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Preface

Over the past several years the author has found himself frequently asked to
give explanatory talks on BGM, some of which extended into one- or two-week
workshops with detailed head-to-head technology transfer. The main interest
came from small groups of quants either in banks or in software companies
wanting to implement the model without wasting too much time decoding
papers to find a suitable approach, and also academics and students wanting
to get into the subject. This book is therefore naturally targeted at such
people, who generally have several years experience around finance and a
good grounding in the relevant mathematics.
The stimulus to begin writing was an invitation to join the Quantitative

Finance Research Centre (QFRC) at the University of Technology Sydney
(UTS) as an Adjunct Professor, and give a series of lectures on BGM for
an audience of academics, students and industry quants over the course of a
couple of semesters during 2006. This book grew out of those lectures, but
the starting point was some eleven years of notes on various aspects of BGM,
that were all prepared either for implementers writing production code, or
as formal documentation to accompany production code, or in response to
consulting tasks. Thus most of the techniques and methods described in
this book originate in practical problems needing a solution and address real
requirements. Moreover, many of them have been implemented, tried and
tested either in an R&D environment like MatLab, or in production code.
A reader from a mathematics, physics or engineering background (or the

quantitative end of another science) with a decent knowledge of analysis,
optimization, probability and stochastic calculus (that is, familiar with Ito
and Girsanov at the very least) should find this book fairly self-contained and
thus hopefully a suitable resource and guide to implementing some version of
the model. Indeed, part of the reason why the author has tried to keep the
book relatively short is to make it easy to slip into one’s briefcase and use as
a ready reference; the other part is a pathological fear of catching blitherer’s
disease, which in extreme cases seems to dilute ideas to one per page!
The book starts with the standard lognormal flat BGM, and then focuses

on the shifted (or displaced diffusion) version to develop basic ideas about
construction, change of measure, correlation, calibration, simulation, times-
licing (like lattices), pricing, delta hedging, vega hedging, callable exotics and
barriers. Further chapters cover cross-economy BGM, adaption of the HJM
inflation model to the BGM framework, a simple tractable stochastic volatil-
ity version of BGM, and financial instruments in Brazil, which have evolved

xiii
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in a unique way and are amenable to BGM analysis.
Because shifted BGM can fit a cap or swaption implied volatility skew (but

not a smile) and has the advantage of being just as tractable as flat BGM,
it seems the right framework to present basic techniques. The stochastic
volatility version aims to add a measure of convexity to the skew version, but
we do not go so far as trying to calibrate to a full smile, which is a complex
task appropriate to a cutting edge specialist. Overall the author can’t help
feeling that shifted BGM with the stochastic volatility extension as described
here is about right for both the Mortgage Backed Security world, and also
second tier banks wanting a robust framework in which to manage structured
products sold into their customer base, without having to worry too much
about being arbitraged.
To sum up, the reader is presented with several, progressively more sophis-

ticated, versions of BGM, and a range of methods and recipes that (after some
expansion and articulation) can be programmed into production code, and is
free to choose an implementation to suit his requirements. Thus the book
attempts to be an implementer’s handbook offering straightforward models
suitable for more conservative institutions who want a robust, safe and sta-
ble environment for calibrating, simulating, pricing and hedging interest rate
instruments. Advanced versions for market makers, hedge funds or leading
international banks are left to their top quants, though their newer quants
might conveniently learn about market models from this book and then do
better.
Many people contributed in some way to this book. In particular, it was

a pleasure working with Marek Musiela through the early ‘90s at Citibank,
where Mike Hawker in Sydney and Pratap Sondhi in Hong Kong provided
support and a framework to do much of the original work. Since then, innu-
merable conversations with colleagues, reading and decoding many excellent
papers, attendance at wide ranging professional conferences and some foolish
mistakes have added enormously to the author’s basic knowledge.
In direct preparation of this manuscript Chapman and Hall were patient

and encouraging, Marek Rutkowski gave me a copy of his extensive bibli-
ography greatly simplifying the task of preparing references, and my thanks
to Carl Ang, Peter Buchen, Andrew Campbell, Daniel Campos, Tim Glass,
Ben Goldys, Ivan Guo, Steve McCarthy, Frank Merino, Paul O’Brien, Erik
Schlogl and Rob Womersley for helping check different parts of the book.
Further thanks are due to both National Australia Bank1 and UTS for their
material support in terms of time and infrastructure over the past couple of
years, and also to MY for encouragement at some difficult moments.
A word on the title ‘Engineering BGM’. The background is that Miltersen,

