Alan Brace
 Engincering BCM

Engineering BGM

CHAPMAN \& HALL/CRC
 Financial Mathematics Series

Aims and scope:

The field of financial mathematics forms an ever-expanding slice of the financial sector. This series aims to capture new developments and summarize what is known over the whole spectrum of this field. It will include a broad range of textbooks, reference works and handbooks that are meant to appeal to both academics and practitioners. The inclusion of numerical code and concrete real-world examples is highly encouraged.

Series Editors

M.A.H. Dempster

Centre for Financial
Research
Judge Business School
University of Cambridge

Dilip B. Madan Rama Cont
Robert H. Smith School Center for Financial
of Business Engineering
University of Maryland
Columbia University
New York

Published Titles

American-Style Derivatives; Valuation and Computation, Jerome Detemple
Financial Modelling with Jump Processes, Rama Cont and Peter Tankov
An Introduction to Credit Risk Modeling, Christian Bluhm, Ludger Overbeck, and
Christoph Wagner
Portfolio Optimization and Performance Analysis, Jean-Luc Prigent
Robust Libor Modelling and Pricing of Derivative Products, John Schoenmakers
Structured Credit Portfolio Analysis, Baskets \& CDOs, Christian Bluhm and
Ludger Overbeck
Numerical Methods for Finance, John A. D. Appleby, David C. Edelman, and John J. H. Miller Understanding Risk: The Theory and Practice of Financial Risk Management, David Murphy Engineering BGM, Alan Brace

Proposals for the series should be submitted to one of the series editors above or directly to:
CRC Press, Taylor and Francis Group
24-25 Blades Court
Deodar Road
London SW15 2NU
UK

CHAPMAN \& HALL/CRC FINANCIAL MATHEMATICS SERIES

Engineering BGM

Alan Brace

chapman \& Hall/CRC
Taylor \& Francis Group
Boca Raton London New York

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2008 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20140114
International Standard Book Number-13: 978-1-58488-969-4 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

```
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
```

