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A Léa Marine
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Preface

Inventories are the bases for forest management planning, with the goal being
the optimal utilization of resources under given constraints. To accomplish
this, managers must collect, summarize, and interpret information – that is
perform statistical work. The development and improvement of forest man-
agement practices, which began toward the end of the Middle Ages, have
strongly depended on the parallel evolution of inventory techniques and sta-
tistical methodology, in particular sampling schemes. Without these, current
forest inventories would be impossible to conduct.

Over the last 80 years, the number of techniques, the demand for more and
better information, and finally the mere complexity of their incumbent in-
vestigations seem to have grown exponentially. Furthermore, the increased
importance of related problems in landscape research and ecology (keywords
e.g. biomass, carbon sequestration, and bio-diversity) as well as their interac-
tions with the sociological and economic environment have required specialized
procedures for data collection and statistical inference. However, their accom-
panying economic constraints have necessitated cost-efficient approaches in
performing all of these tasks.

The objective of this textbook is to provide graduate students and profession-
als with the up-to-date statistical concepts and tools needed to conduct a mod-
ern forest inventory. This exposition is as general and concise as pos-
sible. Emphasis has been placed deliberately on the mathematical-statistical
features of forest sampling to assess classical dendrometrical quantities. It is
assumed that the reader has a sufficient understanding of elementary proba-
bility theory, statistics, and linear algebra. More precisely, one must be able
to calculate unconditional and conditional probabilities and understand the
concepts of random variables, distributions, expectations, variances (including
their conditional versions as derived and summarized in Appendix B), cen-
tral limit theorem and confidence intervals, as well as utilize the least-squares
estimation technique in linear models (using matrix notation). The standard
notation of naive set theory (e.g. A∪B, A∩B, A \B, A ⊂ B, A ⊃ B, x ∈ A,
A � x, x /∈ A) is presented throughout. Likewise, the reader will ideally have
some prior knowledge of the general economic-political background of forest
inventories and aspects of mensuration (e.g. the handling of instruments), plus
skills in remote sensing and geographical information systems (GIS). MSc and
PhD students in Forestry, and particularly in Forest Management, will almost

xi



xii PREFACE

surely have had introductory courses in all of these topics. This book will also
be useful to experienced forest biometricians who wish to become rapidly ac-
quainted with a modern approach to sampling theory for inventories, as well
as some recent developments not yet available in book form.

The fundamental concepts and techniques, as used primarily in sociological
and economics studies, are presented in chapter 2 and can be summarized as
design-based survey sampling and inference for finite populations (of
e.g. geographical areas, enterprises, households, farms, employees or students),
usually so large that a full survey (census) is neither feasible nor even meaning-
ful. Inclusion probabilities and the Horvitz-Thompson estimator form
the cornerstone of this chapter and are also essential to a forest inventory.
More advanced topics are addressed in chapter 3. Excellent classical works
at the intermediate mathematical level include those by Cochran (1977) and
Särndal et al. (2003), and in French by Gourieroux (1981) and Tillé (2001).
Likewise, Cassel et al. (1977), Chaudhuri and Stenger (1992), Chaudhuri and
Vos (1988), and Tillé (2006) describe more complicated mathematical and
statistical themes.