Sandmann and Sondermann (MSS), see [78], were the first to get a ‘kosher’

1All views expressed in this book are the author’s and in no way reflect NAB policy,
philosophy or technology.
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Black caplet formula out of HJM, but unfortunately they did not establish ex-
istence, which is an essential feature of a model (along with, the author feels,
the technology to price complex options). We, that is Brace, Gatarek and
Musiela (BGM), see [30], grasped the intuition behind the model, proved ex-
istence, derived swaption formulae, calibrated to the market and constructed
simulation technology for pricing.
So generally speaking the model has more-or-less become known as ‘BGM’

in the industry and the ‘Libor Market Model’ in academic circles. My pref-
erence for the title ‘Engineering BGM’ over the alternative ‘Engineering the
Libor Market Model’, is partly because this book is aimed at industry quants
and traders and partly because it is shorter and more punchy. But unequivo-
cally, MSS made the first breakthrough in this area, and we referenced their
work in our paper [30] describing it as a ‘key piece of information’.
Finally, if that nightmare for a single author ‘the bad stupid mistake’ should

materialize, it is soley the author’s fault and he apologizes in advance. Of
course, all information about any, hopefully more minor, mistakes found by
readers would be gratefully received (at any one of the author’s email ad-
dressess on the title page), as would any suggestions for inclusions, exclusions
and better ways of doing things (in case there should ever be a second edition
of this book).

Alan Brace

(Sydney 25 September 2007)





Chapter 1

Introduction

Modern interest rate modelling began1 with Ho & Lee’s (HL) important 1986
paper [54], and matured into the Heath, Jarrow and Morton (HJM) model
[52], which was circulating in 1988, and which became the standard framework
for interest rates in the early ‘90s. Initial work on the market models was
done within that framework, so to set the scene, the single-currency domestic
version of HJM is reviewed in Section-1.1.

When the volatility function is deterministic, HJM is Gaussian, extremely
tractable, and includes versions like Hull and White [58] and many other
models. But until the advent of the market models [30], [66], [78] and [79]
around 1994-97, the market’s use of the Black caplet and Black swaption
formulae (which priced assuming that forwards and swaprates were lognormal)
was regarded as an aberration which could not be reconciled with HJM. A
further problem was that HJM exploded when the instantaneous forward rates
were made lognormal. The author can recall comments at conferences in the
early ‘90s along the lines that ‘the market is foolish and should adopt some
arbitrage free Gaussian HJM model as a standard’.

To avoid explosions, attention shifted to modelling the cash forwards, and
in 1994 Miltersen, Sandmann and Sondermann [78] found a PDE method,
described in Section-1.2 below, to derive the Black caplet formula within the
arbitrage free HJM framework. Knowing that was possible, and that the
Black caplet formula was not an aberration, was a key piece of information.

The author’s main contribution to events was to grasp the intuition, de-
scribed in Section-1.3 below, that the cash forwards want to be lognormal, but
under the forward measure at the end of their interval. With that realization,
the derivation of the Black caplet formula became trivial, and led to the so
called forward construction of BGM detailed in [30], by Musiela, Gatarek and
the author, which established existence of the model, derived approximate
analytic swaption formulae, calibrated to the market, and provided suitable
simulation technology for pricing exotics.