Dedicated to the memory of my father George James Brace

Contents

Preface xiii
1 Introduction 1
1.1 Background HJM 2
1.2 The first 'correct' Black caplet 6
1.3 Forward BGM construction 8
2 Bond and Swap Basics 11
2.1 Zero coupon bonds - drifts and volatilities 11
2.2 Swaps and swap notation 14
2.2.1 Forward over several periods 18
2.2.2 Current time 19
3 Shifted BGM 21
3.1 Definition of shifted model 21
3.1.1 Several points worth noting 22
3.2 Backward construction 24
4 Swaprate Dynamics 27
4.1 Splitting the swaprate 28
4.2 The shift part 29
4.3 The stochastic part 31
4.4 Swaption values 34
4.4.1 Multi-period caplets 35
4.5 Swaprate models 36
5 Properties of Measures 39
5.1 Changes among forward and swaprate measures 40
5.2 Terminal measure 41
5.3 Spot Libor measure 42
5.3.1 Jumping measure 44
6 Historical Correlation and Volatility 45
6.1 Flat and shifted BGM off forwards 48
6.2 Gaussian HJM off yield-to-maturity 49
6.3 Flat and shifted BGM off swaprates 50
7 Calibration Techniques 55
7.1 Fitting the skew 57
7.2 Maturity only fit 58
7.3 Homogeneous spines 59
7.3.1 Piecewise linear 59
7.3.2 Rebonato's function 60
7.3.3 Bi-exponential function 60
7.3.4 Sum of exponentials 60
7.4 Separable one-factor fit 61
7.5 Separable multi-factor fit 63
7.5.1 Alternatively 65
7.6 Pedersen's method 66
7.7 Cascade fit 69
7.7.1 Extension 71
7.8 Exact fit with semidefinite programming 71
8 Interpolating Between Nodes 75
8.1 Interpolating forwards 75
8.2 Dead forwards 76
8.3 Interpolation of discount factors 77
8.4 Consistent volatility 78
9 Simulation 79
9.1 Glasserman type simulation 79
9.1.1 Under the terminal measure \mathbb{P}_{n} 80
9.1.2 Under the spot measure \mathbb{P}_{0} 80
9.2 Big-step simulation 81
9.2.1 Volatility approximation 81
9.2.2 Drift approximation 82
9.2.3 Big-stepping under the terminal measure \mathbb{P}_{n} 84
9.2.4 Big-stepping under a tailored spot measure $\overline{\mathbb{P}}_{0}$ 84
10 Timeslicers 87
10.1 Terminal measure timeslicer 88
10.2 Intermediate measure timeslicer 89
10.3 A spot measure timeslicer is problematical 90
10.4 Some technical points 91
10.4.1 Node placement 91
10.4.2 Cubics against Gaussian density 92
10.4.3 Splining the integrand 92
10.4.4 Alternative spline 93
10.5 Two-dimensional timeslicer 93
11 Pathwise Deltas 95
11.1 Partial derivatives of forwards 96
11.2 Partial derivatives of zeros and swaps 97
11.3 Differentiating option payoffs 98
11.4 Vanilla caplets and swaptions 99
11.5 Barrier caps and floors 100
12 Bermudans 103
12.1 Backward recursion 104
12.1.1 Alternative backward recursion 106
12.2 The Longstaff-Schwartz lower bound technique 106
12.2.1 When to exercise 107
12.2.2 Regression technique 108
12.2.3 Comments on the Longstaff-Schwartz technique 109
12.3 Upper bounds 110
12.4 Bermudan deltas 111
13 Vega and Shift Hedging 113
13.1 When calibrated to coterminal swaptions 114
13.1.1 The shift part 115
13.1.2 The volatility part 116
13.2 When calibrated to liquid swaptions 118
14 Cross-Economy BGM 121
14.1 Cross-economy HJM 121
14.2 Forward FX contracts 123
14.2.1 In the HJM framework 124
14.2.2 In the BGM framework 125
14.3 Cross-economy models 127
14.4 Model with the spot volatility deterministic 128
14.5 Cross-economy correlation 131
14.6 Pedersen type cross-economy calibration 135
15 Inflation 141
15.1 TIPS and the CPI 141
15.2 Dynamics of the forward inflation curve 143
15.2.1 Futures contracts 145
15.2.2 The CME futures contract 146
16 Stochastic Volatility BGM 149
16.1 Construction 149
16.2 Swaprate dynamics 153
16.3 Shifted Heston options 155
16.3.1 Characteristic function 155
16.3.2 Option price as a Fourier integral 158
16.4 Simulation 160
16.4.1 Simulating $V(t)$ 160
16.5 Interpolation, Greeks and calibration 162
16.5.1 Interpolation 162
16.5.2 Greeks 162
16.5.3 Caplet calibration 163
16.5.4 Swaption calibration 164
17 Options in Brazil 165
17.1 Overnight DI 165
17.2 Pre-DI swaps and swaptions 166
17.2.1 In the HJM framework 168
17.2.2 In the BGM framework 168
17.3 DI index options 169
17.3.1 In the HJM framework 169
17.4 DI futures contracts 170
17.4.1 Hedging with futures contracts 172
17.5 DI futures options 172
A Notation and Formulae 175
A. 1 Swap notation 175
A. 2 Gaussian distributions 176
A.2.1 Conditional expectations 176
A.2.2 Density shift 176
A.2.3 Black formula 178
A.2.4 Gaussian density derivatives 179
A.2.5 Gamma and vega connection 181
A.2.6 Bivariate distribution 182
A.2.7 Ratio of cumulative and density distributions 182
A.2.8 Expected values of normals 183
A. 3 Stochastic calculus 185
A.3.1 Multi-dimensional Ito 185
A.3.2 Brownian bridge 185
A.3.3 Product and quotient processes 185
A.3.4 Conditional change of measure 186
A.3.5 Girsanov theorem 186
A.3.6 One-dimensional Ornstein Uhlenbeck process 188
A.3.7 Generalized multi-dimensional OU process 188
A.3.8 SDE of a discounted variable 188
A.3.9 Ito-Venttsel formula 189
A. 4 Linear Algebra 189
A.4.1 Cholesky decomposition 189
A.4.2 Singular value decomposition 190
A.4.3 Semidefinite programming (SDP) 192
A. 5 Some Fourier transform technicalities 195
A. 6 The chi-squared distribution 198
A. 7 Miscellaneous 201
A.7.1 Futures contracts 201
A.7.2 Random variables from an arbitrary distribution 201
A.7.3 Copula methodology 201
References 203