Key references (in English) for sampling theory in forest inventories are from
de Vries (1986) and Schreuder et al. (1993). Those compiled by Kangas and
Maltamo (Eds, 2006) and Köhl et al. (2006), the latter containing an ex-
tensive bibliography, give broad and up-to-date introductions to this subject,
but without proofs of the exhibited statistical techniques. Johnson (2000) pro-
vides an elementary and encyclopedic (900 pp!) review of standard procedures,
while the writing of Gregoire and Valentine (2007) is an excellent introduction
to modern concepts in sampling strategies with interesting chapters on some
specific problems. Pardé and Bouchon (1988) and Rondeux (1993), both writ-
ing in French, as well as Zöhrer (1980), in German, present basic overviews
with emphases on practical work. Unfortunately, none of these authors, except
Gregoire and Valentine (2007) in some instances, utilize the so-called infinite
population or Monte Carlo approach that is much better suited to forest
inventories and, in many ways easier to understand. Therefore, this formal-
ism for inventories, within a design-based framework, is developed here in
chapter 4 (foundations and one-phase sampling schemes) and in chapter 5
(two-phase sampling schemes). It rests upon the concept of local density,
which is essentially an adaptation of the Horvitz-Thompson estimator. These
two chapters give a full treatment of one-phase and two-phase sampling
schemes at the point (plot) level, under both simple random sampling and
cluster random sampling, with either one-stage or two-stage selection
procedures at the tree level. These techniques usually suffice for most routine
inventories or serve as building blocks for more complex ones. The treatment
of cluster-sampling differs markedly from the classical setup, being simpler
and easier from both a theoretical and a practical point of view. Simulations
performed on a small real forest with full census illustrate the techniques dis-
cussed in chapters 4 and 5. Those results are then displayed and critiqued in
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Appendix A. More advanced topics, such as model-dependent inference and
its interplay with model-assisted techniques (g-weights), as well as small
area estimations and analytical studies, are dealt with in chapter 6. Geo-
statistics and the associated Kriging procedures are presented in chapter 7.
Using a case study, chapter 8 describes various estimation procedures. Chap-
ter 9 tackles the difficult problem of optimal design for forest inventories
from a modern point of view relying on the concept of anticipated variance.
The resulting optimal schemes are illustrated in chapter 10 with data from
the Swiss National Forest Inventory. Chapter 11 outlines the essential facts
pertaining to the estimation of growth and change. Finally, chapter 12 pro-
vides a short introduction to transect-sampling based on the stereological
approach. A small number of exercises are also proposed in selected chapters.

It is worth mentioning that the formalism developed in chapters 4, 5 and 6 can
be used to estimate the integral of a function over a spatial domain – a key
problem in such fields as soil physics, mining or petrology. This is a simpler
alternative to the geostatistical techniques developed in chapter 7, which are
usually more efficient, particularly for local estimations.

This book is based partly on the writings of C.E. Särndal, as adapted to the
context of a forest inventory. In addition, references are made to research,
both recent and older, by outstanding forest inventorists, including B. Matérn
and T.G. Gregoire, as well as to the author’s own work and lectures at ETH
Zurich. Whenever feasible, proofs are given, in contrast to most books on
the subject. These occasionally rely on heuristic arguments to minimize the
amount of mathematics to a reasonable level of sophistication and spacing. It
cannot be overemphasized that readers should not only have a good command
of definitions and concepts but also have at least a sufficient understanding of
the proofs for the main results.

The scope of this book is restricted when compared to the seemingly unlim-
ited field of applications for sampling techniques within environmental and
sociological-economic realms. Nevertheless, the average reader will need time
and endurance to master all of the topics covered. Many sections are therefore
intended for either further reading or specific applications on an as-needed
basis, or they will facilitate one’s access to more specialized references. Read-
ers who desire to familiarize themselves quickly with the key aspects of a
forest inventory can in a first perusal focus their attention on the following
topics: chapters 1, 2 (sections 2.1 to 2.6), 4 and 5, plus a brief glance at the
case study in chapter 8. This should suffice for tackling standard estimation
problems (without the planning aspects). Courageous readers who persevere
through this entire tome should be able to consult all of the current liter-
ature on forest sampling (and partly on general survey sampling) and, why
not, eventually contribute their own solutions to existing and oncoming chal-
lenges?
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CHAPTER 1

Introduction and terminology

We now proceed to define the terminology and notation that will be used
throughout this work. A particular population P of N individuals (sometimes
also called elements or units) {u1, u2, . . . un} are identified by their labels
i = 1, 2, . . . N . P may consist of all the students at ETH, of all the trees of
Switzerland (where, in this case, N is unknown), of all the employees older
than 18 years on August 1st 2007 in Switzerland. In the set theoretical sense
it must be clear whether something belongs to the population P
or not. Surprisingly, this seemingly simple requirement can be the source of
great problems in applications (what is a tree, an unemployed person, etc. ?).
Defining the population under study is a key task at the planning stage, often
requiring intensive discussions and frustrating compromises, a matter we shall
not discuss any further in this book. For each individual i in P one is interested
in p response variables with numerical values Y

(m)
i ,m = 1, . . . p, i = 1 . . . N ,

which can be measured at a given time point in an error-free manner. Note
that any qualitative variable can always be coded numerically with a set of 0/1
indicator variables. Whenever ambiguity is excluded we shall drop the upper
index that identifies the response variable. An error-free assumption can be
problematic even when dealing with physical quantities (e.g. the volume of a
tree) and can also be a source of great difficulties in the case of non-response
during interviews. Usually the quantities of primary interest are population
totals, means and variances. That is