1Though intriguingly, the previous long standing actuarial practice of hedging bonds by
matching duration turned out to be equivalent to delta hedging within the HL model.
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2 Engineering BGM

1.1 Background HJM

REMARK 1.1 Before beginning, a word on our ‘∗’ notation for trans-
poses. Throughout this book we will generally be dealing with multi-factor
models involving an n-dimensional vector volatility function, say ξ : R→ Rn
and a corresponding multi-dimensional Brownian motion W (t) ∈ Rn. Usu-
ally they (or similar expressions as in (1.3) below) appear together as inner
products, so we use the ‘∗’ notation to indicate transpose and write

ξ∗ (t) dW (t) ≡ hξ (t) , dW (t)i

for that inner product. Of course, in single factor models ξ (t) dW (t) would
simply mean the product of two scalor quantities. Note that many authors
today adopt the practice (which is beginning to appeal to the author) of simply
writing ξ (t) dW (t) and leaving the reader to work out from the context if an
inner product is implied.

The ingredients of the HJM domestic interest rate model are:

1. An instantaneous at t forward rate f (t, T ) for maturity T , with SDE

df (t, T ) = α (t, T ) dt+ σ∗ (t, T ) dW0 (t) (1.1)

where the stochastic driving variableW0 (t) is multi-dimensional Brown-
ian motion (BM) under the arbitrage-free measure P0, and σ (t, T ) is a
possibly stochastic vector volatility function for f (t, T ).

2. A spot rate r (t) = f (t, t) and numeraire bank account to accumulate it

β (t) = exp

µZ t

0

r (s) ds

¶
,

3. Assets in the form of a spectrum of time T maturing zero coupon bonds

B (t, T ) = exp

Ã
−
Z T

t

f (t, u) du

!
,

paying 1 at their maturity T .

To be arbitrage free, the zeros discounted by the bank account as numeraire

Z (t, T ) =
B (t, T )

β (t)
= exp

Ã
−
Z t

0

r (s) ds−
Z T

t

f (t, u) du

!
, (1.2)
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must be P0-martingales for all T . Because

d

Z T

t

f (t, u) du =

Z T

t

df (t, u) du− f (t, t) dt,

= −r (t) dt+
ÃZ T

t

α (t, u) du

!
dt+

ÃZ T

t

σ∗ (t, u) du

!
dW0 (t) ,

applying Ito to (1.2), the SDE for Z (t, T ) is

dZ (t, T )

Z (t, T )
=

 −r (t) dt+ r (t) dt−
³R T

t
α (t, u) du

´
dt

−
³R T

t
σ∗ (t, u) du

´
dW0 (t) +

1
2

¯̄̄R T
t
σ (t, u) du

¯̄̄2
dt

 ,

=

−
·R T

t
α (t, u) du− 1

2

¯̄̄R T
t
σ (t, u) du

¯̄̄2¸
dt

−
R T
t
σ∗ (t, u) du dW0 (t)

 .

For this to be a P0 martingale the drift must vanish, so

α (t, T ) = σ∗ (t, T )

Z T

t

σ (t, u) du,

and the SDE for the instantaneous forwards is

df (t, T ) = σ∗ (t, T )

Z T

t

σ (t, u) du dt+ σ∗ (t, T ) dW0 (t) . (1.3)

Differentiating B (t, T ) = β (t)Z (t, T ), the corresponding SDE for the zero
coupon bond is

dB (t, T )

B (t, T )
= r (t) dt−

Z T

t

σ∗ (t, u) dudW0 (t) . (1.4)

REMARK 1.2 The HJM approach therefore implies that the volatility

b (t, T ) = −
Z T

t

σ (t, u) du, (1.5)

of each zero coupon bond B (t, T ) is continuous in T , a restriction ruling out
piecewise constant bond volatilities.

Because assets discounted by the bank account numeraire are P0-martingales,
the present value of a cashflow X (T ) occurring at time T is

X (t) = E0

µ
β (t)

β (T )
X (T )

¯̄̄̄
Ft
¶
, (1.6)
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where E0 is expectation under P0, and Ft is the underlying filtration (total
accumulated information up to t). In particular, because a zero coupon pays 1
at maturity

B (t, T ) = E0

µ
β (t)

β (T )
1

¯̄̄̄
Ft
¶
= E0

Ã
exp

Ã
−
Z T

t

r (s) ds

!¯̄̄̄
¯Ft

!
. (1.7)

A forward contract FT (t, T1) on a zero-coupon bond B (t, T1) maturing
at T1, exchanges at time T the zero coupon B (T, T1) for FT (t, T1). The
present value of the exchange must be zero, hence FT (t, T1) must satisfy