Preface

Over the past several years the author has found himself frequently asked to give explanatory talks on BGM, some of which extended into one- or two-week workshops with detailed head-to-head technology transfer. The main interest came from small groups of quants either in banks or in software companies wanting to implement the model without wasting too much time decoding papers to find a suitable approach, and also academics and students wanting to get into the subject. This book is therefore naturally targeted at such people, who generally have several years experience around finance and a good grounding in the relevant mathematics.

The stimulus to begin writing was an invitation to join the Quantitative Finance Research Centre (QFRC) at the University of Technology Sydney (UTS) as an Adjunct Professor, and give a series of lectures on BGM for an audience of academics, students and industry quants over the course of a couple of semesters during 2006. This book grew out of those lectures, but the starting point was some eleven years of notes on various aspects of BGM, that were all prepared either for implementers writing production code, or as formal documentation to accompany production code, or in response to consulting tasks. Thus most of the techniques and methods described in this book originate in practical problems needing a solution and address real requirements. Moreover, many of them have been implemented, tried and tested either in an R\&D environment like MatLab, or in production code.

A reader from a mathematics, physics or engineering background (or the quantitative end of another science) with a decent knowledge of analysis, optimization, probability and stochastic calculus (that is, familiar with Ito and Girsanov at the very least) should find this book fairly self-contained and thus hopefully a suitable resource and guide to implementing some version of the model. Indeed, part of the reason why the author has tried to keep the book relatively short is to make it easy to slip into one's briefcase and use as a ready reference; the other part is a pathological fear of catching blitherer's disease, which in extreme cases seems to dilute ideas to one per page!

The book starts with the standard lognormal flat BGM, and then focuses on the shifted (or displaced diffusion) version to develop basic ideas about construction, change of measure, correlation, calibration, simulation, timeslicing (like lattices), pricing, delta hedging, vega hedging, callable exotics and barriers. Further chapters cover cross-economy BGM, adaption of the HJM inflation model to the BGM framework, a simple tractable stochastic volatility version of BGM, and financial instruments in Brazil, which have evolved
in a unique way and are amenable to BGM analysis.
Because shifted BGM can fit a cap or swaption implied volatility skew (but not a smile) and has the advantage of being just as tractable as flat BGM, it seems the right framework to present basic techniques. The stochastic volatility version aims to add a measure of convexity to the skew version, but we do not go so far as trying to calibrate to a full smile, which is a complex task appropriate to a cutting edge specialist. Overall the author can't help feeling that shifted BGM with the stochastic volatility extension as described here is about right for both the Mortgage Backed Security world, and also second tier banks wanting a robust framework in which to manage structured products sold into their customer base, without having to worry too much about being arbitraged.

To sum up, the reader is presented with several, progressively more sophisticated, versions of BGM, and a range of methods and recipes that (after some expansion and articulation) can be programmed into production code, and is free to choose an implementation to suit his requirements. Thus the book attempts to be an implementer's handbook offering straightforward models suitable for more conservative institutions who want a robust, safe and stable environment for calibrating, simulating, pricing and hedging interest rate instruments. Advanced versions for market makers, hedge funds or leading international banks are left to their top quants, though their newer quants might conveniently learn about market models from this book and then do better.

Many people contributed in some way to this book. In particular, it was a pleasure working with Marek Musiela through the early '90s at Citibank, where Mike Hawker in Sydney and Pratap Sondhi in Hong Kong provided support and a framework to do much of the original work. Since then, innumerable conversations with colleagues, reading and decoding many excellent papers, attendance at wide ranging professional conferences and some foolish mistakes have added enormously to the author's basic knowledge.