Y (m) =
N∑

i=1

Y
(m)
i (1.1)

Ȳ (m) =
Y (m)

N
(1.2)

S2
Y (m) =

∑N
i=1(Y

(m)
i − Ȳ (m))2

N − 1
(1.3)

Sometimes, more complicated statistical characteristics of the population are
needed, such as ratios, covariances, or correlations

1



2 INTRODUCTION AND TERMINOLOGY

Rl,m =
Y (m)

Y (l)
(1.4)

Cl,m =
∑N

i=1(Y
(l)
i − Ȳ (l))(Y (m)

i − Ȳ (m))
N − 1

(1.5)

ρl,m =
Cl,m√

S2
Y (l)S

2
Y (m)

(1.6)

In any case, the estimation of totals will be a key issue. In pursuing a forest
inventory the spatial mean of additive quantities is frequently more important
than the population total. Suppose that a forested area F with a surface area
λ(F ) in ha contains a well-defined population of N trees. Moreover, say that
all trees have at least a 12cm diameter at 1.3m above the ground (diameter at
breast height, or DBH) and that the response variables of interest are Y

(1)
i ≡ 1

and Y
(2)
i =volume in m3. Then the spatial mean Ȳ

(m)
s = Y (m)

λ(F ) represents the
number of stems per ha (m = 1) and the volume per ha (m = 2) respectively.
Note that N is usually unknown and will have to be estimated via the variable
Y

(1)
i . Likewise, the mean volume per tree can be obtained by estimating the

ratio R2,1.

In practice N can be very large, making a complete evaluation of the entire
population impossible (and usually not even meaningful, not to mention the
illusion of almost unlimited resources). For this reason, one must restrict one’s
investigation to a subset s of the population P, also known as a “sample”.
An element u ∈ s is then called a sampling unit. The problem is to draw
conclusions for the entire population based solely on the sample s. The next
question is how to choose that sample. Essentially two ways are possible: by
expert judgement (purposive sampling) or by some random mechanism. The
criterion used here is that the sample should be representative of the pop-
ulation (this is of course rather vague because if one considers a sample to
be representative, one presumably knows roughly what the population looks
like already). It is now widely (but not universally!) accepted that representa-
tiveness can be insured only by introducing at least partial random selection.
Therefore, in the next chapter we shall define and analyze some of the most
important sampling schemes (i.e. procedures for sample selection) as well as
the estimation techniques that allow us to make inferences from the sample
at hand to the entire population.



CHAPTER 2

Sampling finite populations: the
essentials

2.1 Sampling schemes and inclusion probabilities

Here we consider a population P of N individuals and their associated re-
sponse variables Y

(m)
i . A sampling scheme is a procedure that involves one or

more random mechanisms to select a subset s ⊂ P of the population, i.e. the
sample. The set of all possible samples s is denoted by S, which is a subset
of the set of all subsets (the power set) of P. A well-known example might be
a lottery machine that may choose 6 balls out of 45. In that case the set S
consists of the

(
45
6

)
potential outcomes, which are all equally possible with a

probability
(
45
6

)−1
. In a survey one usually needs a sampling frame, i.e. a

list of all individuals in the population, which are identified by a key in the
data base (e.g. the social security number of Swiss residents). In this book the
identifying key is an integer number called the label and is simply denoted
by i = 1, 2 . . . N . Again, a forest inventory is peculiar in that no such list can
exist, but this difficulty can be circumvented as we shall see. Using pseudo-
random numbers (e.g. generated by a computer program and not by a physical
mechanism of some kind) one can draw, in most instances sequentially, the
individuals forming the sample. At this point it is not necessary to describe
the practical implementation of such schemes; these will be discussed later.

We introduce the indicator variables Ii which for each individual informs
us whether it belongs to the sample or not:

Ii =
{

1 if i ∈ s
0 otherwise (2.1)

The probability that the sample s will be selected is denoted by p(s). We
emphasize the fact that in this setup the same individual may be drawn many
times (i.e. sampling with replacement) and the number of distinct individuals
in that sample also is generally a random variable. The order in which individ-
uals are drawn can be important. Therefore, the set theoretical interpretation
of the sample s is not quite appropriate in the general case, see Cassel et al.
(1977) for details. The probability that a given individual will be included in

