

A Guide to MATLAB®

Object-Oriented Programming

C911X_C000.fm Page i Wednesday, April 11, 2007 10:52 AM

C911X_C000.fm Page ii Wednesday, April 11, 2007 10:52 AM

A Guide to MATLAB®

Object-Oriented Programming

Andy H. Register
Georgia Tech Research Institute

Atlanta, Georgia, U.S.A.

C911X_C000.fm Page iii Wednesday, April 11, 2007 10:52 AM

MATLAB® is a trademark of The Mathworks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2007 by SciTech Publishing Inc.
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140114

International Standard Book Number-13: 978-1-58488-912-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Dedication

For Mickey

C911X_C000.fm Page v Wednesday, April 11, 2007 10:52 AM

C911X_C000.fm Page vi Wednesday, April 11, 2007 10:52 AM

vii

Table of Contents

Figures ..xv
Code Listings .. xvii
Tables.. xxi
About the Author ... xxiii
Preface ..xxv

Chapter 1

Introduction...1

1.1 Examples...2
1.2 Object-Oriented Software Development ..2

1.2.1 At the Top of Your Game...3
1.2.2 Personal Development ..3
1.2.3 Wicked Problems..5
1.2.4 Extreme Programming..6
1.2.5 MATLAB, Object-Oriented Programming, and You ...8

1.3 Attributes, Behavior, Objects, and Classes ..9
1.3.1 From MATLAB Heavyweight to Object-Oriented Thinker ..9
1.3.2 Object-Oriented Design..10
1.3.3 Why Use Objects?..11
1.3.4 A Quality Focus ...12

1.3.4.1 Reliability...12
1.3.4.2 Reusability ...13
1.3.4.3 Extendibility...14

1.4 Summary...15

PART 1

Group of Eight .. 17

Chapter 2

Meeting MATLAB’s Requirements ...19

2.1 Variables, Types, Classes, and Objects ..19
2.2 What Is a MATLAB Class? ...21

2.2.1 Example: Class Requirements..21
2.2.1.1 Class Directory ..22
2.2.1.2 Constructor...22
2.2.1.3 The Test Drive ...24

2.3 Summary...26
2.4 Independent Investigations ...27

C911X_C000.fm Page vii Wednesday, April 11, 2007 10:52 AM

viii

A Guide to MATLAB Object-Oriented Programming

Chapter 3

Member Variables and Member Functions ..29

3.1 Members ...29
3.2 Accessors and Mutators ...30

3.2.1 A Short Side Trip to Examine Encapsulation ...31
3.2.1.1 cShape Variables ..32

3.2.2 cShape Members ..33
3.2.2.1 cShape Private Member Variables...33
3.2.2.2 cShape Public Interface ...34

3.2.3 A Short Side Trip to Examine Function Search Priority ..36
3.2.4 Example Code: Accessors and Mutators, Round 1 ...37

3.2.4.1 Constructor...37
3.2.4.2 Accessors ...37
3.2.4.3 Mutators ...38
3.2.4.4 Combining an Accessor and a Mutator...39
3.2.4.5 Member Functions ...40

3.2.5 Standardization ...40
3.3 The Test Drive ..41
3.4 Summary...42
3.5 Independent Investigations ...43

Chapter 4

Changing the Rules … in Appearance Only ...45

4.1 A Special Accessor and a Special Mutator ...45
4.1.1 A Short Side Trip to Examine Overloading ..45

4.1.1.1 Superiorto and Inferiorto ...47
4.1.1.2 The Built-In Function..48

4.1.2 Overloading the Operators subsref and subsasgn..48
4.1.2.1 Dot-Reference Indexing...50
4.1.2.2 subsref Dot-Reference, Attempt 1...51
4.1.2.3 A New Interface Definition ...52
4.1.2.4 subsref Dot-Reference, Attempt 2: Separating Public and

Private Variables ..53
4.1.2.5 subsref Dot-Reference, Attempt 3: Beyond One-to-One,

Public-to-Private ..53
4.1.2.6 subsref Dot-Reference, Attempt 4: Multiple Indexing Levels55
4.1.2.7 subsref Dot-Reference, Attempt 5: Operator Conversion Anomaly.........57
4.1.2.8 subsasgn Dot-Reference ..59
4.1.2.9 Array-Reference Indexing ...62
4.1.2.10 subsref Array-Reference ..63
4.1.2.11 subsasgn Array-Reference ...64
4.1.2.12 Cell-Reference Indexing..65

4.1.3 Initial Solution for subsref.m ...66
4.1.4 Initial Solution for subsasgn.m ..68
4.1.5 Operator Overload, mtimes ..69

4.2 The Test Drive ..70
4.2.1 subsasgn Test Drive..70
4.2.2 subsref Test Drive...72

4.3 Summary...74
4.4 Independent Investigations ...75

C911X_C000.fm Page viii Wednesday, April 11, 2007 10:52 AM

Table of Contents

ix

Chapter 5

Displaying an Object’s State ..77

5.1 Displaying Objects ...77
5.1.1 What Should Be Displayed? ..77
5.1.2 Standard Structure Display ..79
5.1.3 Public Member Variable Display ...80

5.1.3.1 Implementing display.m, Attempt 1 ..80
5.1.3.2 Implementing display.m, Attempt 2 ..81

5.2 Developer View ..83
5.2.1 Implementing display.m with Developer View Options..84

5.3 The Test Drive ..86
5.4 Summary...88
5.5 Independent Investigations ...88

Chapter 6

fieldnames.m...91

6.1 fieldnames ...91
6.2 Code Development ...91
6.3 The Test Drive ..93
6.4 Summary...93
6.5 Independent Investigations ...94

Chapter 7

struct.m ...95

7.1 struct ...95
7.2 Code Development ...96
7.3 The Test Drive ..97
7.4 Summary...98
7.5 Independent Investigations ...98

Chapter 8

get.m, set.m ..99

8.1 Arguments for the Member Functions get and set ..99
8.1.1 For Developers..99
8.1.2 For Clients ..100
8.1.3 Tab Completion ..101

8.2 Code Development ...101
8.2.1 Implementing get and set ...102
8.2.2 Initial get.m...104
8.2.3 Initial set.m...107

8.3 The Test Drive ..110
8.4 Summary...111
8.5 Independent Investigations ...112

Chapter 9

Simplify Using get, set, fieldnames, and struct ...113

9.1 Improving subsref.m...114
9.2 Improving subsasgn.m..115
9.3 Improving display.m...116
9.4 Test Drive..118
9.5 Summary...121
9.6 Independent Investigations ...122

C911X_C000.fm Page ix Wednesday, April 11, 2007 10:52 AM

x

A Guide to MATLAB Object-Oriented Programming

Chapter 10

Drawing a Shape ..123

10.1 Ready, Set, Draw..123
10.1.1 Implementation ...123

10.1.1.1 Modify the Constructor ...124
10.1.1.2 Modify fieldnames...125
10.1.1.3 Modify get ...125
10.1.1.4 Modify set..128
10.1.1.5 Modify mtimes ..131
10.1.1.6 Modify reset...132
10.1.1.7 Adding Member Function draw ..132

10.2 Test Drive..133
10.3 Summary...136
10.4 Independent Investigations ...137

PART 2

Building a Hierarchy ... 139

Chapter 11

Constructor Redux..141

11.1 Specifying Initial Values ..141
11.1.1 Private Member Functions ...142

11.2 Generalizing the Constructor ...143
11.2.1 Constructor Helper /private/ctor_ini.m ..145
11.2.2 Constructor Helper Example /private/ctor_1.m ...146

11.3 Test Drive..147
11.4 Summary...150
11.5 Independent Investigations ...151

Chapter 12

Constructing Simple Hierarchies with Inheritance..153

12.1 Simple Inheritance..154
12.1.1 Constructor ...154
12.1.2 Other Standard Member Functions..157

12.1.2.1 Child Class fieldnames ..161
12.1.2.2 Child Class get...162
12.1.2.3 Child Class set ...165

12.1.3 Parent Slicing in Nonstandard Member Functions..167
12.1.3.1 draw.m..168
12.1.3.2 mtimes.m..168
12.1.3.3 reset.m..169

12.2 Test Drive..169
12.3 Summary...173
12.4 Independent Investigations ...174

Chapter 13

Object Arrays with Inheritance ..175

13.1 When Is a cShape Not a cShape? ..175
13.1.1 Changes to subsasgn ..176
13.1.2 vertcat and horzcat ...177
13.1.3 Test Drive..178

C911X_C000.fm Page x Wednesday, April 11, 2007 10:52 AM

Table of Contents

xi

13.2 Summary...182
13.3 Independent Investigations ...182

Chapter 14

Child-Class Members ...183

14.1 Function Redefinition ...183
14.1.1 /@cStar/private/ctor_ini.m with Private Member Variables184
14.1.2 /@cStar/fieldnames.m with Additional Public Members ..184
14.1.3 /@cStar/get.m with Additional Public Members...185
14.1.4 /@cStar/set.m with Additional Public Members ...186
14.1.5 /@cStar/draw.m with a Title ..187

14.2 Test Drive..187
14.3 Summary...189
14.4 Independent Investigations ...190

Chapter 15

Constructing Simple Hierarchies with Composition ...191

15.1 Composition..191
15.1.1 The cLineStyle Class..192

15.1.1.1 cLineStyle’s private/ctor_ini..193
15.1.1.2 cLineStyle’s fieldnames ...194
15.1.1.3 cLineStyle’s get ...195
15.1.1.4 cLineStyle’s set..196
15.1.1.5 cLineStyle’s private/ctor_2 ..197

15.1.2 Using a Primary cShape and a Secondary cLineStyle ..198
15.1.2.1 Composition Changes to cShape’s ctor_ini.m ..199
15.1.2.2 Adding LineWeight to cShape’s fieldnames.m.......................................199
15.1.2.3 Composition Changes to cShape’s get.m..200
15.1.2.4 Composition Changes to cShape’s set.m ..201
15.1.2.5 Composition Changes to cShape’s draw.m...202
15.1.2.6 Composition Changes to cShape’s Other Member Functions................202