In direct preparation of this manuscript Chapman and Hall were patient and encouraging, Marek Rutkowski gave me a copy of his extensive bibliography greatly simplifying the task of preparing references, and my thanks to Carl Ang, Peter Buchen, Andrew Campbell, Daniel Campos, Tim Glass, Ben Goldys, Ivan Guo, Steve McCarthy, Frank Merino, Paul O’Brien, Erik Schlogl and Rob Womersley for helping check different parts of the book. Further thanks are due to both National Australia Bank ${ }^{1}$ and UTS for their material support in terms of time and infrastructure over the past couple of years, and also to $M Y$ for encouragement at some difficult moments.

A word on the title 'Engineering BGM'. The background is that Miltersen, Sandmann and Sondermann (MSS), see [78], were the first to get a 'kosher'

[^0]Black caplet formula out of HJM, but unfortunately they did not establish existence, which is an essential feature of a model (along with, the author feels, the technology to price complex options). We, that is Brace, Gatarek and Musiela (BGM), see [30], grasped the intuition behind the model, proved existence, derived swaption formulae, calibrated to the market and constructed simulation technology for pricing.

So generally speaking the model has more-or-less become known as 'BGM' in the industry and the 'Libor Market Model' in academic circles. My preference for the title 'Engineering BGM' over the alternative 'Engineering the Libor Market Model', is partly because this book is aimed at industry quants and traders and partly because it is shorter and more punchy. But unequivocally, MSS made the first breakthrough in this area, and we referenced their work in our paper [30] describing it as a 'key piece of information'.

Finally, if that nightmare for a single author 'the bad stupid mistake' should materialize, it is soley the author's fault and he apologizes in advance. Of course, all information about any, hopefully more minor, mistakes found by readers would be gratefully received (at any one of the author's email addressess on the title page), as would any suggestions for inclusions, exclusions and better ways of doing things (in case there should ever be a second edition of this book).

Alan Brace

(Sydney 25 September 2007)

Chapter 1

Introduction

Modern interest rate modelling began ${ }^{1}$ with Ho \& Lee's (HL) important 1986 paper [54], and matured into the Heath, Jarrow and Morton (HJM) model [52], which was circulating in 1988, and which became the standard framework for interest rates in the early '90s. Initial work on the market models was done within that framework, so to set the scene, the single-currency domestic version of HJM is reviewed in Section-1.1.

When the volatility function is deterministic, HJM is Gaussian, extremely tractable, and includes versions like Hull and White [58] and many other models. But until the advent of the market models [30], [66], [78] and [79] around 1994-97, the market's use of the Black caplet and Black swaption formulae (which priced assuming that forwards and swaprates were lognormal) was regarded as an aberration which could not be reconciled with HJM. A further problem was that HJM exploded when the instantaneous forward rates were made lognormal. The author can recall comments at conferences in the early '90s along the lines that 'the market is foolish and should adopt some arbitrage free Gaussian HJM model as a standard'.

To avoid explosions, attention shifted to modelling the cash forwards, and in 1994 Miltersen, Sandmann and Sondermann [78] found a PDE method, described in Section-1.2 below, to derive the Black caplet formula within the arbitrage free HJM framework. Knowing that was possible, and that the Black caplet formula was not an aberration, was a key piece of information.

The author's main contribution to events was to grasp the intuition, described in Section-1.3 below, that the cash forwards want to be lognormal, but under the forward measure at the end of their interval. With that realization, the derivation of the Black caplet formula became trivial, and led to the so called forward construction of BGM detailed in [30], by Musiela, Gatarek and the author, which established existence of the model, derived approximate analytic swaption formulae, calibrated to the market, and provided suitable simulation technology for pricing exotics.

[^1]
1.1 Background HJM

REMARK 1.1 Before beginning, a word on our ' $*$ ' notation for transposes. Throughout this book we will generally be dealing with multi-factor models involving an n-dimensional vector volatility function, say $\xi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and a corresponding multi-dimensional Brownian motion $W(t) \in \mathbb{R}^{n}$. Usually they (or similar expressions as in (1.3) below) appear together as inner products, so we use the ' $*$ ' notation to indicate transpose and write

$$
\xi^{*}(t) d W(t) \equiv\langle\xi(t), d W(t)\rangle
$$

for that inner product. Of course, in single factor models $\xi(t) d W(t)$ would simply mean the product of two scalor quantities. Note that many authors today adopt the practice (which is beginning to appeal to the author) of simply writing $\xi(t) d W(t)$ and leaving the reader to work out from the context if an inner product is implied.

