Delivery 139
Wrapping Up 140

Index 143

Contents • vii

Acknowledgments
Writing a book is a lot like writing code. You need to know the rules, recognize
patterns, and occasionally know when to break the rules. Both writing and
coding are crafts. And like with any craft, you improve by getting advice from
more experienced professionals and being critiqued by your peers. I’m so
fortunate to have had this kind of help.

I’m inexpressibly thankful to those who reviewed this book prior to its publi-
cation. I was humbled by the attention to detail and wise feedback they pro-
vided in making it a finished product. Thank you, Jeff Holland, Margaret Le,
Matt Margolis, Jay McGaffigan, Chris Seaton, and Tim Uckun. I consider you
all to be my friends!

I’d also like to thank the staff at the Pragmatic Bookshelf: Susannah Pfalzer,
Dave Thomas, Andy Hunt, and probably a whole bunch of other people I don’t
know about.

Above all, thank you, Brian P. Hogan, my editor. This is our fourth endeavor
together, and as usual I’ve become a better writer because of it. I look forward
to working on future projects together.

I must also thank the creators of the technologies I’ve written about. This
book would not have been possible without your hard work. Thank you,
Charles Nutter, Thomas Enebo, Karol Buček, Christian Meier, Chris Seaton,
and the rest of the JRuby team. You’re the most amazing group in all of the
open source world. I owe you all my deepest gratitude and a free beverage.

Finally, I’d like to thank my wife and son. I could not have completed this
project without your love and support.

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Preface
Your website has just crashed, and you’re losing money. The application is
built on Rails, runs on MRI, and is served up with Unicorn and Apache.
Having this kind of infrastructure means you’re managing more processes
than you can count on two hands.

The background jobs are run with Resque,1 the scheduled jobs are run with
cron, and the long-running jobs use Ruby daemons,2 which are monitored by
monit because they tend to crash.3 It’s going to take some time to figure out
which component is the culprit because you have no centralized management
interface. Standing up a new server will take almost as long because the
infrastructure is so complex. But the website has to get back online if you’re
going to stay in business.

The problem I’ve just described is all too common. It has happened to everyone
from small startups to large companies that use Rails to serve millions of
requests. Their infrastructure is complex, and the myriad components are
difficult to manage because they’re heterogeneous and decentralized in nature.
Even worse, Rubyists have become comfortable with this way of doing things,
and some may think it’s the only way of doing things. But that’s not the case.

The recent growth and increased adoption of the Java Virtual Machine (JVM)
as a platform for Ruby applications has opened many new doors. Deployment
strategies that weren’t possible with MRI Ruby are now an option because of
the JVM’s built-in management tools and support for native operating system
threads. Ruby programmers can leverage these features by deploying their
applications on JRuby.

It’s common for Ruby programmers to think that JRuby deployment will look
identical to deployment with MRI Ruby (that is, running lots of JVM processes

1. https://github.com/resque/resque
2. http://daemons.rubyforge.org/
3. http://mmonit.com/monit/

report erratum • discuss

https://github.com/resque/resque
http://daemons.rubyforge.org/
http://mmonit.com/monit/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

behind a load balancer and putting all asynchronous background jobs in a
separate process). On the other hand, Java programmers tend to deploy
JRuby applications the same way they deploy Java applications. This often
requires lots of XML and custom build configurations, which negate many of
the benefits of a more dynamic language such as Ruby. But there are much
better options than both Ruby and Java programmers are used to.

In this book, you’ll explore the most popular and well-supported methods for
deploying JRuby. You have a surprising amount of flexibility in the processes
and platforms to choose from, which allows Ruby and Java programmers to
tailor their deployments to suit many different environments.