15.2 Test Drive..203
15.3 Summary...204
15.4 Independent Investigations ...206

Chapter 16

General Assignment and Mutator Helper Functions ...209

16.1 Helper Function Strategy ...209
16.1.1 Direct-Link Public Variables ..210

16.1.1.1 get and subsref...210
16.1.1.2 set and subsasgn ..211

16.1.2 get and set Helper Functions..212
16.1.2.1 Helper functions, get, and set..212
16.1.2.2 Final template for get.m ..213
16.1.2.3 Final Template for set.m..217
16.1.2.4 Color Helper Function...221
16.1.2.5 The Other Classes and Member Functions...222

16.2 Test Drive..222
16.3 Summary...223
16.4 Independent Investigations ...224

C911X_C000.fm Page xi Wednesday, April 11, 2007 10:52 AM

xii

A Guide to MATLAB Object-Oriented Programming

Chapter 17

Class Wizard...225

17.1 File Dependencies ..226
17.2 Data-Entry Dialog Boxes ...226

17.2.1 Main Class Wizard Dialog ...227
17.2.1.1 Header Information Dialog ...229
17.2.1.2 Parents … Dialog ..231
17.2.1.3 Private Variable … Dialog...232
17.2.1.4 Concealed Variables … Dialog ...234
17.2.1.5 Public Variables … Dialog ..235
17.2.1.6 Constructors … Dialog..237
17.2.1.7 More … Dialog ...238
17.2.1.8 Static Variables … Dialog ...239
17.2.1.9 Private Functions … Dialog ..240
17.2.1.10 Public Functions … Dialog...242
17.2.1.11 File Menu...243
17.2.1.12 Data Menu ...244
17.2.1.13 Build Class Files Button..245

17.3 Summary...246
17.4 Independent Investigations ...247

Chapter 18

Class Wizard Versions of the Shape Hierarchy ...249

18.1 cLineStyle Class Wizard Definition Data ..249
18.1.1 cLineStyle Header Info ..250
18.1.2 cLineStyle Private Variables...251
18.1.3 cLineStyle Public Variables..253
18.1.4 cLineStyle Constructor Functions..255
18.1.5 cLineStyle Data Dictionary..257
18.1.6 cLineStyle Build Class Files ..258
18.1.7 cLineStyle Accessor and Mutator Helper Functions ...259

18.2 cShape Class Wizard Definition Data..261
18.2.1 cShape Header Info ..261
18.2.2 cShape Private Variables ..261
18.2.3 cShape Concealed Variables...262
18.2.4 cShape Public Variables ...263
18.2.5 cShape Constructor Functions..264
18.2.6 cShape Public Functions ..265
18.2.7 cShape Data Dictionary..265
18.2.8 cShape Build Class Files..266

18.3 cStar Class Wizard Definition Data ...268
18.3.1 cStar Parent...268
18.3.2 Other cStar Definition Data ...269

18.4 cDiamond Class Wizard Definition Data...271
18.5 Test Drive..271
18.6 Summary...272
18.7 Independent Investigations ...275

C911X_C000.fm Page xii Wednesday, April 11, 2007 10:52 AM

Table of Contents

xiii

PART 3

Advanced Strategies .. 277

Chapter 19

Composition and a Simple Container Class ..279

19.1 Building Containers..279
19.2 Container Implementation ..280

19.2.1 The Standard Framework and the Group of Eight ..280
19.2.1.1 Container Modifications to fieldnames ...281
19.2.1.2 Container Modifications to subsref ...283
19.2.1.3 Container Modifications to subsasgn ..285
19.2.1.4 Container Modifications to get..287
19.2.1.5 Container Modifications to set ..289

19.2.2 Tailoring Built-In Behavior ..290
19.2.2.1 Container-Tailored end ..291
19.2.2.2 Container-Tailored cat, horzcat, vertcat ..291
19.2.2.3 Container-Tailored length, ndims, reshape, and size293

19.2.3 cShapeArray and numel ...294
19.2.3.1 Container-Tailored num2cell and mat2cell ...295

19.2.4 Container Functions That Are Specific to cShape Objects296
19.2.4.1 cShapeArray times and mtimes...296
19.2.4.2 cShapeArray draw ...298
19.2.4.3 cShapeArray reset..299

19.3 Test Drive..299
19.4 Summary...302
19.5 Independent Investigations ...302

Chapter 20

Static Member Data and Singleton Objects...303

20.1 Adding Static Data to Our Framework..303
20.1.1 Hooking Static Data into the Group of Eight..304

20.1.1.1 Static Variables and the Constructor ...305
20.1.1.2 Static Variables in get and set ...305
20.1.1.3 Static Variables in display ...306

20.1.2 Overloading loadobj and saveobj...307
20.1.3 Counting Assignments..308

20.2 Singleton Objects..308
20.3 Test Drive..309
20.4 Summary...311
20.5 Independent Investigations ...312

Chapter 21

Pass-by-Reference Emulation ..313

21.1 Assignment without Equal ...313
21.2 Pass-by-Reference Functions ...314
21.3 Pass-by-Reference Draw ..315
21.4 Pass-by-Reference Member Variable: View...316

21.4.1 Helpers, get, and subsref with Pass-by-Reference Behavior...................................316
21.4.1.1 Pass-by-Reference Behavior in the Helper ...317
21.4.1.2 Pass-by-Reference Code in get.m ...318
21.4.1.3 Pass-by-Reference Code in subsref.m...321

C911X_C000.fm Page xiii Wednesday, April 11, 2007 10:52 AM

xiv

A Guide to MATLAB Object-Oriented Programming

21.4.2 Other Group-of-Eight Considerations..321
21.5 Test Drive..322
21.6 Summary...324
21.7 Independent Investigations ...324

Chapter 22

Dot Functions and Functors ...327

22.1 When Dot-Reference Is Not a Reference ..327
22.2 When Array-Reference Is Not a Reference ...332

22.2.1 Functors ..333
22.2.2 Functor Handles..334
22.2.3 Functor feval...335
22.2.4 Additional Remarks Concerning Functors...335

23.3 Test Drive..336
22.4 Summary...337
22.5 Independent Investigations ...337

Chapter 23

Protected Member Variables and Functions ..339

23.1 How Protected Is Different from Other Visibilities...339
23.2 Class Elements for Protected ...339

23.2.1 Protected Functions and Advanced Function Handle Techniques340
23.2.2 Passing Protected Handles from Parent to Child ..340
23.2.3 Accessing and Mutating Protected Variables...341
23.2.4 Calling Protected Functions ...343

23.3 Test Drive..344
23.4 Summary...345
23.5 Independent Investigations ...346

Chapter 24

Potpourri for $100 ..347

24.1 A Small Assortment of Useful Commands ...347
24.1.1 objectdirectory ..347
24.1.2 methods and methodsview ...347
24.1.3 functions ...348

24.2 Other Functions You Might Want to Overload..348
24.2.1 Functions for Built-in Types ..348
24.2.2 subsindex ..349
24.2.3 isfield...349

24.3 Summary...350
24.4 Independent Investigations ...350

Index

..351

C911X_C000.fm Page xiv Wednesday, April 11, 2007 10:52 AM

xv

Figures

Figure 1.1 A simple hierarchy ...14
Figure 1.2 Demonstration of the extendibility of a hierarchy: (a) original organization;
(b) parent–child relationship; and (c) general subset is reused ..15
Figure 2.1 Puzzle with MATLAB-required pieces in place ...27
Figure 3.1 Puzzle with member variable, member function, and encapsulation43
Figure 4.1 Access operator organizational chart ...50
Figure 4.2 Puzzle with subsref, subsasgn, builtin, and overloading...74
Figure 5.1 Puzzle with display and function handles ...89
Figure 8.1 get’s functional block diagram ..103
Figure 8.2 set’s functional block diagram...104
Figure 8.3 All the pieces of the frame are in place ..112
Figure 10.1 Default graphic for cShape object ...134
Figure 10.2 cShape graphic after assigning an RGB color of [1; 0; 0]134
Figure 10.3 cShape graphic scaled using the size mutator...135
Figure 10.4 cShape graphic scaled using the overloaded mtimes ..135
Figure 10.5 Graphic for an array of cShape objects...136
Figure 11.1 Default constructor graphic for a cShape object...147
Figure 11.2 Example graphic of object constructed from a corner-point array...........................148
Figure 11.3 Example graphic for shape with no corner points ..149
Figure 11.4 UML static structure diagram for cShape ...151
Figure 12.1 The simple shape taxonomy ..153
Figure 12.2 The inheritance structure of cStar and cDiamond...154
Figure 12.3 Call tree for cStar’s default constructor ..171
Figure 12.4 Call tree for cStar’s dot-reference accessor...172
Figure 12.5 cStar graphic (simple inheritance) after setting the size to [2; 3]173
Figure 12.6 cStar graphic (simple inheritance) after scaling via multiplication, 2 * star * 2173
Figure 13.1 cStar graphic (simple inheritance plus an array of objects) after scaling
via multiplication, 1.5 * star(1)… ...178
Figure 13.2 cDiamond graphic (simple inheritance plus an array of objects) after
setting the size of (2) to [0.75; 1.25]...179
Figure 13.3 Combined graphics for cStar and cDiamond ..181
Figure 14.1 cStar graphic with a title..188
Figure 14.2 cDiamond graphic, no title ..188
Figure 14.3 Combined cStar and cDiamond graphics, now with a title189
Figure 14.4 cStar graphic, now with a new title...189
Figure 15.1 Combined graphic, now with shape {1}(1) changed to ‘bold’.................................204
Figure 15.2 Simplified UML static structure diagram with inheritance and composition205
Figure 15.3 Puzzle, now with the inheritance pieces..206
Figure 16.1 cStar graphic after implementing helper-function syntax ...223
Figure 17.1 Dependency diagram for a simple class..226
Figure 17.2 Dependency diagram with inheritance ..227
Figure 17.3 Class Wizard, main dialog ...228