The ingredients of the HJM domestic interest rate model are:

1. An instantaneous at t forward rate $f(t, T)$ for maturity T, with SDE

$$
\begin{equation*}
d f(t, T)=\alpha(t, T) d t+\sigma^{*}(t, T) d W_{0}(t) \tag{1.1}
\end{equation*}
$$

where the stochastic driving variable $W_{0}(t)$ is multi-dimensional Brownian motion ($B M$) under the arbitrage-free measure \mathbb{P}_{0}, and $\sigma(t, T)$ is a possibly stochastic vector volatility function for $f(t, T)$.
2. A spot rate $r(t)=f(t, t)$ and numeraire bank account to accumulate it

$$
\beta(t)=\exp \left(\int_{0}^{t} r(s) d s\right)
$$

3. Assets in the form of a spectrum of time T maturing zero coupon bonds

$$
B(t, T)=\exp \left(-\int_{t}^{T} f(t, u) d u\right)
$$

paying 1 at their maturity T.
To be arbitrage free, the zeros discounted by the bank account as numeraire

$$
\begin{equation*}
Z(t, T)=\frac{B(t, T)}{\beta(t)}=\exp \left(-\int_{0}^{t} r(s) d s-\int_{t}^{T} f(t, u) d u\right) \tag{1.2}
\end{equation*}
$$

must be \mathbb{P}_{0}-martingales for all T. Because

$$
\begin{gathered}
d \int_{t}^{T} f(t, u) d u=\int_{t}^{T} d f(t, u) d u-f(t, t) d t \\
=-r(t) d t+\left(\int_{t}^{T} \alpha(t, u) d u\right) d t+\left(\int_{t}^{T} \sigma^{*}(t, u) d u\right) d W_{0}(t)
\end{gathered}
$$

applying Ito to (1.2), the SDE for $Z(t, T)$ is

$$
\begin{aligned}
\frac{d Z(t, T)}{Z(t, T)} & =\left\{\begin{array}{c}
-r(t) d t+r(t) d t-\left(\int_{t}^{T} \alpha(t, u) d u\right) d t \\
-\left(\int_{t}^{T} \sigma^{*}(t, u) d u\right) d W_{0}(t)+\frac{1}{2}\left|\int_{t}^{T} \sigma(t, u) d u\right|^{2} d t
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-\left[\int_{t}^{T} \alpha(t, u) d u-\frac{1}{2}\left|\int_{t}^{T} \sigma(t, u) d u\right|^{2}\right] d t \\
-\int_{t}^{T} \sigma^{*}(t, u) d u d W_{0}(t)
\end{array}\right\}
\end{aligned}
$$

For this to be a \mathbb{P}_{0} martingale the drift must vanish, so

$$
\alpha(t, T)=\sigma^{*}(t, T) \int_{t}^{T} \sigma(t, u) d u
$$

and the SDE for the instantaneous forwards is

$$
\begin{equation*}
d f(t, T)=\sigma^{*}(t, T) \int_{t}^{T} \sigma(t, u) d u d t+\sigma^{*}(t, T) d W_{0}(t) \tag{1.3}
\end{equation*}
$$

Differentiating $B(t, T)=\beta(t) Z(t, T)$, the corresponding SDE for the zero coupon bond is

$$
\begin{equation*}
\frac{d B(t, T)}{B(t, T)}=r(t) d t-\int_{t}^{T} \sigma^{*}(t, u) d u d W_{0}(t) \tag{1.4}
\end{equation*}
$$

REMARK 1.2 The HJM approach therefore implies that the volatility

$$
\begin{equation*}
b(t, T)=-\int_{t}^{T} \sigma(t, u) d u \tag{1.5}
\end{equation*}
$$

of each zero coupon bond $B(t, T)$ is continuous in T, a restriction ruling out piecewise constant bond volatilities.