E0

½
β (t)

β (T )
[FT (t, T1)−B (T, T1)]

¯̄̄̄
Ft
¾
= 0

giving the following model free result for forward contracts

FT (t, T1) =
B (t, T1)

B (t, T )
. (1.8)

When T1 = T +δ, the cash forward K (t, T ) over the interval (T, T1] is defined
in terms of the forward contract FT (t, T1) by

FT (t, T1) =
B (t, T1)

B (t, T )
=

1

1 + δK (t, T )
. (1.9)

REMARK 1.3 In the following equation (1.10), please note that the
one variable Radon-Nikodym derivative Z (t) = E0 {Z (T )| Ft} is not the two
variable discounted zero coupon function Z (t, T ) = B(t,T )

β(t) .

Being a strictly positive process, the bank account β (t) induces a forward
measure PT (expectation ET ) at any maturity T through

PT = ZT P0 or ET {·} = E {· ZT } (1.10)

Z (T ) =
1

β (T )B (0, T )
.

It follows, from the conditional change of measure result of Appendix-A.3.5,
that

ET (X (T )| Ft) =
E0 (X (T )Z (T )| Ft)
E0 (Z (T )| Ft)

=
E0

³
β(t)
β(T )X (T )

¯̄̄
Ft
´

E0

³
β(t)
β(T )

¯̄̄
Ft
´ =

X (t)

B (t, T )
,

which simplifies the present value equation (1.6) to

X (t) = E0

µ
β (t)

β (T )
X (T )

¯̄̄̄
Ft
¶
= B (t, T )ET (X (T )| Ft) . (1.11)
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Also X (t) discounted by B (t, T ) is a martingale under the forward mea-
sure PT because for s < t

ET

µ
X (t)

B (t, T )

¯̄̄̄
Fs
¶
= ET (ET (X (T )| Ft)| Fs) = ET (X (T )| Fs) =

X (s)

B (s, T )
.

Integrating (1.4) over [0, T ] identifies Z (T ) because

B (T, T ) = 1 = B (0, T )β (T ) E
Ã
−
Z T

0

Z T

t

σ∗ (t, u) du dW0 (t)

!
,

⇒ Z (T ) = E
(
−
Z T

0

Z T

t

σ∗ (t, u) dudW0 (t)

)
,

showing, from the Girsanov Theorem of Section-A.3.5, that WT (t), given by

dWT (t) = dW0 (t) +

Z T

t

σ (t, u) du dt, (1.12)

is PT -BM. Subtracting from a similar expression for WT1 (t), a PT1 -BM,

dWT1 (t) = dWT (t) +

Z T1

T

σ (t, u) du dt. (1.13)

From equations (1.4), (1.9) and the result in the Appendix A.3.3, the SDE
for the forward contract FT (t, T1) is

dFT (t, T1)

FT (t, T1)
=

(
r (t) dt− r (t) dt

−
R T1
T

σ∗ (t, u) du
h
dW0 (t) +

R T
t
σ (t, u) du dt

i)
,

= −
T1Z
T

σ∗ (t, u) du dWT (t) , (1.14)

while the SDE for its reciprocal is

d
³

1
FT (t,T1)

´
³

1
FT (t,T1)

´ =

(
r (t) dt− r (t) dt

+
R T1
T

σ∗ (t, u) du
h
dW0 (t) +

R T1
t

σ (t, u) du dt
i )

,

=

T1Z
T

σ∗ (t, u) du dWT1 (t) . (1.15)

Hence FT (t, T1) is a PT -martingale while, more importantly as we will see,
its reciprocal 1

FT (t,T1)
is a PT1-martingale.
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1.2 The first ‘correct’ Black caplet