C911X_C000.fm Page xv Wednesday, April 11, 2007 10:52 AM

xvi

A Guide to MATLAB Object-Oriented Programming

Figure 17.4 Class Wizard,

Header Info …

 dialog...230
Figure 17.5 Class Wizard,

Parents …

 dialog...232
Figure 17.6 Class Wizard,

Private Variables …

 dialog ..233
Figure 17.7 Class Wizard,

Concealed Variables …

 dialog ...234
Figure 17.8 Class Wizard,

Public Variables …

 dialog...236
Figure 17.9 Class Wizard,

Constructors …

 dialog...237
Figure 17.10 Class Wizard,

More …

 dialog ..239
Figure 17.11 Class Wizard,

Static Variables …

 dialog...240
Figure 17.12 Class Wizard,

Private Function …

 dialog...241
Figure 17.13 Class Wizard,

Public Function …

 dialog ...242
Figure 17.14 Class Wizard, standard File::Open … dialog..244
Figure 17.15 Class Wizard, standard File::Save As … dialog ...244
Figure 17.16 Class Wizard, Data File::Dictionary … dialog ...245
Figure 17.17 Class Wizard,

Build Class Files

 dialog ...246
Figure 18.1 Class Wizard, main dialog for cLineStyle...250
Figure 18.2 Class Wizard, cLineStyle header information dialog..251
Figure 18.3 Class Wizard, cLineStyle private variable dialog..252
Figure 18.4 Class Wizard, cLineStyle public variable dialog ..254
Figure 18.5 Class Wizard, cLineStyle constructor function dialog..255
Figure 18.6 Class Wizard, cLineStyle data dictionary dialog ..257
Figure 18.7 Class Wizard, cLineStyle directory-selection dialog ..258
Figure 18.8 Class Wizard, cShape private variable dialog ...262
Figure 18.9 Class Wizard, cShape concealed variable dialog ..263
Figure 18.10 Class Wizard, cShape public variable dialog ..264
Figure 18.11 Class Wizard, cShape constructor function dialog..265
Figure 18.12 Class Wizard, cShape public function dialog..266
Figure 18.13 Class Wizard, cShape data dictionary dialog ..267
Figure 18.14 Class Wizard, cStar parents dialog ..268
Figure 18.15 A double blue star drawn by the Class Wizard generated classes..........................272
Figure 19.1 Shapes in a container drawn together..301
Figure 23.1 The complete picture..346

C911X_C000.fm Page xvi Wednesday, April 11, 2007 10:52 AM

xvii

Code Listings

Code Listing 1, Command Line Example to Illustrate

Class

 and

Object

..19
Code Listing 2, Minimalist Constructor...23
Code Listing 3, Chapter 1 Test Drive Command Listing ..24
Code Listing 4, A Very Simple Constructor ..37
Code Listing 5, getSize.m Public Member Function ...38
Code Listing 6, getScale.m Public Member Function ...38
Code Listing 7, setSize.m Public Member Function..38
Code Listing 8, setScale.m Public Member Function..39
Code Listing 9, ColorRgb.m Public Member Function ...39
Code Listing 10, reset.m Public Member Function ...40
Code Listing 11, Chapter 3 Test-Drive Command Listing ..41
Code Listing 12, Skeleton Switch Statement for subsref and subsasgn...49
Code Listing 13, By-the-Book Approach to subref’s Dot-Reference Case51
Code Listing 14, Public Variable Names in subref’s Dot-Reference Case......................................54
Code Listing 15, Modified Constructor Using mColorHsv Instead of mColorRgb54
Code Listing 16, Converting HSV Values to RGB Values..54
Code Listing 17, An Improved Version of the subsref Dot-Reference Case55
Code Listing 18, A Free Function That Returns Indexing Error Messages58
Code Listing 19, Operator Syntax vs. subsref..58
Code Listing 20, Addressing the subsref nargout Anomaly ..59
Code Listing 21, Initial Version of subasgn’s Dot-Reference Case ..60
Code Listing 22, Initial Version of subref’s Array-Reference Case ..63
Code Listing 23, Initial Version of subasgn’s Array-Reference Case ...64
Code Listing 24, Initial Solution for subsref..66
Code Listing 25, Initial Solution for subsasgn...68
Code Listing 26, Tailored Version of cShape’s mtimes ..70
Code Listing 27, Chapter 4 Test Drive Command Listing for subsasgn ...71
Code Listing 28, Chapter 4 Test Drive Command Listing for subsref ..72
Code Listing 29, The Normal Display for a Structure ...79
Code Listing 30, Displaying the Object’s Private Structure ..80
Code Listing 31, Desired Format for the cShape Display Output ...80
Code Listing 32, First Attempt at an Implementation for cShape’s Tailored display.m81
Code Listing 33, Second Attempt at an Implementation for cShape’s Tailored display.m.............82
Code Listing 34, Example Display Output for the Tailored Version of display.m..........................83
Code Listing 35, Improved Display Implementation with Developer View Options......................84
Code Listing 36, Chapter 5 Test Drive Command Listing for Display ...86
Code Listing 37, cShape Constructor with Developer View Enabled by Default87
Code Listing 38, Chapter 5 Test Drive Command Listing Using the Alternate Display.................87
Code Listing 39, Initial Design for fieldnames.m..92
Code Listing 40, Chapter 6 Test Drive Command Listing for fieldnames.m93
Code Listing 41, Initial Implementation for struct.m...96
Code Listing 42, Chapter 7 Test Drive Command Listing for struct.m...97

C911X_C000.fm Page xvii Wednesday, April 11, 2007 10:52 AM

xviii

A Guide to MATLAB Object-Oriented Programming

Code Listing 43, Output Example for Built-In get and set ..101
Code Listing 44, Initial Implementation for get.m...104
Code Listing 45, Initial Design for set.m ...107
Code Listing 46, Chapter 8 Test Drive Command Listing for set.m ...110
Code Listing 47, Chapter 8 Test Drive Command Listing for get.m...111
Code Listing 48, Improved Implementation for subsref.m..114
Code Listing 49, Improved Implementation for subsasgn.m ...115
Code Listing 50, Improved Implementation for display.m..117
Code Listing 51, Chapter 9 Test Drive Command Listing:
A Repeat of the Commands from Chapter 4 ..119
Code Listing 52, Chapter 9 Additional Test-Drive Commands...120
Code Listing 53, Improving the Constructor Implementation ...125
Code Listing 54, Improved Implementation of fieldnames.m ...126
Code Listing 55, Improved Implementation of get.m..126
Code Listing 56, Improved Version of set.m ...128
Code Listing 57, Improved Version of mtimes.m..131
Code Listing 58, Improved Version of reset.m..132
Code Listing 59, Improved Implementation of draw.m...133
Code Listing 60, Improved Constructor without Inheritance ..143
Code Listing 61, Modular Code, Constructor Helper /private/ctor_ini.m145
Code Listing 62, Modular Code, Constructor Helper /private/ctor_1.m Example146
Code Listing 63, Chapter 11 Test-Drive Commands (Partial List)..148
Code Listing 64, Modular Code, Simple ctor_ini with Inheritance ...155
Code Listing 65, Modular Code, cStar’s Private parent_list Function ..156
Code Listing 66, Main Constructor with Support for Parent–Child Inheritance157
Code Listing 67, Implementing Parent Slicing in cStar’s fieldnames.m161
Code Listing 68, Implementing Parent Forwarding in cStar’s get.m...162
Code Listing 69, Implementing Parent Forwarding in cStar’s set.m ...165
Code Listing 70, Parent Slice and Forward inside Child-Class draw.m ..168
Code Listing 71, Parent Slice and Forward in Child-Class mtimes.m...169
Code Listing 72, Parent Slice and Forward in Child-Class reset.m...169
Code Listing 73, Chapter 12 Test Drive Command Listing:
Exercising the Interface for a cStar Object ..169
Code Listing 74, Questionable Inheritance Syntax..175
Code Listing 75, Changes to subsasgn That Trap Mismatched Array Types176
Code Listing 76, Implementing Input Type Checking for vertcat.m ...177
Code Listing 77, Implementing Input Type Checking for cat.m ...177
Code Listing 78, Modified Implementation of draw That Will Accept an Input Figure Handle...180
Code Listing 79, Adding a Private Variable to a Child-Class Constructor....................................184
Code Listing 80, Adding a Public Variable to a Child-Class fieldnames.m..................................184
Code Listing 81, Child-Class Public Member Variables in get.m ...185
Code Listing 82, Child-Class Public Member Variables in set.m ...186
Code Listing 83, Child-Class draw.m Using Additional Child-Class Members187
Code Listing 84, Chapter 14 Test Drive Command Listing for Child-Class Member Variables ..187
Code Listing 85, Modular Code, cLineStyle’s /private/ctor_ini.m..193
Code Listing 86, Modular Code, cLineStyle’s fieldnames.m ..194
Code Listing 87, Public Variable Implementation in cLineStyle’s get.m195
Code Listing 88, Public Variable Implementation in cLineStyle’s set.m......................................196
Code Listing 89, Modular Code, cLineStyle Constructor, private/ctor_2.m197
Code Listing 90, Modular Code, Modified Implementation of cShape’s ctor_ini.m199
Code Listing 91, Adding LineWeight to cShape’s fieldnames.m..199