Because assets discounted by the bank account numeraire are \mathbb{P}_{0}-martingales, the present value of a cashflow $X(T)$ occurring at time T is

$$
\begin{equation*}
X(t)=\mathbf{E}_{0}\left(\left.\frac{\beta(t)}{\beta(T)} X(T) \right\rvert\, \mathcal{F}_{t}\right) \tag{1.6}
\end{equation*}
$$

where \mathbf{E}_{0} is expectation under \mathbb{P}_{0}, and \mathcal{F}_{t} is the underlying filtration (total accumulated information up to t). In particular, because a zero coupon pays 1 at maturity

$$
\begin{equation*}
B(t, T)=\mathbf{E}_{0}\left(\left.\frac{\beta(t)}{\beta(T)} 1 \right\rvert\, \mathcal{F}_{t}\right)=\mathbf{E}_{0}\left(\exp \left(-\int_{t}^{T} r(s) d s\right) \mid \mathcal{F}_{t}\right) \tag{1.7}
\end{equation*}
$$

A forward contract $F_{T}\left(t, T_{1}\right)$ on a zero-coupon bond $B\left(t, T_{1}\right)$ maturing at T_{1}, exchanges at time T the zero coupon $B\left(T, T_{1}\right)$ for $F_{T}\left(t, T_{1}\right)$. The present value of the exchange must be zero, hence $F_{T}\left(t, T_{1}\right)$ must satisfy

$$
\mathbf{E}_{0}\left\{\left.\frac{\beta(t)}{\beta(T)}\left[F_{T}\left(t, T_{1}\right)-B\left(T, T_{1}\right)\right] \right\rvert\, \mathcal{F}_{t}\right\}=0
$$

giving the following model free result for forward contracts

$$
\begin{equation*}
F_{T}\left(t, T_{1}\right)=\frac{B\left(t, T_{1}\right)}{B(t, T)} \tag{1.8}
\end{equation*}
$$

When $T_{1}=T+\delta$, the cash forward $K(t, T)$ over the interval $\left(T, T_{1}\right]$ is defined in terms of the forward contract $F_{T}\left(t, T_{1}\right)$ by

$$
\begin{equation*}
F_{T}\left(t, T_{1}\right)=\frac{B\left(t, T_{1}\right)}{B(t, T)}=\frac{1}{1+\delta K(t, T)} \tag{1.9}
\end{equation*}
$$

REMARK 1.3 In the following equation (1.10), please note that the one variable Radon-Nikodym derivative $Z(t)=\mathbf{E}_{0}\left\{Z(T) \mid \mathcal{F}_{t}\right\}$ is not the two variable discounted zero coupon function $Z(t, T)=\frac{B(t, T)}{\beta(t)}$.

Being a strictly positive process, the bank account $\beta(t)$ induces a forward measure \mathbb{P}_{T} (expectation \mathbf{E}_{T}) at any maturity T through

$$
\begin{align*}
\mathbb{P}_{T} & =Z_{T} \mathbb{P}_{0} \quad \text { or } \quad \mathbf{E}_{T}\{\cdot\}=\mathbf{E}\left\{\cdot Z_{T}\right\} \tag{1.10}\\
Z(T) & =\frac{1}{\beta(T) B(0, T)}
\end{align*}
$$

It follows, from the conditional change of measure result of Appendix-A.3.5, that

$$
\mathbf{E}_{T}\left(X(T) \mid \mathcal{F}_{t}\right)=\frac{\mathbf{E}_{0}\left(X(T) Z(T) \mid \mathcal{F}_{t}\right)}{\mathbf{E}_{0}\left(Z(T) \mid \mathcal{F}_{t}\right)}=\frac{\mathbf{E}_{0}\left(\left.\frac{\beta(t)}{\beta(T)} X(T) \right\rvert\, \mathcal{F}_{t}\right)}{\mathbf{E}_{0}\left(\left.\frac{\beta(t)}{\beta(T)} \right\rvert\, \mathcal{F}_{t}\right)}=\frac{X(t)}{B(t, T)}
$$

which simplifies the present value equation (1.6) to

$$
\begin{equation*}
X(t)=\mathbf{E}_{0}\left(\left.\frac{\beta(t)}{\beta(T)} X(T) \right\rvert\, \mathcal{F}_{t}\right)=B(t, T) \mathbf{E}_{T}\left(X(T) \mid \mathcal{F}_{t}\right) \tag{1.11}
\end{equation*}
$$