3



4 SAMPLING FINITE POPULATIONS: THE ESSENTIALS

the sample is then given as

πi = P(Ii = 1) = E(Ii) =
∑
s�i

p(s) (2.2)

The symbols P and E denote probability and expectation with respect to the
sampling schemes. Note that the inclusion probabilities are not assumed to be
constant over all individuals and that the most efficient procedures precisely
rest upon unequal πi. The number ns =

∑N
i=1 Ii of distinct elements in the

sample satisfies the relationships given in the next two theorems

Theorem 2.1.1. The effective sample size n = Ens is given as

E(ns) = E

(
N∑

i=1

Ii

)
=

N∑
i=1

πi = n

Calculating the variance requires knowledge of the so-called pair-wise inclusion
probabilities defined according to

πij = P(Ii = 1, Ij = 1) = E(IiIj) (2.3)

Note that πii = πi. The variances and covariances of indicator variables are

V(Ii) = πi(1 − πi) = Δii, COV(Ii, Ij) = πij − πiπj = Δij (2.4)

The following properties are important:

Theorem 2.1.2. The pair-wise inclusion probabilities satisfy the relationships

E (ns(ns − 1)) =
∑

i,j∈P,i �=j

πij

and ∑
j∈P,j �=i

πij = πi

(
E(ns | Ii = 1) − 1

)
In particular for a fixed sample size ns ≡ n one has∑

j∈P,j �=i

πij = πi(n − 1)

The first equality follows by calculating En2
s and using Theorem 2.1.1, the

second equality by noting that

E(ns | Ii = 1) = 1 +
∑
j,j �=i

E(Ij | Ii = 1) = 1 +
∑
j,j �=i

πij

πi

2.2 The Horvitz-Thompson estimator

We can now define what is probably the most important estimator used in
sampling theory, introduced in 1952 by D.G. Horvitz and D.J Thompson, now
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simply called the Horvitz-Thompson (HT) estimator or also the π-estimator:

Ŷ (m)
π =

∑
i∈s

Y
(m)
i

πi
=
∑
i∈P

IiY
(m)
i

πi
(2.5)

An estimator T̂ (s) is considered unbiased for a population quantity θ (mean,
total, variance, etc.) if its expected value under the random mechanism that
generates the samples s is equal to the true value θ, that is if EsT (s) =∑

s p(s)T (s) = θ. The HT estimator then yields an unbiased point estimate
of the population total as long as πi > 0 for all i

E(Ŷ (m)
π ) = Y (m) (2.6)

The proof is immediate because according to Eq. 2.2 the E(Ii) and the πi

cancel each other. Note that Ŷ
(m)
π is a random variable because the indicator

variables Ii are random. In this model the response variables Y
(m)
i are fixed.

This is the so-called design-based approach. Under hypothetical repeated
sampling we know that the point estimates will be distributed around the
true unknown value of the population total in such a way that the expected
value of the point estimates is precisely the quantity we want to predict. We
can say that, in some sense, the randomization procedure allows us to draw
conclusions from the observed values in the available sample and apply them
to the unobserved values of the remaining individuals of the population under
study. Again, we can drop the upper index (m). To calculate the variance we
recall the simple fact that for random variables Xi and real numbers ai one
has

V(
∑

i

aiXi) =
∑

i

a2
i V(Xi) +

∑
i�=j

aiajCOV(Xi, Xj)

Using 2.4 we obtain for the theoretical variance:
Theorem 2.2.1.

V(Ŷπ) =
N∑

i=1

Y 2
i (1 − πi)

πi
+

N∑
i=1,j=1,i �=j

YiYj(πij − πiπj)
πiπj

In practice one also needs an estimate of the variance. To do so let us note
that the first sum in 2.2.1 can be predicted by considering the new variable
Y 2

i (1−πi)
πi

, and then estimating it by HT with the π−1
i weights. Likewise, for

the second sum, we estimate by HT over the population of all pairs i 	= j
with the weights π−1

ij . Hence, the following is an unbiased point estimate of
the theoretical variance, provided that πij > 0 for all i, j ∈ P
Theorem 2.2.2.

V̂(Ŷπ) =
N∑

i=1

IiY
2
i (1 − πi)

π2
i

+
N∑

i=1,j=1,i �=j

IiIjYiYj(πij − πiπj)
πiπjπij

The condition πij > 0 ∀ i, j ∈ P is crucial. Of course πij > 0 ∀ i, j ∈ s
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but this does not suffice. In systematic sampling this condition is violated and
Theorem 2.2.2 can be totally misleading.

We introduce the following notation and terms which occur repeatedly in
formulae: Y̌i = Yi

πi
which is called the expanded value. Likewise, we define

Δ̌ij = Δij

πij
. Then one can rewrite

Ŷπ =
∑
i∈s

Y̌i =
∑
i∈P

IiY̌i (2.7)

V(Ŷπ) =
∑

i,j∈P
Y̌iY̌jΔij (2.8)

V̂(Ŷπ) =
∑
i,j∈s

Y̌iY̌jΔ̌ij (2.9)

Although the above general formulae are useful for theoretical considerations,
calculating those double sums can be prohibitive in practice. Instead, one usu-
ally obtains, as we shall see, computationally simpler expressions for specific
sampling schemes.

We say that an estimator T̂ (s) of the population parameter θ is consistent if
its expected mean square error Es(T̂ (s)− θ)2 tends to zero as the sample size
increases. Let us note that the mere concept of asymptotic is rather difficult to
define in finite populations. We must consider an increasing sequence of popu-
lation and samples, i.e. N, ns → ∞ (for a short introduction see Särndal et al.
(2003)). In practice, this means large samples in much greater populations.

To obtain a 1 − α confidence interval one can rely for large samples on the
central limit theorem:

CI1−α(Ŷπ) =
[
Ŷπ − z1−α

√
V̂(Ŷπ) , Ŷπ + z1−α

√
V̂(Ŷπ)

]
(2.10)

where z1−α is the two-sided 1−α quantile of the standard normal distribution.
Recall that, for example, α = 0.05, i.e. 95 percent confidence intervals, z1−α =
1.96 ≈ 2.

Under hypothetical repeated sampling 95 percent of these random intervals
will contain the true unknown total. Note that this does not mean that the
true value has a 95% chance of lying within the confidence interval calculated
with the survey data, because the true value is either in or out. Although we
do not know which alternative is correct, we have a statistical certainty. Out of
the thousands of surveys conducted each year, roughly 95% of them will give
a confidence interval containing the true unknown total (if the job has been
done properly!) but we will not know for which surveys this holds. This is the
classical frequentist interpretation. Of course, other philosophical approaches
exist, such as the Bayesian school; which, very roughly speaking, contends
that prior to the survey the true value could be anywhere and that the a
posteriori probability (given the data) for the true value to be in CI1−α(Ŷπ)
is approximatively 1 − α.
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Using Theorems 2.1.1 and 2.1.2 and after tedious but simple algebraic manip-
ulation, one arrives at the following result:

V(Ŷπ) = −1
2

∑
i,j∈P

Δij(Y̌i − Y̌j)2 +
∑
i∈P

Y 2
i

πi

(
E(ns | Ii = 1) − E(ns)

)
(2.11)

A similar but equivalent form of Eq. 2.11 has been described by Ramakrishnan
(1975b). Under a fixed sample size the second term vanishes and one obtains
the so-called Yates-Grundy formula:

V(Ŷπ) = −1
2

∑
i,j∈P

Δij(Y̌i − Y̌j)2

V̂(Ŷπ) = −1
2

∑
i,j∈s

Δ̌ij(Y̌i − Y̌j)2 (2.12)

It is worth noting that the above theoretical variance is, under that fixed
sample size, the same as in Theorem 2.2.1, even though the point estimates
of variances from Theorem 2.2.2 and Eq. 2.12 will generally differ. The Yates-
Grundy formula tells us that if the inclusion probabilities πi are proportional
to the response variables Yi then Y̌i is constant and therefore the variance is
zero, thereby making this the ideal sampling scheme! Nevertheless, this is no
longer true with random sample sizes. To implement such a sampling scheme
would usually require us to know the Yi for the entire population, which, of
course, defeats the point. However, if prior auxiliary information is available
in the form of a response variable Xi that is known for all individuals (from,
say, a previous census) and if one can expect a strong correlation between the
Xi and the Yi then one should sample with a probability proportional to the
Xi. Such an approach is called Probability Proportional to Size (PPS)
sampling. This is intuitively obvious: suppose that you have to estimate the
total weight of a population consisting of 5 elephants and 10’000 mice, then
you evaluate the elephants and consider the mice less so! We shall later see
that this technique is fundamental in optimizing sample surveys. In practice
one usually must investigate many response variables with the same survey.
It is clear that a sampling scheme efficient for one variable may be inefficient
for another one. In other words, one has to choose a design based on priorities
while respecting the objectives.

Estimating the population mean is straightforward. If N is known, one simply
sets

ˆ̄Y =
Ŷπ

N
(2.13)

V( ˆ̄Yπ) =
V(Ŷπ)
N2

(2.14)

V̂( ˆ̄Yπ) =
V̂(Ŷπ)
N2

(2.15)
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However, even if N is known (which is almost never the case in a forest
inventory), it is rather surprising that one can construct estimates than can be
better than that from Eq. 2.13 in some circumstances. The so-called weighted
sample mean is such an example, defined as

Ỹs =
Ŷπ

N̂

where

N̂ =
N∑

i=1

1
πi

is an estimate of the population size. We shall revisit this point in the section
on the estimation of ratios. For now we will consider the most important
schemes used in applications and we will examine the previous general results
in these particular situations.

2.3 Simple random sampling without replacement

This scheme has constant inclusion probabilities with a fixed sample size n.
One example would be the common lottery machines. This type of sampling
is frequently used as a building block for more complicated schemes. Because
of Theorem 2.1.1 this implies that πi ≡ n

N . All samples s have the same
probability of being chosen, i.e.,

p(s) =
1(
N
n

) =
(N − n)!n!

N !

Also

πi =
∑
s�i

p(s) =

(
N−1
n−1

)(
N
n

) =
n

N

This combinatorial argument follows from the fact that if a particular indi-
vidual i is included in the sample we can choose the remaining n − 1 in the
sample only out of the remaining N − 1 in the population. The rest is simple
algebra. Likewise, one can obtain with πij = P(Ii = 1 | Ij = 1)P(Ij = 1) the
pair-wise inclusion probabilities according to

πij =
n(n − 1)
N(N − 1)

Tedious but elementary algebra can be applied to the general results from the
previous section for this particular case (Note that it is a good exercise to
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write down the proofs). One then obtains

Ŷπ = N
1
n

∑
i∈s

Yi = NȲs

V(Ŷπ) = N2(1 − n

N
)
1
n

∑N
i=1(Yi − Ȳ )2

(N − 1)

V̂(Ŷπ) = N2(1 − n

N
)
1
n

∑
i∈s(Yi − Ȳs)2

(n − 1)
(2.16)

Remarks:

• Ȳs is the ordinary mean of the observations in the sample. It is obviously
equal to the unbiased estimate ˆ̄Yπ from Eq. 2.13. Its theoretical and es-
timated variances can be obtained from the above equations by dropping
N2.

• With unequal probability sampling the ordinary sample mean does not gen-
erally estimate the mean of the population and can, therefore, be totally
misleading. This is also true for haphazard sampling where the inclusion
probabilities are unknown (e.g. interviews carried out with students sam-
pled in the cafeteria, where heavy coffee drinkers will have a much higher
probability of being sampled).

• In elementary textbooks the notation 1
n

∑n
i=1 Yi = Ȳs is occasionally used.

This is misleading because the labels for individuals in the sample are
almost never precisely those of the first n individuals in the population.

• n
N is the so-called sampling fraction. For a census it is 1, in which case we
logically obtain zero for the theoretical and estimated variance.

• S2
Y =

∑N
i=1(Yi−Ȳ )2

(N−1) is the population variance and can be estimated without

bias by the sample variance
∑N

i∈s(Yi−Ȳs)2

(n−1) = s2
Y .

To implement this scheme with a sampling frame such as with a list of the N
individuals in a file, one can proceed as follows:

• Step 1: Generate for each individual a random variable Ui that is uniformly
distributed on the interval [0, 1]. Most statistical packages provide this fa-
cility.

• Step 2: Rank in increasing order the individual according to their Ui values
to obtain the sequence U(1), U(2), . . . U(N).This gives a random permutation
of the initial ordering of the individuals in the list.

• Step 3: Select the first n individuals from that permutated list. These form
the sample s.

The above algorithm is easy to perform. In contrast, the implementation of
sampling schemes can be difficult with unequal inclusion probabilities and with
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fixed sample sizes (e.g. PPS), such that calculation of the πij is cumbersome,
see (Särndal et al., 2003) for details and further references. Therefore, the next
two sections will present simple procedures for conducting unequal probability
sampling with random sample sizes. As we shall see, in a forest inventory,
unequal probability sampling is not too difficult to implement, even though
the number of trees selected will almost always be random during practical
applications.

2.4 Poisson sampling

Given a set of inclusion probabilities πi the Poisson sampling design has a
simple list-sequential implementation. Let εi, . . . εN be N independent random
variables distributed uniformly on the interval [0, 1]. If εi < πi the individual i
is selected, otherwise not, which by definition occurs with the required proba-
bility πi. Poisson sampling is a scheme without replacement, that is a selected
individual occurs only once in the sample. The sample size ns is obviously
random with mean E(ns) =

∑N
i=1 πi and variance V(ns) =

∑N
i=1 πi(1 − πi).

Because of the independence of the εi our pair-wise inclusion probabilities
satisfy πij = πiπj > 0 and consequently Δij = Δ̌ij = 0. In this special case,
the general results provide the following formulae:

Ŷπ =
∑
i∈s

Y̌i (2.17)

V(Ŷπ) =
N∑

i=1

πi(1 − πi)Y̌ 2
i (2.18)

V̂(Ŷπ) =
∑
i∈s

(1 − πi)Y̌ 2
i (2.19)

The variances V(Ŷπ) and V̂(Ŷπ) can be unduly large because of variability in
the sample sizes. A better, but slightly biased, estimator can be obtained with
model-assisted techniques:

Ŷpo = NỸs (2.20)

V(Ŷpo) ≈
∑
i∈P

(Yi − Ȳ )2

πi
− NS2

Y (2.21)

V̂(Ŷpo) ≈
(

N

N̂

)2 ∑
i∈s

(1 − πi)
π2

i

(Yi − ˜̄Ys)2 (2.22)

where Ỹs = Ŷπ

N̂
with N̂ =

∑
i∈s

1
πi

. This estimate of the true population mean
Ȳ should be used even if N is known.

To implement Poisson sampling with PPS, πi ∝ Xi, and the expected sample
size n = E(ns), it suffices to take
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πi =
nXi∑
k∈P Xk

It is theoretically possible that for some individuals πi ≥ 1. All these units,
say, {i1, i2, . . . ik} will have to be included in the sample. Then one considers
the reduced population P∗ = P \ {i1, i2 . . . ik} and iterates, if necessary, the
procedure.

The special case of πi ≡ π = n
N (i.e. Xi ≡ 1) is called Bernoulli sampling.

There, we would see that Ŷpo = n
ns

Ŷπ and that V(Ŷpo) is very nearly the
same as would be found for simple random sampling with a fixed size n.
In contrast, the variance of the unmodified HT estimator is usually much
larger. These examples demonstrate that a good strategy must consider both
sampling schemes and estimators.

The next section presents a sampling scheme and an estimator that attempt
to combine PPS and simplicity.

2.5 Unequal probability sampling with replacement

We now consider a population P with response variables Yi and an auxiliary
variable Xi known for all i ∈ {1, 2 . . . N}. The sampling frame is the list of all
individuals ordered, without loss of generality, according to their labels i’s. We
can then define the cumulative sums S0 = 0, S1 = X1, Sk = Sk−1 + Xk, k =
2, 3 . . . N . Note that SN =

∑N
k=1 Xk.

The sampling procedure consists of n, fixed, consecutive identically but in-
dependently distributed draws of points Zl, l = 1, 2 . . . n that are uniformly
distributed on the interval [0, SN ] (i.e. Zl ∼ SN ×U [0, 1], with U [0, 1] being a
uniformly distributed random variable on the interval [0, 1] ). The individual
labeled i is selected at the l-th draw if Si−1 ≤ Zl < Si. This obviously occurs
with probability pi = Xi

SN
. Note that by construction

∑N
i=1 pi = 1. The num-

ber of times Ti ∈ {0, 1, . . . n} a given individual i is included in the sample
follows therefore a binomial distribution with parameter n (number of draws)
and pi (probability of success). This is a sampling procedure with replacement
because the same individual can be selected more than once (maximum of n
times). The following facts are well known from elementary probability theory
(although it is always a good exercise to prove them from scratch).

• The random vector T1, T2, . . . TN follows a multinomial distribution with
parameter pi, p2, . . . pN .

• E(Ti) = npi and V(Ti) = npi(1 − pi)
• Given Ti = ti, Tj follows a binomial distribution with parameter n− ti and

pj

1−pi

• E(TiTj) = E(TiE(Tj | Ti)) = n(n − 1)pipj