C911X_C000.fm Page xviii Wednesday, April 11, 2007 10:52 AM

Code Listings

xix

Code Listing 92, Adding ColorRgb and LineWeight Cases to cShape’s get.m.............................200
Code Listing 93, Adding ColorRgb and LineWeight Cases to cShape’s set.m201
Code Listing 94, Modified Implementation of cShape’s draw.m ..203
Code Listing 95, Chapter 15 Test Drive Command Listing for Composition203
Code Listing 96, Standard Direct-Link-Variable Access Case for get.m210
Code Listing 97, Varargout Size-Conversion Code...211
Code Listing 98, Handling Additional Indexing Levels in subsref.m ...211
Code Listing 99, Standard Direct-Link-Variable Access Case for set.m.......................................211
Code Listing 100, Final Version of get.m Implemented for cLineStyle..213
Code Listing 101, Final Version of set.m Implemented for cLineStyle ..217
Code Listing 102, Final Version of cLineStyle’s Color_helper.m ..221
Code Listing 103, Chapter 16 Test Drive Command Listing: The cStar Interface........................223
Code Listing 104, Header Comments Generated by Class Wizard ...230
Code Listing 105, Constructor Helper from Class Wizard, @cLineStyle/private/ctor_ini.m252
Code Listing 106, Two-Input Class Wizard Constructor, @cLineStyle/private/ctor_2.m
function this = ctor_2(this, color, width)..256
Code Listing 107, Public Variable Helper, as Generated by Class Wizard,
cLineStyle::Color_helper ...259
Code Listing 108, Chapter 18 Test Drive Command Listing Based on Class
Wizard–Generated Member Functions ..273
Code Listing 109, Modifications to the subsref Array-Reference Case for a Container Class......284
Code Listing 110, Modifications to subsasgn Array-Reference Case for a Container Class.........285
Code Listing 111, Modifications to the Public and Concealed Variable
Sections of get.m for a Container Class ...287
Code Listing 112, Modifications to the Public Section of set.m for a Container Class.................289
Code Listing 113, Overloading end.m to Support Container Indexing ...291
Code Listing 114, Overloading cat.m to Support Container Operations292
Code Listing 115, Overloading length.m to Support Container Indexing293
Code Listing 116, Overloading num2cell to Support Raw Output from a Container....................296
Code Listing 117, Overloading times.m for the cShape Container ...296
Code Listing 118, Overloading draw.m for the cShape Container ..298
Code Listing 119, Overloading reset.m for the cShape Container...299
Code Listing 120, Chapter 19 Test Drive Command Listing: cShape Container300
Code Listing 121, Private static.m Used to Store and Manage Classwide Private Data304
Code Listing 122, Additional ctor_ini.m Commands for Static Variable Initialization305
Code Listing 123, Direct-Access get case for mLineWidthCounter..305
Code Listing 124, Direct-Access set case for mLineWidthCounter ..306
Code Listing 125, Static Variable Additions to developer_view...306
Code Listing 126, Tailored saveobj That Includes Static Data..307
Code Listing 127, Tailored loadobj That Includes Static Data ..307
Code Listing 128, A Modification to LineWidth_helper That Counts LineWidth Assignments ..308
Code Listing 129, Chapter 20 Test Drive Command Listing: Static Members309
Code Listing 130, An Approximation to Call-by-Reference Behavior ...315
Code Listing 131, Enabling a Helper with Call-by-Reference Behavior.......................................317
Code Listing 132, Pass-by-Reference Code Block in get.m ..319
Code Listing 133, Pass-by-Reference Parent Forward Assignment Commands319
Code Listing 134, Array Reference Case in subsref.m with Pass-by-Reference Commands........321
Code Listing 135, Chapter 21 Test Drive Command Listing: Pass-by-Reference Emulation.......322
Code Listing 136, Helper Function to Experiment with input–substruct Contents328
Code Listing 137, Chapter 22 Test Drive Commands for Dot Member Functions329
Code Listing 138, cPolyFun Array-Reference Operator Implementation333

C911X_C000.fm Page xix Wednesday, April 11, 2007 10:52 AM

xx

A Guide to MATLAB Object-Oriented Programming

Code Listing 139, Functor feval Listing ..335
Code Listing 140, Chapter 22 Test Drive Command Listing: functor...336
Code Listing 141, Protected Function Modifications to the Constructor341
Code Listing 142, Parent Forward Inside Protected pget...342
Code Listing 143, Parent Forward Inside Protected pget...344
Code Listing 144, Redefined Behavior for sqrt ...349

C911X_C000.fm Page xx Wednesday, April 11, 2007 10:52 AM

xxi

Tables

Table 4.1 Overloadable Operators ...46
Table 4.2 Array-Reference and Cell-Reference Index Conversion Examples.................................62
Table 15.1 Member Functions Used to Draw a Scalar cShape Object ..205
Table 18.1 cLineStyle Private Variable Dialog Fields...252
Table 18.2 cLineStyle Public Member Variable Field Values...255
Table 18.3 cLineStyle Data Dictionary Field Values ..258
Table 18.4 cShape Private Variable Dialog Fields ..262
Table 18.5 cShape Concealed Variable Dialog Fields ...263
Table 18.6 Public Member Variable Field Values ...264
Table 18.7 Public Member Function Field Values ..266
Table 18.8 cShape Data Dictionary Values ...267
Table 18.9 cStar Private Variable Data ..269
Table 18.10 cStar Public Variable Data ...269
Table 18.11 cStar Public Member Function Data ..270
Table 18.12 cStar Data Dictionary Values...270
Table 18.13 Executed Member Functions Are Highlighted ..273
Table 19.1 cShapeArray Class Wizard Main Dialog Fields ..281
Table 19.2 cShapeArray Private Variable Dialog Fields ...281
Table 19.3 cShapeArray Public Function Field Values ...282
Table 19.4 cShapeArray Data Dictionary Field Values ...284

C911X_C000.fm Page xxi Wednesday, April 11, 2007 10:52 AM

C911X_C000.fm Page xxii Wednesday, April 11, 2007 10:52 AM

Supplementary Resources Disclaimer

Additional resources were previously made available for this title on CD. However, as CD has become a less
accessible format, all resources have been moved to a more convenient online download option.

You can find these resources available here: www.routledge.com/9781584889113

Please note: Where this title mentions the associated disc, please use the downloadable resources instead.

xxiii

About the Author

Andy Register

 has been an admitted object-oriented fanatic since his first introduction to the
concepts of object-oriented design in the late 1980s. At that time, he was working on his doctoral
degree in electrical engineering at the Georgia Institute of Technology, Atlanta. His research
involved the real-time control of nonminimum phase systems, human and hardware-in-the-loop
simulations, state-of-the-art computer architectures, and low-level programming of multiple-instruc-
tion multiple-data (MIMD) parallel computers. Object-oriented programming was still in its infancy
with a number of object-oriented contenders: Actor, C++, CLOS, Eiffel, Flavors, and Smalltalk,
among others. Dr. Register needed a language that supported a close association between software
and hardware, and he found the right combination of performance, utility, and elegance in C++.
After using C++ for several years, he published his first two papers on object-oriented programming
in 1994.

Fast-forward to the twenty-first century, and we find Dr. Register working at the Georgia Tech
Research Institute in Atlanta on complex radar-tracking simulations. These simulations do not
require a close association with hardware so that real-world interface requirements dictate much
of the software design. In this environment, an object-oriented approach to MATLAB yields big
advantages. Dr. Register brought his years of experience developing object-oriented C++ software
to bear on MATLAB and developed a set of techniques and tools that allows a standard object-
oriented design to peacefully coexist with MATLAB. In his day-to-day work, these techniques
allow for interchangeable modules and the capability to add new features to a simulation. In
this book, these techniques are described and Dr. Register’s Class Wizard tool is explained and
demonstrated.

C911X_C000.fm Page xxiii Wednesday, April 11, 2007 10:52 AM

C911X_C000.fm Page xxiv Wednesday, April 11, 2007 10:52 AM

xxv

Preface

I am an admitted object-oriented fanatic. I have been designing and implementing object-oriented
software for more than twenty years. When I started designing and implementing object-oriented
MATLAB

®

, I encountered many detractors. They would say things like “The object model isn’t
complete,” “You can’t have public variables,” “The development environment doesn’t work well
with objects,” “Objects and vector operations don’t mix,” “Object-oriented code is too hard to
debug,” and “MATLAB objects are too slow.” None of these statements matched my experience
with MATLAB objects. It quickly became obvious that MATLAB objects don’t have a capability
problem; rather, they have a public relations problem. Part of the public relations problem stems
from the fact that the sheer genius behind the design and implementation of MATLAB’s object-
oriented extensions is masked by the abbreviated discussion in the user’s guide. If you want to use
MATLAB to develop object-oriented software, ignore the critics, study the examples in this book,
and reap the benefits.

Mark Levedahl exposed me to the possibility of developing object-oriented MATLAB software
in 2001. Both of us had written a lot of C++ code, and we spoke the same object-oriented dialect.
MATLAB objects are seductive because they seem so easy. Without help, trying to get everything
right is anything but easy. My first object-oriented implementation was terrible. Construction was
dicey. Interfaces were terrible. Modules were slow. The code was very hard to maintain. Maybe
the critics were right. I was still learning. The lessons improved the next implementation, but there
still seemed to be a fundamental difference between, for example, object-oriented programming in
C++ and object-oriented programming in MATLAB.

MATLAB object-oriented code always bumped up against the same limitation. The elements
spelled out in the object-oriented design didn’t map easily to an m-file implementation. Part of the
reason for the poor match comes from the fact that each design element must be spread into more
than one m-file: one module to get a value, another module to set it, and yet another to display it.
In an evolving design, files can easily get out of synch. Couple this with the fact that a developer
is free to define the mapping, and the result can be chaos. Faced with many competing alternatives,
it is fair to ask, “Is one alternative better than the others?” After a lot of consideration and study,
I believe the answer is yes. Following the best alternative improved the object-oriented implemen-
tations by orders of magnitude. Armed with the best mapping, a software tool to keep the modules
and design in synch is a matter of design and implementation. Version 3 of the MATLAB Class
Wizard will do this. The Class Wizard tool is included on this book’s companion CD.

The first version of Class Wizard was not easy to use. George Brown, Kyle Harrigan, and Mike
Baden used it with some success. Their comments helped shape the graphical user interface in the
current version. At the same time, I was using my Class Wizard tool to create object-oriented code
for a large MATLAB project. That project, the Target Tracking Benchmark, was primarily sponsored
by the Missile Defense Agency and involved a cadre of accomplished MATLAB programmers
from government, academia, and industry. Good techniques were allowed to blossom, and the bad
were very quickly rooted out. Reactions to MATLAB objects were mixed. The ensuing debates
improved everyone’s understanding of the risks and benefits. Over time, the debate participants
included Mark Levedahl, Steve Waugh, Laura Ritter, Dale Blair, Phil West, George Brown, Paul
Miceli, Terry Ogle, Paul Burns, Chris Burton, Lisa Ehrman, Dan Leatherwood, Darin Dunham,
Steve Kay, Al de Baroncelli, Ron Rothrock, Bob Isbell, Bruce Douglas, Greg Watson, Ben Slocumb,

C911X_C000.fm Page xxv Wednesday, April 11, 2007 10:52 AM

xxvi

A Guide to MATLAB Object-Oriented Programming

Mike Klusman, Jim Van Zandt, and Joe Petruzzo. These gifted individuals improved my under-
standing of MATLAB objects and helped shape the second and current versions of Class Wizard.

The second version of Class Wizard was easier to use, and about three years ago I set out to
write a user’s guide for it. I quickly discovered that telling someone how to use a tool is a lot
different from telling someone why. Many MATLAB programmers seem genuinely interested in
learning why. For example, my half-day seminar on object-oriented MATLAB at the 2003 IEEE
Southeastern Symposium on System Theory was the best-attended session by a wide margin. After
that seminar, I started adding more detail to the Class Wizard user’s guide. I also improved Class
Wizard by adding a guide-based graphical interface and support for object arrays and multiple
inheritance. Shortly after that, Mel Belcher and Dale Blair encouraged me to turn the user’s guide
into a book. I am very grateful for their insight and moral support. I would never have undertaken
this project without their initial prodding and enthusiasm.

MATLAB is a registered trademark of The MathWorks, Inc. For product information, please
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

C911X_C000.fm Page xxvi Wednesday, April 11, 2007 10:52 AM

1

1

Introduction

The organization of this book breaks MATLAB object-oriented programming into three sections.
The first section covers the required elements and focuses on developing a set of functions that
give MATLAB objects first-class status within the environment. In the first section, we will develop
a group of eight indispensable functions. These functions provide object initialization, a simple
intuitive interface, interaction with the environment’s features, and array capability. Even more
important, the group of eight is responsible for an object-oriented concept called encapsulation.
Encapsulation is fundamental to using object-oriented programming as a better, safer alternative
to structures. The default functions in MATLAB seem to be at odds with the information-hiding
principle of encapsulation; but the group of eight brings MATLAB back under control. By the end
of the first section, you will have an excellent working knowledge of MATLAB’s object-oriented
capability and be able to use object-oriented programming techniques to improve software devel-
opment.

The second section builds on the first by developing strategies and implementations that allow
the construction of hierarchies without compromises. Such hierarchies are important for achieving
true object-oriented programming. The concept of building the next layer of functionality on a firm
foundation of mature code is very compelling and often elusive. Encapsulation certainly helps, but
another object-oriented concept called inheritance makes it much easier to build and traverse an
organizational hierarchy. With inheritance, each successive layer simply builds up additional capa-
bility without changing code in the foundation. As the code matures, bug fixes simply make the
foundation stronger. At first blush, the desire for both first-class status and an inheritance hierarchy
appears incompatible. The section on building a hierarchy delivers a harmonious framework.

The third section discusses advanced strategies and introduces some useful utilities. Advanced
strategies include, among others, type-based function selection, also known as polymorphism;
passing arguments by reference instead of by value; replacing

feval’s

 function handle with an
object; and a utility for rapid object-oriented code development. Do not expect to use all the
advanced strategies in every software development. Instead, reserve the advanced techniques for
difficult situations. Discussing these concepts is important because it opens the door to what are
essentially limitless implementation options. It is also nice to know about advanced strategies when
the uncommon need arises.

This book makes two assumptions about you, the reader. The first assumption is that you
consider yourself an intermediate or better MATLAB programmer. At every opportunity, example
code uses vector syntax. The example code also uses a few important but relatively obscure
MATLAB functions. Example code also uses language features that some might consider to be
advanced topics, for example, function handles and try-catch error handling. Even though code
examples are described line by line, entry-level MATLAB programmers might find the example
code somewhat vexing.

The second assumes only a cursory knowledge of object-oriented programming. I dedicate a
significant amount of the discussion to the introduction of fundamental object-oriented program-
ming concepts. MATLAB programmers new to object-oriented programming will be able to follow
these discussions and thus gain the ability to implement object-oriented designs. Even so, there is
also plenty of substance to keep seasoned object-oriented programmers on their toes. Going back
to the basics will often reveal important design considerations or expose hidden object-oriented
capability. It is my sincere hope that everyone reading this book will mutter the phrase “I didn’t
know you could do that” at least once.

C911X_C001.fm Page 1 Friday, March 30, 2007 11:05 AM

2

A Guide to MATLAB Object-Oriented Programming

 Most of this book concentrates on MATLAB coding techniques; however, the introductory
chapter gives me an opportunity to touch on a few topics critical to general software development
that are somewhat peripheral to the mechanics of writing code. It also gives me a place to discuss
some of the ideas that support object-oriented programming. I trust you are anxious to dive into
the world of MATLAB object-oriented programming, so this introduction will be brief.

Some of you might decide to skip this chapter and dive right into the MATLAB implementation.
You will be skipping background information on general object-oriented programming: topics like
encapsulation, inheritance, and polymorphism. Nothing in this chapter is critical to the examples;
however, if you decide to skip this chapter, you might want to come back and read §1.3 before
diving into the second section on inheritance. I will remind you to come back when the time comes.

1.1 EXAMPLES

One of the easiest ways to learn is by example. I have tried to include examples of working source
code for every new concept or iterative improvement. Each chapter is complete in that the example
source code will run and produce results. Subsequent chapters will often add to or improve modules
from earlier chapters, but by the end of the chapter everything should execute. You can work along
by either typing in the example code or copying the source from the CD. Every chapter has its
own directory. All of the examples are included on the CD that accompanies this book.

Interact with the examples. Type in the example source code or copy it from the CD and
experiment. The descriptions that accompany the listings will guide you along by supplying
command-line instructions. As an alternative to constantly setting MATLAB’s path, it is more
convenient to experiment with the examples from each chapter’s directory. I will include a listing
with the explicit

cd

 command or the result

pwd

 (print working directory) when it is important to
move to a particular directory. That way, you will know where to navigate before typing the
commands. The recommended location for the example files is

c:/oop_guide

.* Of course, the

cd

directory or

pwd

 display will be different if you copy the example files to a different location.
To save a little space, displayed results use compact spacing. MATLAB displays results using

a compact format when the

‘FormatSpacing’

environment variable is set to

‘compact’

.
The following command can be used to set the environment variable.

>> set(0, ‘FormatSpacing’, ‘compact’)

Set

‘FormatSpacing’

 to

‘loose’

 to get back to the default display spacing.

1.2 OBJECT-ORIENTED SOFTWARE DEVELOPMENT

In lieu of a long discussion, I will instead refer you to authors, books, or websites that I have found
to be particularly helpful. The referrals are of course not exhaustive because there are too many
effective ways to attack software development. The cited references are simply some of the tools
I have found to be effective for me. With time and experience, you will accumulate a set of tools
that are effective for you. If you do not already have a favorite resource in some particular area,
the citations are a good place to begin. I am confident that this book will find a place in your
favored set of tools.

* The direction of the directory slash will depend on your operating system. In Windows you can navigate directories
using either / or \ , but

pwd

 uses \ in its output. In Unix and Linux, only / may be used. In code, the variable

filesep

always returns the directory slash appropriate for the operating system; see

help filesep

.

C911X_C001.fm Page 2 Friday, March 30, 2007 11:05 AM

Introduction

3

1.2.1 A

T

THE

 T

OP

OF

 Y

OUR

 G

AME

As you are no doubt aware, software development is not just about implementation. Development
involves an extensive set of activities that span a wide range of topics, and for any large project,
the human element is vitally important. To attack increasingly difficult problems you will need to
sharpen your own development ability. Successful software development also draws upon the
collective abilities of individuals, teams, and organizations. As problems grow in size you need to
be able to focus the development team and help improve the capability of your entire organization.
Such continuous professional development at all levels is personally rewarding and directly leads
to bigger, better, and faster software. It also leads to more responsibility and improved salaries.

First, recognize that the development of bulletproof software is an exceptionally difficult
undertaking. You need to be at the top of your game, and you need to focus and organize your
development team. There are a number of proven techniques that can improve both your personal
effectiveness and that of your team. These techniques are not limited to coding but span the entire
project scope from design through delivery.

Second, recognize that both MATLAB programming and object-oriented programming repre-
sent two areas that by themselves rely on a high level of hard-won expertise. Merging the two
represents yet another challenge. The MathWorks software engineers did a very commendable job
in adding object-oriented capability to MATLAB. Their object model seamlessly meets all of the
basic requirements of object-oriented programming; however, this does come with a price. You
must write efficient code or run-time performance will suffer. Gaining efficiency requires advanced
MATLAB techniques. There are new functions to learn, and familiar functions will be used in
entirely new ways. Even fundamental subjects like the function search path get new rules when
objects are involved.

The various quirks of MATLAB’s object-oriented model can tax the ability of even the most
capable designers. MATLAB contains encapsulation and inheritance capability equal to any modern
object-oriented language. Sometimes, however, it is difficult to use all of that capability. To clear
that hurdle, simply expand and reuse the coding patterns presented in the various examples. The
biggest difference between MATLAB and more typical object-oriented languages stems from one
of the fundamental properties of MATLAB, untyped variables. The lack of strong variable typing
represents a handicap. The rules that govern search-path searching help in some regard. Even so,
minor concessions are usually required when implementing a complex object-oriented design in
MATLAB. With very weak typing, MATLAB’s use of polymorphism is similarly weak. You as the
programmer are responsible for choosing correct functionality based on the data. MATLAB’s
polymorphism usually leads you to a function in the correct class, but the rest is up to you.