The No-Java-Code Promise
You won’t have to write any Java code as you work your way through this
book. That’s not what this book is about. It’s about deploying Ruby applica-
tions on the JVM. The technologies and tools you’ll learn about in this book
hide the XML and Java code from you. As the JRuby core developers like to
say, “[They] write Java so you don’t have to.”4

You may want to include some Java code in your application. Or you may
want to make calls to some Java libraries. That’s entirely your choice. If you
want to write your programs exclusively in Ruby and deploy them on the Java
Virtual Machine—as so many of us do—then go ahead.

There are many reasons to deploy Ruby applications on the JVM, and using
Java libraries and APIs is just one of them. In this book, you’ll learn how to
get the most out of the JVM without writing any Java code.

What’s in This Book?
Over the course of this book, you’re going to work on an application like the
one described at the beginning of the preface. You’ll port it to JRuby, add
some new features, and simplify its infrastructure, which will improve its
ability to scale.

The application’s name is Twitalytics, and it’s a rich Twitter client. (As you
probably know, Twitter is a social networking website that’s used to post
short status updates, called tweets.) Twitalytics tracks an organization’s
tweets, annotates them, and performs analytic computations against data
captured in those tweets to discover trends and make predictions. But it can’t
handle its current load.

4. http://vimeo.com/27494052

Preface • xii

report erratum • discuss

http://vimeo.com/27494052
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Twitalytics has several background jobs that are used to stream tweets into
the application, perform analytics, and clean up the database as it grows. In
addition, it receives a large volume of HTTP requests for traditional web traffic.
But doing this on MRI means running everything in separate processes, which
consumes more resources than its infrastructure can handle.

You’ll begin working on the app in Chapter 1, Getting Started with JRuby, on
page 1. You’ll learn what makes JRuby a better deployment platform and
why it’s a good fit for this application. Then you’ll extract a microservice from
the Twitalytics monolith, port it to JRuby, and package it into an archive file
with the Warbler gem. But before you can deploy it, you’ll need to create an
environment where it can run.

In Chapter 2, Creating a Deployment Environment, on page 17, you’ll set up
a containerization layer based on Docker and provision it with some essential
components. You’ll also learn how to automate this process to make it more
reliable and reusable. You’ll create a new server for each deployment strategy
used in this book, and being able to reuse your configuration will save you
time and prevent errors. In fact, this environment will apply not only to
Twitalytics but to any JRuby deployment, so you’re likely to reuse it on the job.

Once you’ve completed the production server setup, you’ll be ready to deploy.
You’ll learn how JRuby deployment differs from the more common practice
of traditional Ruby application deployment and how containerization technolo-
gies like Docker can simplify the process. In additional to using Docker, you’ll
deploy to the cloud on the Heroku platform as a service.

The Warbler gem gives you a quick way to get started with JRuby. But it’s
just a stepping-stone on your path to better performance. As the book pro-
gresses, you’ll improve your deployment strategy by running Twitalytics on
some other JRuby web servers.

The next chapter, Chapter 3, Deploying a Rails Application, on page 29, is
dedicated to the Puma web server. Puma allows you to deploy applications
much as you would with MRI-based Rails applications. But you’ll find that
JRuby reduces the complexity of this kind of deployment environment while
increasing its reliability and portability. You’ll deploy the Puma-based Rails
app using both Docker and Heroku. The resulting architecture will be
friendly and familiar to Rubyists.

But you still won’t be making the most of what the JVM has to offer. To do
that, you’ll need a new kind of platform.

report erratum • discuss

What’s in This Book? • xiii

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

In Chapter 5, Deploying JRuby in the Enterprise, on page 73, you’ll learn about
a Ruby application server. You’ll use TorqueBox, a server based on the popular
JBoss application server, to run Twitalytics. This kind of deployment is unique
when compared to traditional Ruby deployments because it provides a com-
plete environment to run any kind of program, not just a web application.
You’ll learn how this eliminates the need for external processes. In the end,
you’ll have the most advanced deployment environment available to any Ruby
application.

An overview of each strategy covered in this book is listed here:

TorqueBoxPumaWarbler

JBoss ASPure-RubyJettyInternals

MixedTraditionalWAR fileDeployment type

YesYesYesDocker deployment

YesYesYesHeroku deployment

YesNoNoBackground jobs

Deciding on the right platform for each application is a function of these
attributes. But getting an application up and running on one of these platforms
is only a part of the job. You also need to keep it running. Fortunately, one
of the many advantages of JRuby is the built-in JVM tooling.

Chapter 6, Managing a JRuby Application, on page 87 presents some tools
for monitoring, managing, and configuring a deployed JRuby application.
These tools are independent of any deployment strategy and can be used to
monitor the memory consumption, performance, and uptime of any Java
process. The information you gain from these tools can be used to improve
the performance of JRuby, which you’ll learn in Chapter 7, Tuning a JRuby
Application, on page 109. You’ll learn about different kinds of memory and the
various knobs you can turn to optimize how the JVM allocates that memory.
You’ll even learn how to change garbage collectors and benchmark them.

In Chapter 8, Monitoring JRuby in Production, on page 123, you’ll learn how to
capture the same kind of metrics from a production runtime. You’ll use some
third-party apps to instrument your code, capture performance data, and log
errors. Finally, Chapter 9, Using a Continuous Integration Server, on page 133
will introduce a tool for producing reliable and consistent deployments.

Twitalytics is a Rails application, and you’ll use this to your advantage as you
deploy it. But all of the server technologies you’ll use work equally well with

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

any Rack-compliant framework (such as Sinatra5). In fact, the steps you’ll
use to package and deploy Twitalytics would be identical for these other
frameworks. Warbler, Puma, and TorqueBox provide a few hooks that make
deploying a Rails application more concise in some cases (such as automati-
cally packaging bundled gems). But the workflow is the same.

When you encounter Rails-specific features in this book, be aware that this
is only for demonstration purposes and not because the frameworks being
used work exclusively with Rails. Rails works with these servers because it’s
Rack based.

What’s Not in This Book?
This book won’t teach you how to write code in the Ruby language. You’ll
write a bit of Ruby code in the course of this book, but you won’t learn about
specific features of the Ruby language. In particular, this book doesn’t cover
continuations, ObjectSpace, fibers, and other topics that have subtle differences
when applied to JRuby. This book is specifically about deploying JRuby
applications and how JRuby affects your production environments.

Other topics not addressed include zero-downtime deployments, database
migrations, the asset pipeline, and content delivery networks (CDN). These
are important aspects of Ruby web application development, but they’re not
notably different between MRI and JRuby. You can learn about these topics
in books on the Ruby language and Rails. The same concepts will apply to
JRuby.

Who Is This Book For?
This book is for programmers, system administrators, and DevOps6 profes-
sionals who want to use JRuby to power their applications but aren’t familiar
with how this new platform will change their infrastructure.

You’re not required to have any experience with JRuby. This book is written
from the perspective of someone who is familiar with MRI-based Ruby
deployments but wants a modern deployment strategy for their applications.
Some of the concepts we’ll discuss may be more familiar to programmers with
Java backgrounds, but it’s not required that you have any experience with
Java or its associated technologies.

5. http://www.sinatrarb.com/
6. http://en.wikipedia.org/wiki/DevOps

report erratum • discuss

What’s Not in This Book? • xv

http://www.sinatrarb.com/
http://en.wikipedia.org/wiki/DevOps
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

Conventions
The examples in this book can be run on Linux, Mac, Windows, and many
other operating systems. But some small changes to the command-line
statements may be required for certain platforms.