Miltersen, Sandmann and Sondermann [78] started with the assumption
that under the T -forward measure PT the cash forward K (t, T ) over [T, T1]
was of lognormal type with deterministic volatility γ (which we here set con-
stant for easy exposition), that is, they assumed the SDE for K (t, T ) has
form

dK (t, T ) = (drift) dt+K (t, T ) γ dWT (t) , (1.16)

and then worked with the corresponding forward contract FT (t, T1) (because
it is a PT -martingale). Differentiating (1.9) using (1.14), and then comparing
the stochastic term with that of (1.16), gives an SDE for FT (t, T1):

dK (t, T ) =
1

δ
d

µ
1

FT (t, T1)
− 1
¶

(1.17)

= (drift) dt+
1

δFT (t, T1)

Z T1

T

σ (t, u) du dWT (t)

⇒
Z T1

T

σ (t, u) du = K (t, T ) γδFT (t, T1) = [1− FT (t, T1)] γ

⇒ dFT (t, T1) = −FT (t, T1) [1− FT (t, T1)] γ dWT (t) .

The time t value of a Black caplet struck at κ, fixed at T and paid at T1, is

cpl (t) = E0

½
1

β (T1)
δ [K (T, T )− κ]+

¯̄̄̄
Ft
¾

= E0

½
B (T, T1)

β (T )
δ [K (T, T )− κ]+

¯̄̄̄
Ft
¾
,

= B (t, T )ET

(
FT (T, T1)

·
1

FT (T, T1)
− 1− δκ

¸+ ¯̄̄̄¯Ft
)
,

= B (t, T )ET

n
[1− (1 + δκ)FT (T, T1)]

+
¯̄̄
Ft
o
.

Applying Ito, Miltersen et al then set to zero the drift of the PT -martingale

v (t, FT (t, T1)) =
cpl (t)

B (t, T )
,

so that cpl (t) is given by the solution v (t, FT (0, T1)) to the non-linear PDE

∂v

∂t
+ 1

2γ
2x2 (1− x)

2 ∂
2v

∂x2
= 0 with v (T, x) = [1− (1 + δκ)x]

+
.
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This converts to a heat equation problem with the transformations

s = γ2 (T − t) , z = ln
x

1− x
, (1.18)

v (t, x) =
e−

s
8

e
z
2 + e−

z
2
u (s, z)⇒ ∂u

∂s
=
1

2

∂2u

∂z2

with u (0, z) =
©
e
z
2 + e−

z
2

ª·
1− (1 + δκ)

1 + e−z

¸+
,

which has the solution (substitute in the PDE and integrate by parts)

u (s, z) =

Z ∞
−∞

u
¡
0, z + υ

√
s
¢
N1 (υ) dυ

=

ΥZ
−∞

£
exp

¡
−12

£
z + υ

√
s
¤¢
− δκ exp

¡
1
2

£
z + υ

√
s
¤¢¤
N1 (υ) dυ,

= exp
³
−z
2
+

s

8

´
N

µ
Υ+

√
s

2

¶
− δκ exp

³z
2
+

s

8

´
N

µ
Υ−

√
s

2

¶
,

in which Υ = − 1√
s
(z + ln δκ) .

Inverting the transforms (1.18) to go from u (s, z) back to v (t, x)

v (t, x) = x

½
[1− x]

x
N (h)− δκN

³
h− 1

2γ
√
T − t

´¾
,

h =
1

γ
√
T − t

½
ln

µ
1− x

x

1

δκ

¶
+ 1

2γ
2 (T − t)

¾
the caplet price cpl (t) follows from v (t, x) on using

x = FT (t, T1) =
B (t, T1)

B (t, T )
, δK (t, T ) =

1− x

x
,

cpl (t) = B (t, T ) v (t, x) = δB (t, T1) B
³
K (t, T ) , κ, γ

√
T − t

´
.

where B (·) is the Black formula, see Appendix-A.2.3.
A probabilistic proof of this result obtained by the author while trying

to articulate the insight of MSS, runs as follows. Simplify notation by set-
ting PT = P, FT (t, T1) = Ft, Kt = K (t, T ) and WT (t) = Wt. From the
SDE (1.17) for Ft, if

Zt = ln
Ft

1− Ft
or Ft =

1

1 + exp (−Zt)
, then

dZt = −γ
£
dWt − 1

2γ tanh
¡
1
2Zt

¢
dt
¤
, exp (−Zt) = δKt.