1.2.2 P

ERSONAL

 D

EVELOPMENT

Evolving your personal skills is important, but how do you do this effectively? To paraphrase Watts
Humphrey of the Software Engineering Institute,

If you want to get to where you’re going, you need a map;

if you don’t know where you are, a map won’t help.

Following from this statement the general procedure for continuous improvement is not difficult
to describe:

• Gauge your level of expertise; find that big, red “You are here” arrow.
• Identify the skills you want to acquire, that is, identify the destination.
• Plot a path from where you are now to where you want to be.
• Periodically check that you are indeed moving toward the destination.

C911X_C001.fm Page 3 Friday, March 30, 2007 11:05 AM

4

A Guide to MATLAB Object-Oriented Programming

This sounds simple enough, but as always, the devil is in the details.
One good resource where you can learn to sort out the details is a book by Watts Humphrey

titled

Introduction to the Personal Software Process

sm

.* The Personal Software Process (PSP) sets
up an organized approach that allows you to gauge your existing skill set and control the introduction
of new skills. By following the PSP’s prescriptions, you can improve all phases of your personal
development from planning through delivery. The PSP is particularly effective in helping to elim-
inate the introduction of errors in the critical design and coding stages. Errors eliminated early in
the process cannot then affect later stages.

The PSP is a tailored, one-developer version of a software discipline used to improve team-
based software engineering. A multiple-developer software discipline can be found in

The Capa-
bility Maturity Model

 (

CMM

) by Mark Paulk et al.** The

CMM

 is not unique in its objective. A
large body of research on the introduction of structure and rigor to team-based software development
certainly exists. Among the many resources available, the articles found at http://www.sei.cmu.edu
are quite extensive and use the same language as that used in the PSP and

CMM

.
Aligned with personal improvement and software engineering rigor is the software development

life cycle. Different software products benefit from using different life cycle models, and indeed,
there are many different models. Each model supports a relatively unique development environment.
The IEEE/EIA 12207 standard***

,

**** is a concession by both industry and government that no
single development model works for every situation. This gives us the liberty to search for models
that work well with both our intended applications and MATLAB.

MATLAB programs are successful across a variety of disciplines. The most successful use is
when a small group of technical professionals attempts to solve an entirely new problem. This type
of development usually contains an evolving set of interlocking constraints. The software is part
of the evolution. Designing and writing one iteration increase problem awareness. The discipline
involved in developing the software improves understanding and reveals new issues and constraints.
Each new revelation folds back into the requirements and begins a new implementation. In the
extreme, the revisions never end and it is difficult to complete one revision before discovering new
requirements.

There is no definitive stopping rule. Answers to questions like “When is the software model
close enough to reality?” or “When is the algorithm accurate enough?” are often difficult to know
in advance because each revision uncovers the need for more detail. The software development
process itself has become one method of problem discovery. Consequently, each revision extends
the capability of the software. After several iterations, the code often evolves completely away from
the initial design. We often refer to the result of this constant change as “spaghetti code” because
of all the twisted connections among modules. It does not take too much iteration before continued
development becomes painfully slow and protracted. Is this a familiar situation?

It turns out that this “typical” MATLAB project description fits the definition of a so-called
wicked problem.***** The extreme-programming life cycle model****** is gaining traction as
the preferred method for wicked-problem software development. The extreme-programming model
is also increasing in popularity for general software development. Since the topic of this book is
object-oriented programming, it should come as no surprise that object-oriented programming and
the extreme-programming life cycle model are well suited for each other. In fact, certain protections

* Addison-Wesley Professional, 1999.
** Mark C. Paulk, Charles V. Weber, Bill Curtis, and Mary Beth Chrissis, principal eds.,

The Capability Maturity Model

,
Addison-Wesley Professional, 1995.
*** http://standards.ieee.org/reading/ieee/std_public/description/se/12207.0-1996_desc.html.
**** http://www.stsc.hill.af.mil/crosstalk/about.html.
***** P. DeGrace and L. Stahl,

Wicked Problems, Righteous Solutions: A Catalogue of Modern Software Engineering
Paradigms

,

 Yourdon Click, 1990.
****** http://www.extremeprogramming.org.

C911X_C001.fm Page 4 Friday, March 30, 2007 11:05 AM

Introduction

5

afforded by object-oriented programming actually enable the extreme-programming life cycle
model. There is more to say about wicked problems and extreme programming.

1.2.3 W

ICKED

 P

ROBLEMS

We can classify all problems into one of two categories: tame and wicked. Tame problems can be
subdued using traditional linear thinking and thus lend themselves to traditional linear development
method (e.g., a waterfall model). Wicked problems by contrast are not so easily domesticated.
When dealing with wicked problems you need a different approach, and learning to identify them
is a good place to begin.

If developers cannot agree on a shared description of the problem, it is probably wicked. Such
consensus is difficult because the definition of the problem changes every time a new solution is
considered. Individuals on the development team will be at different stages in problem discovery
and thus have different opinions about the problem description. Lack of a shared vision often leads
to constantly changing requirements, another bane of software development. When developers
finally solve the problem, the solution leads to a shared description.

There are many other clues. Some of the most distinctive characteristics often associated with
wicked problems are as follows*:

• You cannot understand the problems until you develop solutions, and unfortunately, every
solution is expensive and has lasting unintended consequences.

• You find an evolving set of interlocking issues and constraints.
• Proposed solutions are not necessarily right or wrong but rather better or worse.
• There seems to be no definitive stopping rule aside from exhausting the available

resources.
• The problem and the proposed solutions are novel or unique.
• The problem does not seem to provide an ultimate test whether the solution is correct

or complete.

Anyone with experience in software development can certainly recall a project or two with
some of these characteristics. Many of these projects get into trouble not because the wicked
problem exists, but rather due to a failure to identify the problem as wicked and approach the
solution with the appropriate tools and techniques. Software development has a dismal record where
one third of software projects are canceled, and of those that remain half fail to meet the original
budget.** The skill and dedication of developers are not at fault in this record. More likely, the
whole methodology of approaching the solution of wicked problems is broken.

For example, the knee-jerk approach in dealing with a failing project is to apply more man-
agement scrutiny and impose processes that are more stringent. The hope is that a more detailed
definition of the requirements, deeper analysis of the problem, in-depth planning, or more progress
tracking will get the project back on track. With a so-called tame problem, this approach might
actually work. With a wicked problem, this linear approach will almost certainly fail. Wicked
problems are very resistant to up-front detailed analysis. The usual approach is failing so we must
consider a new set of tools.

The most important part of the new strategy is to accept that wicked problems do indeed exist.
After accepting their existence, we need a method of identification. A development team at odds
with each other, at odds with management, or at odds with the customer over exactly what the
software is supposed to do is a strong indication. A project that continues to spiral downward after

* Horst Rittel and Melvin Webber, “Dilemmas in a General Theory of Planning,” Reprint no. 86, the Institute of Urban
and Regional Development, University of California, Berkeley.
** Mary Poppendieck and Tom Poppendieck,

Lean Software Development: An Agile Toolkit for Software Development
Managers

, Addison-Wesley, 2003.

C911X_C001.fm Page 5 Friday, March 30, 2007 11:05 AM

6

A Guide to MATLAB Object-Oriented Programming

adding more resources or swapping out key personnel is also waving a wicked flag. There are other
more subtle indications, and a web search on the keywords “wicked problems” will result in a host
of resources for both identifying wicked problems and dealing with them.

Accepting the fact that we must begin the solution before we have all the data is important in
dealing with wicked problems. Accepting this allows development to focus on revealing more
problem detail rather than trying to solve the complete, poorly defined problem. Additional detail
refines the problem statement, which folds back into the next solution. Developers are not upset
about modifying or scrapping code because neither the goal nor the schedule called for a solution
on the first cycle. After several adaptive cycles, developers understand the problem and the software
represents a good solution. The solution process for wicked problems concedes that bouncing
among design, implementation, and test is the best way to solve poorly understood problems.

This type of iterative development usually runs counter to the current, generally accepted
software development practices; however, the future of software development is iterative. This does
not mean that software development will revert to the early days of no process maturity or an ill-
defined process framework. Developing software in such a stop-and-go manner can result in an
unwieldy design unless the iterative development follows a suitable development model. The current
set of development processes go hand in hand with a procedural approach. The extendible power
of object-oriented programming enables new development models capable of solving wicked
problems.

Decades ago there were dire predictions made about the adoption of object-oriented program-
ming. As we now know, most of these damning predictions turned out to be false. Now, the same
voices are shouting warnings about iterative development. History appears to be repeating itself.
In spite of such dire predictions, companies are obtaining good results using the combined power
of object-oriented programming and iterative development.

1.2.4 E

XTREME

 P

ROGRAMMING

The extreme-programming development model* is one of several models that embody precisely
the kind of iterative development necessary to solve wicked problems. In brief, the extreme-
programming model emphasizes the following:

• The use of test suites to define project milestones (fanatical testing)
• Frequent releases with small, stable additions to functionality
• A simple design that is iteratively refined
• Continuous code improvement (to make code faster and easier to maintain)
• Pair programming
• Collective code ownership
• Documented standards

The items in this list and object-oriented programming go hand in hand. Frequent releases and
continuous code evolution require the use of a language that supports reliable, extendible, reusable
code. Object-oriented languages support these goals, and in §1.3.4 we will see how. Items in the
list also encourage more of a team-based approach compared to traditional methods. Collective
ownership, pair programming, and documented standards make peer review and code walk through
integral parts of code development rather than after-the-fact quality assurance steps. Individual
effort is still valuable for innovation. The difference here is in bringing the result of individual
innovation into the team-based environment.

Perhaps the only valid criticism of iterative methods like extreme programming involves
documentation. With very little predevelopment emphasis on requirements and design, developers

* http://www.extremeprogramming.org.

C911X_C001.fm Page 6 Friday, March 30, 2007 11:05 AM

Introduction

7

write documentation concurrently as the code is developed or after the code is complete. Neither
is ideal. The evolutionary nature of iterative development makes it extremely difficult to document
revisions synchronized with code revisions. The community of developers must take collective
ownership of the documentation, but supporting tools are not well established. Pushing the devel-
opment of documentation to the end of the project yields the same poor results regardless of the
life cycle model. The descriptions are often lacking in important detail because developers forget
many of the nuances. The truth is that software documentation is a tough problem. Even with
traditional methods, documentation is often out of date or incomplete. Iterative methods make some
problems of documentation different, but the situation overall is neither better nor worse.

You have to relate the importance of documentation to your development team because good
documentation relates to productivity. Effort spent analyzing undocumented code is effort that could
have gone toward solving the real problem. Multiply this over several developers and many classes,
and the consequences become clear. The iterative development community has adopted a posture
that says documentation is not required, a posture that might actually have some merit. Instead of
separate documentation, the code itself should be self-documenting. Any description other than
code is simply a translation, and all translations are subject to error. Under some strict conditions
the idea of self-documenting code might actually work. Generally, these conditions are not exclusive
to extreme programming but are conditions of good software development in any environment.

Clearly written code is the first condition. Use variable names that represent the data in them
and function names that represent the operation. All developers need to be on the same page with
respect to the conventions. Community code ownership demands uniformity. Unfortunately, every
problem domain seems to use a different vocabulary, making one universal convention impossible
to establish. The convention must be somewhat flexible to change just like the code itself. Clearly
written code also limits the number of operations carried out on each line. Sometimes run-time
performance issues are at odds with such limiting. The 80–20 rule of thumb says that only 20
percent of the code consumes 80 percent of the run time. Surprisingly accurate, this rule allows
you to be judicious in trading run time for code complexity. Where code syntax becomes unusually
difficult, add a comment to aid in future maintenance. Code idioms and a modular implementation
also improve clarity and quality. Document standard conventions and idioms in a coding standard,
but allow the standard to evolve.

Taking advantage of MATLAB’s help utility is the second condition. Use a

Contents.m

 file
to display a table-of-contents description of all the functions in a directory. Use a standard,
compatible format for header comments. Format all the lines in a header as comments, and
MATLAB displays the comments in response to

help

function name

. These header comments
should summarize the function’s intent and cite important assumptions for input–output arguments.
In an extreme-programming environment, the header should also include a list of test functions.
The first comment line is particularly important because it plays a significant role. Known as the
H1 line, MATLAB displays the first header line in response to a

lookfor

 command.
Up-to-date requirements and at least a high-level design hierarchy form the minimum level of

documentation for the third condition. Documented requirements are necessary because these
represent the best view of the problem. Use the requirements to scope the problem and drive
development in a particular direction. As the development progresses, requirements can and often
do change. A formal update of the requirements keeps everyone’s expectations on track. A high-
level design hierarchy imposes a shared vision.

Align the design with the requirements and allow it to drive iteration goals. Like the require-
ments, the design hierarchy evolves with the development. In an ideal situation, the hierarchy simply
expands its level of detail. Indeed this should be the goal for the design of the public interface.
Sometimes entire branches of the hierarchy need reorganization. Allow this reorganization to set
the stage for the next cycle of code refactoring. Documented requirements, an up-to-date high-level
design, and a standard for self-documenting code are significant improvements over the typical
status quo.

C911X_C001.fm Page 7 Friday, March 30, 2007 11:05 AM

8

A Guide to MATLAB Object-Oriented Programming

Finally, code specifically designed and developed for reuse needs a higher level of documen-
tation. Presumably, the public interface is mature and the behavior is predictable. In short, the code
has ceased to evolve so there is little danger of documentation becoming obsolete. Under this
scenario, good documentation can improve productivity because even self-documenting code is
harder to understand compared to a carefully written, peer-reviewed, cataloged document. With a
documented reuse library, we are plainly trying to discourage a developer from redeveloping the
same solution.

1.2.5 MATLAB, O

BJECT

-O

RIENTED

 P

ROGRAMMING

,

AND

 Y

OU

Effectively dealing with MATLAB object-oriented programming means first effectively dealing
with MATLAB. The included code examples and idioms rely on an advanced understanding of the
MATLAB path, passing data using variable argument lists, and improving run time with vector
syntax. Object-oriented techniques also require an expert’s knowledge of both standard and obscure
MATLAB functions. Object-oriented programming in MATLAB is an advanced topic, and the
examples and idioms assume a certain level of MATLAB-language expertise. My goal is to increase
your understanding of MATLAB in general, but this book is not a general language reference. The
various manuals that come with MATLAB are one of the best general references. Although cryptic
at times, they provide a very concise, complete description of almost every language feature. The
help facility makes most of the manual information available from the desktop. Online resources
at http://www.matlab.com supplement the manuals with up-to-the-minute documentation and user
examples. The discussion groups and contributed utilities on the site are particularly valuable.

Programmers include a continuum of MATLAB expertise, but with respect to object-oriented
programming, there are two divisions:

client

 and

developer

. Client programmers use objects in their
own software but do not develop “low-level” object code. Clients are vital to the development in
other ways. Clients are important because they often represent the group of domain experts. Their
expertise is not in object-oriented programming but rather is steeped in the real problem. As such,
clients are an important resource for defining interfaces and functionality. If it were not for clients,
developers would be out of a job. Clients, however, are not the target audience of this book.

Developers, on the other hand, are responsible for developing low-level object code. The
remaining chapters develop examples, define idioms, and introduce a software tool specifically
designed to ease the burden of object-oriented development in MATLAB. As your experience with
object-oriented programming increases, you will be called on to both build the object-oriented
foundation and use the foundation elements to build applications. The first role represents developer;
and the second, client. Clients and developers use different mind-sets. and part of your job as a
developer is being able to apply the client mind-set when playing that role.

Playing the role of developer requires a greater attention to detail because you will design both
the outward appearance and the inner workings of each object. The outward appearance is important
because this is the only part of the object seen by a client. Here, careful thought and attention to
detail make the object easy to use. Indeed, this book describes a set of techniques that can be used
to give objects an interface identical to that of a structure. A structure-like interface eases a client’s
use of objects but the structure-like interface is only half the equation. The other half involves the
inner workings or private implementation. While the object interface might appear structure-like,
your code is actually taking over and producing a result. You have to be diligent in anticipating
every condition or the implementation will fail, usually at the worst possible time. Isn’t that how
Murphy’s Law always works? MATLAB’s model for object-oriented programming gives you
powerful tools to thwart misuse by clients; but as a developer, you must learn how and when to
use each tool. Some of these tools are pervasive across all object-oriented languages, while some
are unique to MATLAB.

The remaining chapters and examples put you on the right track of becoming a MATLAB
object-oriented developer. Same as with the MATLAB language itself, the examples presume a

C911X_C001.fm Page 8 Friday, March 30, 2007 11:05 AM

Introduction

9

certain level of expertise in general programming and in object-oriented design. Unlike the treatment
of the MATLAB language, objects in the examples remain relatively simple because the imple-
mentation methods for simple and complicated objects are essentially the same. There is no reason
to cloud the discussion of implementation issues by trying to attack a difficult problem. Of course,
this does put limits on how far we will delve into the problem of object-oriented design. As you
try to attack increasingly difficult problems, you will undoubtedly need additional object-oriented
design resources. A seminal book focusing on object-oriented design is Grady Booch’s

Object-
Oriented Analysis and Design with Applications

*. Booch is one of the early pioneers and has a
very intuitive approach to object-oriented design. Two other object-oriented pioneers are James
Rumbaugh and Edward Yourdon.

These three object-oriented giants have put aside their differences to develop a graphical design
format called the Unified Modeling Language (UML). UML is the standard development and
documentation tool for object-oriented programs. The modeling environment provides a very rich
and detailed approach, and the basics are easy to learn. The book by Booch et al. titled

The Unified
Modeling Language User Guide

** is one of many UML references.

1.3 ATTRIBUTES, BEHAVIOR, OBJECTS, AND CLASSES

Before we try to answer the fundamental question “Why objects?” let’s first discuss the difference
between an object and a class. The two terms are closely related but are not interchangeable, even
though that is how they are often used. In short, a class is a model that exists as lines of code, and
an object is an instance of the model that exists in memory during program execution. A class is
a user-defined type and an object is a variable of that type.

For tangible objects, we generally accept that they will have both attributes and behaviors. In
addition, we usually know how to link attributes and behaviors depending on the object’s type. For
example, a hungry baby cries and an alarm clock rings. For tangible objects, an object-modeling
approach is easy to rationalize because that is how we naturally organize them. In concept, software
objects are not much different from tangible objects. Software objects represent tangible elements
of the problem domain. Just like worldly objects, software objects have both attributes (data) and
behaviors (functions). In a good design, these attributes and behaviors associate naturally and are
inseparable from one another. Perform some thought exercises centered on this idea.

What image enters your mind at the mention of the word “shape”? Is it two-dimensional or
three? What is its color? Are the sides straight or curved? If you describe your image, do you think
I would agree that it is indeed a shape? It can be square, circular, or star shaped; red, blue, or
rainbow colored; stationary, rotating, or zipping about; and it would still be a shape. From expe-
rience, we are able to abstract the idea of shape into a general collection of attributes and behaviors.
In object-oriented terms, the abstraction is a

class

 and any particular shape is an

object

 of that
class. This particular abstraction is easy because we practice it without even realizing. With practice
and experience, abstraction into an object-oriented software design is almost as easy.

1.3.1 F

ROM

 MATLAB H

EAVYWEIGHT

TO

 O

BJECT

-O

RIENTED

 T

HINKER

Until fairly recently universities taught most engineers, scientists, mathematicians, and technical
professionals to decompose a problem into a series of actions. Converting these actions into a
loosely organized set of functions yields a so-called procedural-based design. The procedural-based
approach spawned a variety of other software-engineering techniques. Software development life

* Grady Booch,

Object-Oriented Analysis and Design with Applications

, Benjamin Cummings, 1991. The 3rd edition was
released in 2004.
** Grady Booch, James Rumbaugh, and Ivar Jacobson,

The Unified Modeling Language User Guide

, Addison-Wesley
Professional, 1998.