Also $X(t)$ discounted by $B(t, T)$ is a martingale under the forward measure \mathbb{P}_{T} because for $s<t$
$\mathbf{E}_{T}\left(\left.\frac{X(t)}{B(t, T)} \right\rvert\, \mathcal{F}_{s}\right)=\mathbf{E}_{T}\left(\mathbf{E}_{T}\left(X(T) \mid \mathcal{F}_{t}\right) \mid \mathcal{F}_{s}\right)=\mathbf{E}_{T}\left(X(T) \mid \mathcal{F}_{s}\right)=\frac{X(s)}{B(s, T)}$.
Integrating (1.4) over $[0, T]$ identifies $Z(T)$ because

$$
\begin{gathered}
B(T, T)=1=B(0, T) \beta(T) \mathcal{E}\left(-\int_{0}^{T} \int_{t}^{T} \sigma^{*}(t, u) d u d W_{0}(t)\right) \\
\Rightarrow \quad Z(T)=\mathcal{E}\left\{-\int_{0}^{T} \int_{t}^{T} \sigma^{*}(t, u) d u d W_{0}(t)\right\}
\end{gathered}
$$

showing, from the Girsanov Theorem of Section-A.3.5, that $W_{T}(t)$, given by

$$
\begin{equation*}
d W_{T}(t)=d W_{0}(t)+\int_{t}^{T} \sigma(t, u) d u d t \tag{1.12}
\end{equation*}
$$

is \mathbb{P}_{T}-BM. Subtracting from a similar expression for $W_{T_{1}}(t)$, a $\mathbb{P}_{T_{1}}$ - BM ,

$$
\begin{equation*}
d W_{T_{1}}(t)=d W_{T}(t)+\int_{T}^{T_{1}} \sigma(t, u) d u d t \tag{1.13}
\end{equation*}
$$

From equations (1.4), (1.9) and the result in the Appendix A.3.3, the SDE for the forward contract $F_{T}\left(t, T_{1}\right)$ is

$$
\begin{align*}
\frac{d F_{T}\left(t, T_{1}\right)}{F_{T}\left(t, T_{1}\right)} & =\left\{\begin{array}{c}
r(t) d t-r(t) d t \\
-\int_{T}^{T_{1}} \sigma^{*}(t, u) d u\left[d W_{0}(t)+\int_{t}^{T} \sigma(t, u) d u d t\right]
\end{array}\right\} \\
& =-\int_{T}^{T_{1}} \sigma^{*}(t, u) d u d W_{T}(t) \tag{1.14}
\end{align*}
$$

while the SDE for its reciprocal is

$$
\begin{align*}
\frac{d\left(\frac{1}{F_{T}\left(t, T_{1}\right)}\right)}{\left(\frac{1}{F_{T}\left(t, T_{1}\right)}\right)} & =\left\{\begin{array}{c}
r(t) d t-r(t) d t \\
+\int_{T}^{T_{1}} \sigma^{*}(t, u) d u\left[d W_{0}(t)+\int_{t}^{T_{1}} \sigma(t, u) d u d t\right]
\end{array}\right\} \\
& =\int_{T}^{T_{1}} \sigma^{*}(t, u) d u d W_{T_{1}}(t) \tag{1.15}
\end{align*}
$$

Hence $F_{T}\left(t, T_{1}\right)$ is a \mathbb{P}_{T}-martingale while, more importantly as we will see, its reciprocal $\frac{1}{F_{T}\left(t, T_{1}\right)}$ is a $\mathbb{P}_{T_{1}}$-martingale.

1.2 The first 'correct' