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Preface

 

I am an admitted object-oriented fanatic. I have been designing and implementing object-oriented
software for more than twenty years. When I started designing and implementing object-oriented
MATLAB

 

®

 

, I encountered many detractors. They would say things like “The object model isn’t
complete,” “You can’t have public variables,” “The development environment doesn’t work well
with objects,” “Objects and vector operations don’t mix,” “Object-oriented code is too hard to
debug,” and “MATLAB objects are too slow.” None of these statements matched my experience
with MATLAB objects. It quickly became obvious that MATLAB objects don’t have a capability
problem; rather, they have a public relations problem. Part of the public relations problem stems
from the fact that the sheer genius behind the design and implementation of MATLAB’s object-
oriented extensions is masked by the abbreviated discussion in the user’s guide. If you want to use
MATLAB to develop object-oriented software, ignore the critics, study the examples in this book,
and reap the benefits.

Mark Levedahl exposed me to the possibility of developing object-oriented MATLAB software
in 2001. Both of us had written a lot of C++ code, and we spoke the same object-oriented dialect.
MATLAB objects are seductive because they seem so easy. Without help, trying to get everything
right is anything but easy. My first object-oriented implementation was terrible. Construction was
dicey. Interfaces were terrible. Modules were slow. The code was very hard to maintain. Maybe
the critics were right. I was still learning. The lessons improved the next implementation, but there
still seemed to be a fundamental difference between, for example, object-oriented programming in
C++ and object-oriented programming in MATLAB.

MATLAB object-oriented code always bumped up against the same limitation. The elements
spelled out in the object-oriented design didn’t map easily to an m-file implementation. Part of the
reason for the poor match comes from the fact that each design element must be spread into more
than one m-file: one module to get a value, another module to set it, and yet another to display it.
In an evolving design, files can easily get out of synch. Couple this with the fact that a developer
is free to define the mapping, and the result can be chaos. Faced with many competing alternatives,
it is fair to ask, “Is one alternative better than the others?” After a lot of consideration and study,
I believe the answer is yes. Following the best alternative improved the object-oriented implemen-
tations by orders of magnitude. Armed with the best mapping, a software tool to keep the modules
and design in synch is a matter of design and implementation. Version 3 of the MATLAB Class
Wizard will do this. The Class Wizard tool is included on this book’s companion CD.

The first version of Class Wizard was not easy to use. George Brown, Kyle Harrigan, and Mike
Baden used it with some success. Their comments helped shape the graphical user interface in the
current version. At the same time, I was using my Class Wizard tool to create object-oriented code
for a large MATLAB project. That project, the Target Tracking Benchmark, was primarily sponsored
by the Missile Defense Agency and involved a cadre of accomplished MATLAB programmers
from government, academia, and industry. Good techniques were allowed to blossom, and the bad
were very quickly rooted out. Reactions to MATLAB objects were mixed. The ensuing debates
improved everyone’s understanding of the risks and benefits. Over time, the debate participants
included Mark Levedahl, Steve Waugh, Laura Ritter, Dale Blair, Phil West, George Brown, Paul
Miceli, Terry Ogle, Paul Burns, Chris Burton, Lisa Ehrman, Dan Leatherwood, Darin Dunham,
Steve Kay, Al de Baroncelli, Ron Rothrock, Bob Isbell, Bruce Douglas, Greg Watson, Ben Slocumb,
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Mike Klusman, Jim Van Zandt, and Joe Petruzzo. These gifted individuals improved my under-
standing of MATLAB objects and helped shape the second and current versions of Class Wizard.

The second version of Class Wizard was easier to use, and about three years ago I set out to
write a user’s guide for it. I quickly discovered that telling someone how to use a tool is a lot
different from telling someone why. Many MATLAB programmers seem genuinely interested in
learning why. For example, my half-day seminar on object-oriented MATLAB at the 2003 IEEE
Southeastern Symposium on System Theory was the best-attended session by a wide margin. After
that seminar, I started adding more detail to the Class Wizard user’s guide. I also improved Class
Wizard by adding a guide-based graphical interface and support for object arrays and multiple
inheritance. Shortly after that, Mel Belcher and Dale Blair encouraged me to turn the user’s guide
into a book. I am very grateful for their insight and moral support. I would never have undertaken
this project without their initial prodding and enthusiasm.

MATLAB is a registered trademark of The MathWorks, Inc. For product information, please
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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Introduction

 

The organization of this book breaks MATLAB object-oriented programming into three sections.
The first section covers the required elements and focuses on developing a set of functions that
give MATLAB objects first-class status within the environment. In the first section, we will develop
a group of eight indispensable functions. These functions provide object initialization, a simple
intuitive interface, interaction with the environment’s features, and array capability. Even more
important, the group of eight is responsible for an object-oriented concept called encapsulation.
Encapsulation is fundamental to using object-oriented programming as a better, safer alternative
to structures. The default functions in MATLAB seem to be at odds with the information-hiding
principle of encapsulation; but the group of eight brings MATLAB back under control. By the end
of the first section, you will have an excellent working knowledge of MATLAB’s object-oriented
capability and be able to use object-oriented programming techniques to improve software devel-
opment.

The second section builds on the first by developing strategies and implementations that allow
the construction of hierarchies without compromises. Such hierarchies are important for achieving
true object-oriented programming. The concept of building the next layer of functionality on a firm
foundation of mature code is very compelling and often elusive. Encapsulation certainly helps, but
another object-oriented concept called inheritance makes it much easier to build and traverse an
organizational hierarchy. With inheritance, each successive layer simply builds up additional capa-
bility without changing code in the foundation. As the code matures, bug fixes simply make the
foundation stronger. At first blush, the desire for both first-class status and an inheritance hierarchy
appears incompatible. The section on building a hierarchy delivers a harmonious framework.

The third section discusses advanced strategies and introduces some useful utilities. Advanced
strategies include, among others, type-based function selection, also known as polymorphism;
passing arguments by reference instead of by value; replacing 

 

feval’s

 

 function handle with an
object; and a utility for rapid object-oriented code development. Do not expect to use all the
advanced strategies in every software development. Instead, reserve the advanced techniques for
difficult situations. Discussing these concepts is important because it opens the door to what are
essentially limitless implementation options. It is also nice to know about advanced strategies when
the uncommon need arises.

This book makes two assumptions about you, the reader. The first assumption is that you
consider yourself an intermediate or better MATLAB programmer. At every opportunity, example
code uses vector syntax. The example code also uses a few important but relatively obscure
MATLAB functions. Example code also uses language features that some might consider to be
advanced topics, for example, function handles and try-catch error handling. Even though code
examples are described line by line, entry-level MATLAB programmers might find the example
code somewhat vexing.

The second assumes only a cursory knowledge of object-oriented programming. I dedicate a
significant amount of the discussion to the introduction of fundamental object-oriented program-
ming concepts. MATLAB programmers new to object-oriented programming will be able to follow
these discussions and thus gain the ability to implement object-oriented designs. Even so, there is
also plenty of substance to keep seasoned object-oriented programmers on their toes. Going back
to the basics will often reveal important design considerations or expose hidden object-oriented
capability. It is my sincere hope that everyone reading this book will mutter the phrase “I didn’t
know you could do that” at least once.
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 Most of this book concentrates on MATLAB coding techniques; however, the introductory
chapter gives me an opportunity to touch on a few topics critical to general software development
that are somewhat peripheral to the mechanics of writing code. It also gives me a place to discuss
some of the ideas that support object-oriented programming. I trust you are anxious to dive into
the world of MATLAB object-oriented programming, so this introduction will be brief. 

Some of you might decide to skip this chapter and dive right into the MATLAB implementation.
You will be skipping background information on general object-oriented programming: topics like
encapsulation, inheritance, and polymorphism. Nothing in this chapter is critical to the examples;
however, if you decide to skip this chapter, you might want to come back and read §1.3 before
diving into the second section on inheritance. I will remind you to come back when the time comes. 

 

1.1 EXAMPLES

 

One of the easiest ways to learn is by example. I have tried to include examples of working source
code for every new concept or iterative improvement. Each chapter is complete in that the example
source code will run and produce results. Subsequent chapters will often add to or improve modules
from earlier chapters, but by the end of the chapter everything should execute. You can work along
by either typing in the example code or copying the source from the CD. Every chapter has its
own directory. All of the examples are included on the CD that accompanies this book.

Interact with the examples. Type in the example source code or copy it from the CD and
experiment. The descriptions that accompany the listings will guide you along by supplying
command-line instructions. As an alternative to constantly setting MATLAB’s path, it is more
convenient to experiment with the examples from each chapter’s directory. I will include a listing
with the explicit 

 

cd

 

 command or the result 

 

pwd

 

 (print working directory) when it is important to
move to a particular directory. That way, you will know where to navigate before typing the
commands. The recommended location for the example files is 

 

c:/oop_guide

 

.* Of course, the 

 

cd

 

directory or 

 

pwd

 

 display will be different if you copy the example files to a different location.
To save a little space, displayed results use compact spacing. MATLAB displays results using

a compact format when the 

 

‘FormatSpacing’

 

 

 

environment variable is set to 

 

‘compact’

 

.
The following command can be used to set the environment variable. 

 

>> set(0, ‘FormatSpacing’, ‘compact’)

 

Set 

 

‘FormatSpacing’

 

 to 

 

‘loose’

 

 to get back to the default display spacing. 

 

1.2 OBJECT-ORIENTED SOFTWARE DEVELOPMENT

 

In lieu of a long discussion, I will instead refer you to authors, books, or websites that I have found
to be particularly helpful. The referrals are of course not exhaustive because there are too many
effective ways to attack software development. The cited references are simply some of the tools
I have found to be effective for me. With time and experience, you will accumulate a set of tools
that are effective for you. If you do not already have a favorite resource in some particular area,
the citations are a good place to begin. I am confident that this book will find a place in your
favored set of tools.

 

*  The direction of the directory slash will depend on your operating system. In Windows you can navigate directories
using either / or \ , but 

 

pwd

 

 uses \ in its output. In Unix and Linux, only / may be used. In code, the variable 

 

filesep

 

always returns the directory slash appropriate for the operating system; see 

 

help filesep

 

.
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As you are no doubt aware, software development is not just about implementation. Development
involves an extensive set of activities that span a wide range of topics, and for any large project,
the human element is vitally important. To attack increasingly difficult problems you will need to
sharpen your own development ability. Successful software development also draws upon the
collective abilities of individuals, teams, and organizations. As problems grow in size you need to
be able to focus the development team and help improve the capability of your entire organization.
Such continuous professional development at all levels is personally rewarding and directly leads
to bigger, better, and faster software. It also leads to more responsibility and improved salaries.

First, recognize that the development of bulletproof software is an exceptionally difficult
undertaking. You need to be at the top of your game, and you need to focus and organize your
development team. There are a number of proven techniques that can improve both your personal
effectiveness and that of your team. These techniques are not limited to coding but span the entire
project scope from design through delivery.

Second, recognize that both MATLAB programming and object-oriented programming repre-
sent two areas that by themselves rely on a high level of hard-won expertise. Merging the two
represents yet another challenge. The MathWorks software engineers did a very commendable job
in adding object-oriented capability to MATLAB. Their object model seamlessly meets all of the
basic requirements of object-oriented programming; however, this does come with a price. You
must write efficient code or run-time performance will suffer. Gaining efficiency requires advanced
MATLAB techniques. There are new functions to learn, and familiar functions will be used in
entirely new ways. Even fundamental subjects like the function search path get new rules when
objects are involved.

The various quirks of MATLAB’s object-oriented model can tax the ability of even the most
capable designers. MATLAB contains encapsulation and inheritance capability equal to any modern
object-oriented language. Sometimes, however, it is difficult to use all of that capability. To clear
that hurdle, simply expand and reuse the coding patterns presented in the various examples. The
biggest difference between MATLAB and more typical object-oriented languages stems from one
of the fundamental properties of MATLAB, untyped variables. The lack of strong variable typing
represents a handicap. The rules that govern search-path searching help in some regard. Even so,
minor concessions are usually required when implementing a complex object-oriented design in
MATLAB. With very weak typing, MATLAB’s use of polymorphism is similarly weak. You as the
programmer are responsible for choosing correct functionality based on the data. MATLAB’s
polymorphism usually leads you to a function in the correct class, but the rest is up to you. 

 

1.2.2 P

 

ERSONAL

 

 D

 

EVELOPMENT

 

Evolving your personal skills is important, but how do you do this effectively? To paraphrase Watts
Humphrey of the Software Engineering Institute,

 

If you want to get to where you’re going, you need a map; 

if you don’t know where you are, a map won’t help.

 

Following from this statement the general procedure for continuous improvement is not difficult
to describe:

• Gauge your level of expertise; find that big, red “You are here” arrow.
• Identify the skills you want to acquire, that is, identify the destination.
• Plot a path from where you are now to where you want to be.
• Periodically check that you are indeed moving toward the destination.
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This sounds simple enough, but as always, the devil is in the details. 
One good resource where you can learn to sort out the details is a book by Watts Humphrey

titled 

 

Introduction to the Personal Software Process

 

sm

 

.* The Personal Software Process (PSP) sets
up an organized approach that allows you to gauge your existing skill set and control the introduction
of new skills. By following the PSP’s prescriptions, you can improve all phases of your personal
development from planning through delivery. The PSP is particularly effective in helping to elim-
inate the introduction of errors in the critical design and coding stages. Errors eliminated early in
the process cannot then affect later stages.

The PSP is a tailored, one-developer version of a software discipline used to improve team-
based software engineering. A multiple-developer software discipline can be found in 

 

The Capa-
bility Maturity Model

 

 (

 

CMM

 

) by Mark Paulk et al.** The 

 

CMM

 

 is not unique in its objective. A
large body of research on the introduction of structure and rigor to team-based software development
certainly exists. Among the many resources available, the articles found at http://www.sei.cmu.edu
are quite extensive and use the same language as that used in the PSP and 

 

CMM

 

.
Aligned with personal improvement and software engineering rigor is the software development

life cycle. Different software products benefit from using different life cycle models, and indeed,
there are many different models. Each model supports a relatively unique development environment.
The IEEE/EIA 12207 standard***

 

,

 

**** is a concession by both industry and government that no
single development model works for every situation. This gives us the liberty to search for models
that work well with both our intended applications and MATLAB.

MATLAB programs are successful across a variety of disciplines. The most successful use is
when a small group of technical professionals attempts to solve an entirely new problem. This type
of development usually contains an evolving set of interlocking constraints. The software is part
of the evolution. Designing and writing one iteration increase problem awareness. The discipline
involved in developing the software improves understanding and reveals new issues and constraints.
Each new revelation folds back into the requirements and begins a new implementation. In the
extreme, the revisions never end and it is difficult to complete one revision before discovering new
requirements. 

There is no definitive stopping rule. Answers to questions like “When is the software model
close enough to reality?” or “When is the algorithm accurate enough?” are often difficult to know
in advance because each revision uncovers the need for more detail. The software development
process itself has become one method of problem discovery. Consequently, each revision extends
the capability of the software. After several iterations, the code often evolves completely away from
the initial design. We often refer to the result of this constant change as “spaghetti code” because
of all the twisted connections among modules. It does not take too much iteration before continued
development becomes painfully slow and protracted. Is this a familiar situation?

It turns out that this “typical” MATLAB project description fits the definition of a so-called
wicked problem.***** The extreme-programming life cycle model****** is gaining traction as
the preferred method for wicked-problem software development. The extreme-programming model
is also increasing in popularity for general software development. Since the topic of this book is
object-oriented programming, it should come as no surprise that object-oriented programming and
the extreme-programming life cycle model are well suited for each other. In fact, certain protections

 

*  Addison-Wesley Professional, 1999.
**  Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis, principal eds., 

 

The Capability Maturity Model

 

,
Addison-Wesley Professional, 1995.
***  http://standards.ieee.org/reading/ieee/std_public/description/se/12207.0-1996_desc.html.
****  http://www.stsc.hill.af.mil/crosstalk/about.html.
*****  P. DeGrace and L. Stahl, 

 

Wicked Problems, Righteous Solutions: A Catalogue of Modern Software Engineering
Paradigms

 

,

 

 Yourdon Click, 1990.
******  http://www.extremeprogramming.org.
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afforded by object-oriented programming actually enable the extreme-programming life cycle
model. There is more to say about wicked problems and extreme programming.

 

1.2.3 W

 

ICKED

 

 P

 

ROBLEMS

 

We can classify all problems into one of two categories: tame and wicked. Tame problems can be
subdued using traditional linear thinking and thus lend themselves to traditional linear development
method (e.g., a waterfall model). Wicked problems by contrast are not so easily domesticated.
When dealing with wicked problems you need a different approach, and learning to identify them
is a good place to begin.

If developers cannot agree on a shared description of the problem, it is probably wicked. Such
consensus is difficult because the definition of the problem changes every time a new solution is
considered. Individuals on the development team will be at different stages in problem discovery
and thus have different opinions about the problem description. Lack of a shared vision often leads
to constantly changing requirements, another bane of software development. When developers
finally solve the problem, the solution leads to a shared description. 

There are many other clues. Some of the most distinctive characteristics often associated with
wicked problems are as follows*:

• You cannot understand the problems until you develop solutions, and unfortunately, every
solution is expensive and has lasting unintended consequences.

• You find an evolving set of interlocking issues and constraints. 
• Proposed solutions are not necessarily right or wrong but rather better or worse.
• There seems to be no definitive stopping rule aside from exhausting the available

resources.
• The problem and the proposed solutions are novel or unique.
• The problem does not seem to provide an ultimate test whether the solution is correct

or complete.

Anyone with experience in software development can certainly recall a project or two with
some of these characteristics. Many of these projects get into trouble not because the wicked
problem exists, but rather due to a failure to identify the problem as wicked and approach the
solution with the appropriate tools and techniques. Software development has a dismal record where
one third of software projects are canceled, and of those that remain half fail to meet the original
budget.** The skill and dedication of developers are not at fault in this record. More likely, the
whole methodology of approaching the solution of wicked problems is broken.

For example, the knee-jerk approach in dealing with a failing project is to apply more man-
agement scrutiny and impose processes that are more stringent. The hope is that a more detailed
definition of the requirements, deeper analysis of the problem, in-depth planning, or more progress
tracking will get the project back on track. With a so-called tame problem, this approach might
actually work. With a wicked problem, this linear approach will almost certainly fail. Wicked
problems are very resistant to up-front detailed analysis. The usual approach is failing so we must
consider a new set of tools.

The most important part of the new strategy is to accept that wicked problems do indeed exist.
After accepting their existence, we need a method of identification. A development team at odds
with each other, at odds with management, or at odds with the customer over exactly what the
software is supposed to do is a strong indication. A project that continues to spiral downward after

 

*  Horst Rittel and Melvin Webber, “Dilemmas in a General Theory of Planning,” Reprint no. 86, the Institute of Urban
and Regional Development, University of California, Berkeley.
**  Mary Poppendieck and Tom Poppendieck, 

 

Lean Software Development: An Agile Toolkit for Software Development
Managers

 

, Addison-Wesley, 2003.
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adding more resources or swapping out key personnel is also waving a wicked flag. There are other
more subtle indications, and a web search on the keywords “wicked problems” will result in a host
of resources for both identifying wicked problems and dealing with them.

Accepting the fact that we must begin the solution before we have all the data is important in
dealing with wicked problems. Accepting this allows development to focus on revealing more
problem detail rather than trying to solve the complete, poorly defined problem. Additional detail
refines the problem statement, which folds back into the next solution. Developers are not upset
about modifying or scrapping code because neither the goal nor the schedule called for a solution
on the first cycle. After several adaptive cycles, developers understand the problem and the software
represents a good solution. The solution process for wicked problems concedes that bouncing
among design, implementation, and test is the best way to solve poorly understood problems.

This type of iterative development usually runs counter to the current, generally accepted
software development practices; however, the future of software development is iterative. This does
not mean that software development will revert to the early days of no process maturity or an ill-
defined process framework. Developing software in such a stop-and-go manner can result in an
unwieldy design unless the iterative development follows a suitable development model. The current
set of development processes go hand in hand with a procedural approach. The extendible power
of object-oriented programming enables new development models capable of solving wicked
problems. 

Decades ago there were dire predictions made about the adoption of object-oriented program-
ming. As we now know, most of these damning predictions turned out to be false. Now, the same
voices are shouting warnings about iterative development. History appears to be repeating itself.
In spite of such dire predictions, companies are obtaining good results using the combined power
of object-oriented programming and iterative development.

 

1.2.4 E

 

XTREME

 

 P

 

ROGRAMMING

 

The extreme-programming development model* is one of several models that embody precisely
the kind of iterative development necessary to solve wicked problems. In brief, the extreme-
programming model emphasizes the following:

• The use of test suites to define project milestones (fanatical testing)
• Frequent releases with small, stable additions to functionality
• A simple design that is iteratively refined
• Continuous code improvement (to make code faster and easier to maintain)
• Pair programming
• Collective code ownership
• Documented standards

The items in this list and object-oriented programming go hand in hand. Frequent releases and
continuous code evolution require the use of a language that supports reliable, extendible, reusable
code. Object-oriented languages support these goals, and in §1.3.4 we will see how. Items in the
list also encourage more of a team-based approach compared to traditional methods. Collective
ownership, pair programming, and documented standards make peer review and code walk through
integral parts of code development rather than after-the-fact quality assurance steps. Individual
effort is still valuable for innovation. The difference here is in bringing the result of individual
innovation into the team-based environment.

Perhaps the only valid criticism of iterative methods like extreme programming involves
documentation. With very little predevelopment emphasis on requirements and design, developers

 

*  http://www.extremeprogramming.org.
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write documentation concurrently as the code is developed or after the code is complete. Neither
is ideal. The evolutionary nature of iterative development makes it extremely difficult to document
revisions synchronized with code revisions. The community of developers must take collective
ownership of the documentation, but supporting tools are not well established. Pushing the devel-
opment of documentation to the end of the project yields the same poor results regardless of the
life cycle model. The descriptions are often lacking in important detail because developers forget
many of the nuances. The truth is that software documentation is a tough problem. Even with
traditional methods, documentation is often out of date or incomplete. Iterative methods make some
problems of documentation different, but the situation overall is neither better nor worse.

You have to relate the importance of documentation to your development team because good
documentation relates to productivity. Effort spent analyzing undocumented code is effort that could
have gone toward solving the real problem. Multiply this over several developers and many classes,
and the consequences become clear. The iterative development community has adopted a posture
that says documentation is not required, a posture that might actually have some merit. Instead of
separate documentation, the code itself should be self-documenting. Any description other than
code is simply a translation, and all translations are subject to error. Under some strict conditions
the idea of self-documenting code might actually work. Generally, these conditions are not exclusive
to extreme programming but are conditions of good software development in any environment. 

Clearly written code is the first condition. Use variable names that represent the data in them
and function names that represent the operation. All developers need to be on the same page with
respect to the conventions. Community code ownership demands uniformity. Unfortunately, every
problem domain seems to use a different vocabulary, making one universal convention impossible
to establish. The convention must be somewhat flexible to change just like the code itself. Clearly
written code also limits the number of operations carried out on each line. Sometimes run-time
performance issues are at odds with such limiting. The 80–20 rule of thumb says that only 20
percent of the code consumes 80 percent of the run time. Surprisingly accurate, this rule allows
you to be judicious in trading run time for code complexity. Where code syntax becomes unusually
difficult, add a comment to aid in future maintenance. Code idioms and a modular implementation
also improve clarity and quality. Document standard conventions and idioms in a coding standard,
but allow the standard to evolve.

Taking advantage of MATLAB’s help utility is the second condition. Use a 

 

Contents.m

 

 file
to display a table-of-contents description of all the functions in a directory. Use a standard,
compatible format for header comments. Format all the lines in a header as comments, and
MATLAB displays the comments in response to 

 

help

 

 

 

function name

 

. These header comments
should summarize the function’s intent and cite important assumptions for input–output arguments.
In an extreme-programming environment, the header should also include a list of test functions.
The first comment line is particularly important because it plays a significant role. Known as the
H1 line, MATLAB displays the first header line in response to a 

 

lookfor

 

 command.
Up-to-date requirements and at least a high-level design hierarchy form the minimum level of

documentation for the third condition. Documented requirements are necessary because these
represent the best view of the problem. Use the requirements to scope the problem and drive
development in a particular direction. As the development progresses, requirements can and often
do change. A formal update of the requirements keeps everyone’s expectations on track. A high-
level design hierarchy imposes a shared vision.

Align the design with the requirements and allow it to drive iteration goals. Like the require-
ments, the design hierarchy evolves with the development. In an ideal situation, the hierarchy simply
expands its level of detail. Indeed this should be the goal for the design of the public interface.
Sometimes entire branches of the hierarchy need reorganization. Allow this reorganization to set
the stage for the next cycle of code refactoring. Documented requirements, an up-to-date high-level
design, and a standard for self-documenting code are significant improvements over the typical
status quo. 
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Finally, code specifically designed and developed for reuse needs a higher level of documen-
tation. Presumably, the public interface is mature and the behavior is predictable. In short, the code
has ceased to evolve so there is little danger of documentation becoming obsolete. Under this
scenario, good documentation can improve productivity because even self-documenting code is
harder to understand compared to a carefully written, peer-reviewed, cataloged document. With a
documented reuse library, we are plainly trying to discourage a developer from redeveloping the
same solution.

 

1.2.5 MATLAB, O

 

BJECT

 

-O

 

RIENTED

 

 P

 

ROGRAMMING

 

, 

 

AND

 

 Y

 

OU

 

Effectively dealing with MATLAB object-oriented programming means first effectively dealing
with MATLAB. The included code examples and idioms rely on an advanced understanding of the
MATLAB path, passing data using variable argument lists, and improving run time with vector
syntax. Object-oriented techniques also require an expert’s knowledge of both standard and obscure
MATLAB functions. Object-oriented programming in MATLAB is an advanced topic, and the
examples and idioms assume a certain level of MATLAB-language expertise. My goal is to increase
your understanding of MATLAB in general, but this book is not a general language reference. The
various manuals that come with MATLAB are one of the best general references. Although cryptic
at times, they provide a very concise, complete description of almost every language feature. The
help facility makes most of the manual information available from the desktop. Online resources
at http://www.matlab.com supplement the manuals with up-to-the-minute documentation and user
examples. The discussion groups and contributed utilities on the site are particularly valuable. 

Programmers include a continuum of MATLAB expertise, but with respect to object-oriented
programming, there are two divisions: 

 

client

 

 and 

 

developer

 

. Client programmers use objects in their
own software but do not develop “low-level” object code. Clients are vital to the development in
other ways. Clients are important because they often represent the group of domain experts. Their
expertise is not in object-oriented programming but rather is steeped in the real problem. As such,
clients are an important resource for defining interfaces and functionality. If it were not for clients,
developers would be out of a job. Clients, however, are not the target audience of this book. 

Developers, on the other hand, are responsible for developing low-level object code. The
remaining chapters develop examples, define idioms, and introduce a software tool specifically
designed to ease the burden of object-oriented development in MATLAB. As your experience with
object-oriented programming increases, you will be called on to both build the object-oriented
foundation and use the foundation elements to build applications. The first role represents developer;
and the second, client. Clients and developers use different mind-sets. and part of your job as a
developer is being able to apply the client mind-set when playing that role.

Playing the role of developer requires a greater attention to detail because you will design both
the outward appearance and the inner workings of each object. The outward appearance is important
because this is the only part of the object seen by a client. Here, careful thought and attention to
detail make the object easy to use. Indeed, this book describes a set of techniques that can be used
to give objects an interface identical to that of a structure. A structure-like interface eases a client’s
use of objects but the structure-like interface is only half the equation. The other half involves the
inner workings or private implementation. While the object interface might appear structure-like,
your code is actually taking over and producing a result. You have to be diligent in anticipating
every condition or the implementation will fail, usually at the worst possible time. Isn’t that how
Murphy’s Law always works? MATLAB’s model for object-oriented programming gives you
powerful tools to thwart misuse by clients; but as a developer, you must learn how and when to
use each tool. Some of these tools are pervasive across all object-oriented languages, while some
are unique to MATLAB.

The remaining chapters and examples put you on the right track of becoming a MATLAB
object-oriented developer. Same as with the MATLAB language itself, the examples presume a
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certain level of expertise in general programming and in object-oriented design. Unlike the treatment
of the MATLAB language, objects in the examples remain relatively simple because the imple-
mentation methods for simple and complicated objects are essentially the same. There is no reason
to cloud the discussion of implementation issues by trying to attack a difficult problem. Of course,
this does put limits on how far we will delve into the problem of object-oriented design. As you
try to attack increasingly difficult problems, you will undoubtedly need additional object-oriented
design resources. A seminal book focusing on object-oriented design is Grady Booch’s 

 

Object-
Oriented Analysis and Design with Applications

 

*. Booch is one of the early pioneers and has a
very intuitive approach to object-oriented design. Two other object-oriented pioneers are James
Rumbaugh and Edward Yourdon. 

These three object-oriented giants have put aside their differences to develop a graphical design
format called the Unified Modeling Language (UML). UML is the standard development and
documentation tool for object-oriented programs. The modeling environment provides a very rich
and detailed approach, and the basics are easy to learn. The book by Booch et al. titled 

 

The Unified
Modeling Language User Guide

 

** is one of many UML references. 

 

1.3 ATTRIBUTES, BEHAVIOR, OBJECTS, AND CLASSES

 

Before we try to answer the fundamental question “Why objects?” let’s first discuss the difference
between an object and a class. The two terms are closely related but are not interchangeable, even
though that is how they are often used. In short, a class is a model that exists as lines of code, and
an object is an instance of the model that exists in memory during program execution. A class is
a user-defined type and an object is a variable of that type.

For tangible objects, we generally accept that they will have both attributes and behaviors. In
addition, we usually know how to link attributes and behaviors depending on the object’s type. For
example, a hungry baby cries and an alarm clock rings. For tangible objects, an object-modeling
approach is easy to rationalize because that is how we naturally organize them. In concept, software
objects are not much different from tangible objects. Software objects represent tangible elements
of the problem domain. Just like worldly objects, software objects have both attributes (data) and
behaviors (functions). In a good design, these attributes and behaviors associate naturally and are
inseparable from one another. Perform some thought exercises centered on this idea.

What image enters your mind at the mention of the word “shape”? Is it two-dimensional or
three? What is its color? Are the sides straight or curved? If you describe your image, do you think
I would agree that it is indeed a shape? It can be square, circular, or star shaped; red, blue, or
rainbow colored; stationary, rotating, or zipping about; and it would still be a shape. From expe-
rience, we are able to abstract the idea of shape into a general collection of attributes and behaviors.
In object-oriented terms, the abstraction is a 

 

class

 

 and any particular shape is an 

 

object

 

 of that
class. This particular abstraction is easy because we practice it without even realizing. With practice
and experience, abstraction into an object-oriented software design is almost as easy.

 

1.3.1 F
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 MATLAB H
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Until fairly recently universities taught most engineers, scientists, mathematicians, and technical
professionals to decompose a problem into a series of actions. Converting these actions into a
loosely organized set of functions yields a so-called procedural-based design. The procedural-based
approach spawned a variety of other software-engineering techniques. Software development life

 

* Grady Booch, 

 

Object-Oriented Analysis and Design with Applications

 

, Benjamin Cummings, 1991. The 3rd edition was
released in 2004.
**  Grady Booch, James Rumbaugh, and Ivar Jacobson, 

 

The Unified Modeling Language User Guide

 

, Addison-Wesley
Professional, 1998.
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cycles are the most notable. In too many cases, the customer’s project-planning tools assumed a
so-called waterfall life cycle model. Project planning is much easier with a waterfall model. 

Unfortunately, the procedural approach and the waterfall life cycle are showing their age. The
amount of module-to-module coupling hinders the ability to maintain or extend many large pro-
grams. Adding a new feature or fixing an old one takes longer than expected and, far too often,
introduces side effects unrelated to the new feature. The use of object-oriented methods can
drastically reduce the amount of module-to-module coupling. Many in the software-engineering
community believe that shifting to an object-oriented approach is the only way to achieve significant
increases in program size and complexity.

The ready availability of commercial MATLAB toolboxes has allowed large increases in
complexity even with the use of traditional, procedural methods. Invariably with time, software
requirements will grow to the point where even the use of toolboxes will not be enough to offset
the limitations of the procedural approach. No one can predict when the typical program size will
outstrip the capacity of the current approach; however, some MATLAB projects have already
crossed the threshold. Many MATLAB programmers recognize the early-warning signs. If we
follow the lead of our software-engineering brethren, embracing object-oriented techniques appears
to be the solution. Helping defend this position is the fact that MATLAB includes a very robust
object model.

Where would the study of mathematics be without whole, real, and complex numbers? Biology
would be equally difficult without taxonomy divisions among plants, animals, fungi, virus, protozoa,
and bacteria. In these disciplines, properties rather than behavior drive the decompositions. Object-
oriented programming is no different. User-defined types are the central focus of the software
architecture. Just like other taxonomies, the types contain both properties and behavior but the
decomposition emphasizes the properties. For someone steeped in procedural decomposition, the
object-oriented approach appears backward. Instead of focusing on behavior (functions), object-
oriented programming focuses on attributes (data). Along with this change in focus come big
differences in life cycles, coding development, testing, and integration. 

To many, object-oriented development represents a radically different way of thinking. Intro-
ducing changes of this scale into an organization can be difficult and protracted. By one estimate,
the transition takes an average programmer about one year.* This book should help speed the
transition by defining specific coding practices and by exposing potential problem areas. The Class
Wizard tool also allows programmers to focus on design rather than implementation (see Chapter
18), further speeding the transition. Other techniques may also hasten the transition. For example,
pair programming is a type of co-mentoring activity that should be helpful in shortening the
transition time. There are also many more books, seminars, and short courses available today
compared to 1994 when the estimate was made. 

 

1.3.2 O

 

BJECT
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RIENTED
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Think about shapes again. If asked to design a software representation of a shape, how would you
begin? You might have a good idea about shapes but you still need to find out if your ideas match
the needs of your clients. You can use client requirements, user stories, and domain experts to help
pin down the set of attributes and behaviors required of your software shape. At first these attributes
and behaviors might seem disconnected; however, with more analysis, patterns and dependencies
usually emerge. First, arrange shapes with similar attributes in a loose taxonomy. Then use behavior
differences to infer additional attributes. For example, it might be perfectly reasonable to combine
a division between moving and stationary shapes by defining a speed attribute. This gives all shapes
the same behavior; however, shapes with zero speed do not appear to move. It might also be
perfectly reasonable to keep moving shapes separate from stationary ones. In that case, a moving

 

*  B. Stroustrup, 

 

The Design and Evolution of C++

 

, Addison-Wesley, 1994.
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shape is still a shape but it has at least one additional attribute and behavior. The choice affects
the software design and code, but the client’s experience with the final design is the same. When
the taxonomy stops changing, we establish the software architecture. Each leaf in the taxonomy
represents a set of attributes that can be implemented as a class. Connections among leaves allow
classes higher in the taxonomy to serve as the foundation for lower classes. Lower classes do not
redeclare higher-level attributes because they can inherit the higher-level attributes by simply
declaring a connection in the taxonomy. The same organization works for behaviors.

The process is similar in many respects to procedural design except that the final organization
focuses on data rather than function. In theory, the process sounds reasonable, but in reality, some
software problems are maddeningly difficult to organize. Sometimes developers do not have enough
experience in the problem area to foster good organization. At other times, the special terms and
notation used by the experts simply overwhelm the designer. Object-oriented designers have
experienced these difficulties and have developed many techniques useful in difficult design envi-
ronments. Unfortunately, a full treatment of object-oriented design is outside the scope of this book.
If you are new to object-oriented programming, you will gain valuable experience by implementing
and evolving someone else’s design. When you are ready to design your own object-oriented
architecture, a library of books and a wealth of articles and websites are available that fully develop
object-oriented design. The authors and references already cited represent good starting points. 

 

1.3.3 W

 

HY
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BJECTS
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Previously, I made the statement that the creation of objects seems to mirror the way we naturally
view the world. A brief discussion about shapes was used to demonstrate the idea. If true, the idea
that software development can reflect our typical worldview is nice but it certainly would not
compel programmers to abandon their current practice. This is particularly true in light of the
amount of effort involved in making a change. No, the argument has to be a lot more compelling. 

The area of software development most influenced by object-oriented programming is software
quality. Demonstrated quality improvements can make converts of even the most grizzled procedural
programmers. Quality has many facets, but bug-free software that works correctly the first time it
is used is a typical goal. It is hard to disagree that bug-free software somehow equates to high-
quality software; however, if bug-free code takes too long to develop or runs too slowly, what then
of quality? 

In reality software quality is an elusive topic with a lot of “I’ll know it when I see it” judgments.
Running correctly without crashing is certainly one aspect of quality, but other areas are important
too. Assuming the requirements correctly identify what is needed, software engineers generally
agree that overall quality is influenced by the following:

• Reliability
• Reusability
• Extendibility

Specific features in object-oriented programming relate to every one of these factors. Another
possible factor is productivity. Perhaps it would be better to emphasize productivity rather than
quality. After all, we know that bug-free software is impossible to produce. Even if we could get
all the bugs out, delivery times would be very long and the production cost would be astronomical.
Besides, customers have learned to expect bugs, particularly in the first few versions.

I hope you were 

 

not

 

 nodding in agreement with the last few sentences. These often accepted
assumptions are 

 

wrong

 

, 

 

wrong

 

, 

 

wrong

 

. The fact that your competitors believe them gives you an
enormous competitive advantage. Proven techniques can both reduce the number of coding errors
and hasten the discovery of bugs that do manage to slip in. The introduction of fewer errors along
with quicker discovery increases productivity by reducing the amount of unproductive time spent
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reworking broken code. With a lower error rate, testing reveals fewer bugs, thus allowing the entire
development to run at a faster pace. In the manufacturing sector, Lean-Six-Sigma* techniques
dramatically improve both quality 

 

and

 

 productivity. Proven false in the manufacturing sector is the
notion that high quality equals low productivity. In fact, attaining both exceptional quality and high
productivity can be the rule rather than the exception. There is nothing to prevent the introduction
of Lean-Six-Sigma ideas into the software development process.

 Customers can also be retrained. Once you start delivering high-quality products, the market-
place will demand the same quality from all producers. The rise of the Japanese auto industry
provides a clear example where a customer’s appreciation for quality disrupted the marketplace. I
predict that the same disruption will eventually occur in the software industry. Currently, India
seems to be the likely winner, but China too is coming on strong. I urge you to consider the
implications and work to drive your organization toward the delivery of world-class quality. Sooner
than you imagine, customers will be demanding it.

 

1.3.4 A Q

 

UALITY

 

 F

 

OCUS

 

Proven techniques can enhance software quality. Some techniques focus on one particular quality
measure like reuse. Others cut across all measures. Object-oriented techniques belong in the latter
group because they create a fundamentally different development environment. It is an environment
with a proven ability to improve all areas of quality. Below we summarize the major factors
contributing to quality. 

 

1.3.4.1 Reliability

 

The most visible aspect of software quality is reliability. If the software crashes or produces the
wrong result, customers consider the product unreliable. Even when most features work reliably,
it follows from Murphy’s Law that the one unreliable feature will be the most important to the
customer. Contrary to opinion, highly reliable software is not impossible or prohibitively expensive
to develop. Consider the selected observations about the state of general software development
published in 2001**:

• Half the modules are defect free.
• Disciplined personal practices can reduce the initial defect rates by up to 75 percent.
• Avoidable rework constitutes 40 to 50 percent of the total effort on most software projects.
• It costs 50 percent more per line of code to develop high-dependability software….

However, the initial investment reduces overall cost if the project involves significant
operations and maintenance costs.

The fact that on average half the modules are defect free provides strong evidence that it is
possible to write defect-free software. Anything that can increase the defect-free percentage will
have an enormous impact, and the second observation promises a huge improvement. Reducing
initial defect rates by 75 percent means the typical rate of five defective lines out of ten improves
to about one in ten. Extending the same improvement to well-implemented modular code means
that close to 90 percent of the modules will be error free the first time a developer releases the
code for test. At a minimum, this implies fewer trips between test and rework, but the implications
on productivity are much deeper.

Examine the effect on resources. Spending 50 percent of your time on rework means that every
four hours of programming require, on the average, another four hours to find and fix defects —
defects that were 

 

avoidable

 

. If four hours is the average debug time, how wide is the span around

 

*  Michael L. George, 

 

Lean Six Sigma: Combining Six Sigma Quality with Lean Speed

 

, McGraw-Hill, 2002.
**  Barry Boehm and Victor R. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer, January 2001, 135–17.
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