C911X_C001.fm Page 9 Friday, March 30, 2007 11:05 AM

10

A Guide to MATLAB Object-Oriented Programming

cycles are the most notable. In too many cases, the customer’s project-planning tools assumed a
so-called waterfall life cycle model. Project planning is much easier with a waterfall model.

Unfortunately, the procedural approach and the waterfall life cycle are showing their age. The
amount of module-to-module coupling hinders the ability to maintain or extend many large pro-
grams. Adding a new feature or fixing an old one takes longer than expected and, far too often,
introduces side effects unrelated to the new feature. The use of object-oriented methods can
drastically reduce the amount of module-to-module coupling. Many in the software-engineering
community believe that shifting to an object-oriented approach is the only way to achieve significant
increases in program size and complexity.

The ready availability of commercial MATLAB toolboxes has allowed large increases in
complexity even with the use of traditional, procedural methods. Invariably with time, software
requirements will grow to the point where even the use of toolboxes will not be enough to offset
the limitations of the procedural approach. No one can predict when the typical program size will
outstrip the capacity of the current approach; however, some MATLAB projects have already
crossed the threshold. Many MATLAB programmers recognize the early-warning signs. If we
follow the lead of our software-engineering brethren, embracing object-oriented techniques appears
to be the solution. Helping defend this position is the fact that MATLAB includes a very robust
object model.

Where would the study of mathematics be without whole, real, and complex numbers? Biology
would be equally difficult without taxonomy divisions among plants, animals, fungi, virus, protozoa,
and bacteria. In these disciplines, properties rather than behavior drive the decompositions. Object-
oriented programming is no different. User-defined types are the central focus of the software
architecture. Just like other taxonomies, the types contain both properties and behavior but the
decomposition emphasizes the properties. For someone steeped in procedural decomposition, the
object-oriented approach appears backward. Instead of focusing on behavior (functions), object-
oriented programming focuses on attributes (data). Along with this change in focus come big
differences in life cycles, coding development, testing, and integration.

To many, object-oriented development represents a radically different way of thinking. Intro-
ducing changes of this scale into an organization can be difficult and protracted. By one estimate,
the transition takes an average programmer about one year.* This book should help speed the
transition by defining specific coding practices and by exposing potential problem areas. The Class
Wizard tool also allows programmers to focus on design rather than implementation (see Chapter
18), further speeding the transition. Other techniques may also hasten the transition. For example,
pair programming is a type of co-mentoring activity that should be helpful in shortening the
transition time. There are also many more books, seminars, and short courses available today
compared to 1994 when the estimate was made.

1.3.2 O

BJECT

-O

RIENTED

 D

ESIGN

Think about shapes again. If asked to design a software representation of a shape, how would you
begin? You might have a good idea about shapes but you still need to find out if your ideas match
the needs of your clients. You can use client requirements, user stories, and domain experts to help
pin down the set of attributes and behaviors required of your software shape. At first these attributes
and behaviors might seem disconnected; however, with more analysis, patterns and dependencies
usually emerge. First, arrange shapes with similar attributes in a loose taxonomy. Then use behavior
differences to infer additional attributes. For example, it might be perfectly reasonable to combine
a division between moving and stationary shapes by defining a speed attribute. This gives all shapes
the same behavior; however, shapes with zero speed do not appear to move. It might also be
perfectly reasonable to keep moving shapes separate from stationary ones. In that case, a moving

* B. Stroustrup,

The Design and Evolution of C++

, Addison-Wesley, 1994.

C911X_C001.fm Page 10 Friday, March 30, 2007 11:05 AM

Introduction

11

shape is still a shape but it has at least one additional attribute and behavior. The choice affects
the software design and code, but the client’s experience with the final design is the same. When
the taxonomy stops changing, we establish the software architecture. Each leaf in the taxonomy
represents a set of attributes that can be implemented as a class. Connections among leaves allow
classes higher in the taxonomy to serve as the foundation for lower classes. Lower classes do not
redeclare higher-level attributes because they can inherit the higher-level attributes by simply
declaring a connection in the taxonomy. The same organization works for behaviors.

The process is similar in many respects to procedural design except that the final organization
focuses on data rather than function. In theory, the process sounds reasonable, but in reality, some
software problems are maddeningly difficult to organize. Sometimes developers do not have enough
experience in the problem area to foster good organization. At other times, the special terms and
notation used by the experts simply overwhelm the designer. Object-oriented designers have
experienced these difficulties and have developed many techniques useful in difficult design envi-
ronments. Unfortunately, a full treatment of object-oriented design is outside the scope of this book.
If you are new to object-oriented programming, you will gain valuable experience by implementing
and evolving someone else’s design. When you are ready to design your own object-oriented
architecture, a library of books and a wealth of articles and websites are available that fully develop
object-oriented design. The authors and references already cited represent good starting points.

1.3.3 W

HY

 U

SE

 O

BJECTS

?

Previously, I made the statement that the creation of objects seems to mirror the way we naturally
view the world. A brief discussion about shapes was used to demonstrate the idea. If true, the idea
that software development can reflect our typical worldview is nice but it certainly would not
compel programmers to abandon their current practice. This is particularly true in light of the
amount of effort involved in making a change. No, the argument has to be a lot more compelling.

The area of software development most influenced by object-oriented programming is software
quality. Demonstrated quality improvements can make converts of even the most grizzled procedural
programmers. Quality has many facets, but bug-free software that works correctly the first time it
is used is a typical goal. It is hard to disagree that bug-free software somehow equates to high-
quality software; however, if bug-free code takes too long to develop or runs too slowly, what then
of quality?

In reality software quality is an elusive topic with a lot of “I’ll know it when I see it” judgments.
Running correctly without crashing is certainly one aspect of quality, but other areas are important
too. Assuming the requirements correctly identify what is needed, software engineers generally
agree that overall quality is influenced by the following:

• Reliability
• Reusability
• Extendibility

Specific features in object-oriented programming relate to every one of these factors. Another
possible factor is productivity. Perhaps it would be better to emphasize productivity rather than
quality. After all, we know that bug-free software is impossible to produce. Even if we could get
all the bugs out, delivery times would be very long and the production cost would be astronomical.
Besides, customers have learned to expect bugs, particularly in the first few versions.

I hope you were

not

 nodding in agreement with the last few sentences. These often accepted
assumptions are

wrong

,

wrong

,

wrong

. The fact that your competitors believe them gives you an
enormous competitive advantage. Proven techniques can both reduce the number of coding errors
and hasten the discovery of bugs that do manage to slip in. The introduction of fewer errors along
with quicker discovery increases productivity by reducing the amount of unproductive time spent

C911X_C001.fm Page 11 Friday, March 30, 2007 11:05 AM

12

A Guide to MATLAB Object-Oriented Programming

reworking broken code. With a lower error rate, testing reveals fewer bugs, thus allowing the entire
development to run at a faster pace. In the manufacturing sector, Lean-Six-Sigma* techniques
dramatically improve both quality

and

 productivity. Proven false in the manufacturing sector is the
notion that high quality equals low productivity. In fact, attaining both exceptional quality and high
productivity can be the rule rather than the exception. There is nothing to prevent the introduction
of Lean-Six-Sigma ideas into the software development process.

 Customers can also be retrained. Once you start delivering high-quality products, the market-
place will demand the same quality from all producers. The rise of the Japanese auto industry
provides a clear example where a customer’s appreciation for quality disrupted the marketplace. I
predict that the same disruption will eventually occur in the software industry. Currently, India
seems to be the likely winner, but China too is coming on strong. I urge you to consider the
implications and work to drive your organization toward the delivery of world-class quality. Sooner
than you imagine, customers will be demanding it.

1.3.4 A Q

UALITY

 F

OCUS

Proven techniques can enhance software quality. Some techniques focus on one particular quality
measure like reuse. Others cut across all measures. Object-oriented techniques belong in the latter
group because they create a fundamentally different development environment. It is an environment
with a proven ability to improve all areas of quality. Below we summarize the major factors
contributing to quality.

1.3.4.1 Reliability

The most visible aspect of software quality is reliability. If the software crashes or produces the
wrong result, customers consider the product unreliable. Even when most features work reliably,
it follows from Murphy’s Law that the one unreliable feature will be the most important to the
customer. Contrary to opinion, highly reliable software is not impossible or prohibitively expensive
to develop. Consider the selected observations about the state of general software development
published in 2001**:

• Half the modules are defect free.
• Disciplined personal practices can reduce the initial defect rates by up to 75 percent.
• Avoidable rework constitutes 40 to 50 percent of the total effort on most software projects.
• It costs 50 percent more per line of code to develop high-dependability software….

However, the initial investment reduces overall cost if the project involves significant
operations and maintenance costs.

The fact that on average half the modules are defect free provides strong evidence that it is
possible to write defect-free software. Anything that can increase the defect-free percentage will
have an enormous impact, and the second observation promises a huge improvement. Reducing
initial defect rates by 75 percent means the typical rate of five defective lines out of ten improves
to about one in ten. Extending the same improvement to well-implemented modular code means
that close to 90 percent of the modules will be error free the first time a developer releases the
code for test. At a minimum, this implies fewer trips between test and rework, but the implications
on productivity are much deeper.

Examine the effect on resources. Spending 50 percent of your time on rework means that every
four hours of programming require, on the average, another four hours to find and fix defects —
defects that were

avoidable

. If four hours is the average debug time, how wide is the span around

* Michael L. George,

Lean Six Sigma: Combining Six Sigma Quality with Lean Speed

, McGraw-Hill, 2002.
** Barry Boehm and Victor R. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer, January 2001, 135–17.

C911X_C001.fm Page 12 Friday, March 30, 2007 11:05 AM