We’ll use notation from bash, which is the default shell on Mac OS X and many
Linux distributions. The $ prompt will be used for all command-line examples.
Windows command prompts typically use something like C:\> instead, so when
you see a command like this

$ bundle install

you’ll know not to type the dollar sign and to read it like this:

C:\> bundle install

Most commands will be compatible between Windows and bash systems (such
as cd and mkdir). In the cases where they’re not compatible, the appropriate
commands for both systems will be spelled out. One case in particular is the
rm command, which will look like this:

$ rm temp.txt
$ rm -rf tmp/

On Windows this should be translated to these two commands, respectively:

C:\> del temp.txt
C:\> rd /s /q tmp/

Another Unix notation that’s used in this book is the ~ (tilde) to represent a
user’s home directory. When you see a command like this

$ cd ~/code/twitalytics

you can translate it to Windows 10 as this command:

C:\> cd C:\Users\yourname\code\twitalytics

On earlier versions of Windows, the user’s home directory can be found in
the Documents and Settings directory. You can also use the %USERPROFILE% environ-
ment variable. Its value is the location of the current user’s profile directory.

Other than these minor notation changes, the examples in this book are
compatible with Windows by virtue of the Java Virtual Machine.

Getting the Source Code
You’re ready to set up the Twitalytics application. Start by downloading the
source code from http://pragprog.com/titles/jkdepj2/source_code. Unpack the downloaded

Preface • xvi

report erratum • discuss

http://pragprog.com/titles/jkdepj2/source_code
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

file and put it in your home directory. This will create a code directory and
inside that will be a twitalytics directory, which contains the baseline code for
the application (in other words, the MRI-based code).

But you’re not quite ready to run this code with JRuby. It needs to be ported
first. You’ll learn how to do that in the coming chapters.

Online Resources
Several online resources can help if you’re having trouble setting up your
environment or running any of the examples in this book.

For Java-related problems, the Java Community has forums7 and numerous
Java-related articles.

For JRuby-related problems, the official JRuby website8 has links to several
community outlets. The most useful of these are the mailing list9 and the
#jruby IRC channel on FreeNode.10

For TorqueBox-related problems, there are a mailing list,11 extensive docu-
mentation,12 and the #torquebox IRC channel on FreeNode.

7. https://community.oracle.com/community/java
8. http://jruby.org/community
9. https://github.com/jruby/jruby/wiki/MailingLists
10. http://freenode.net/
11. http://torquebox.org/community/mailing_lists/
12. http://torquebox.org/documentation/

report erratum • discuss

Online Resources • xvii

https://community.oracle.com/community/java
http://jruby.org/community
https://github.com/jruby/jruby/wiki/MailingLists
http://freenode.net/
http://torquebox.org/community/mailing_lists/
http://torquebox.org/documentation/
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

CHAPTER 1

Getting Started with JRuby
JRuby is a high-performance platform that can scale to meet demand without
the headaches of an MRI-based deployment. Those headaches are often the
result of running a dozen or more processes on a single server that all need
to be monitored, balanced, and occasionally restarted. JRuby avoids these
problems by simplifying the architecture required to run an application. In
this chapter, you’re going to port a microservice to JRuby so that you can
take advantage of this simplicity and scalability. But in order to run the
microservice in production, you’ll need a way to deploy it. For this, you’ll use
Warbler.1

Warbler is a gem used to package source code into an archive file you can
deploy without the need for complicated configuration management scripts.
This makes the process more flexible, portable, and faster.

In Preface, on page xi, you were introduced to Twitalytics, a Ruby on Rails
app that needs help. Its infrastructure is too complex, and it can’t handle the
volume of requests the site is receiving. You don’t have time to port the dae-
mons and background jobs to a new framework, but you need to get one high-
traffic HTTP service deployed on JRuby. If you can do that, you’ll be able to
handle lots of concurrent requests without hogging the system’s memory.
Later in the book, you’ll consume this service from the main Rails app that
makes up the bulk of Twitalytics.

Your time constraints make Warbler a great solution. It won’t maximize your
use of the JVM, but it will allow you to take advantage of the most important
parts. You’ll be able to service all of your site’s web requests from a single
process without changing much code. The drawback is that you’ll have to

1. https://github.com/jruby/warbler

report erratum • discuss

https://github.com/jruby/warbler
http://pragprog.com/titles/jkdepj2/errata/add
http://forums.pragprog.com/forums/jkdepj2

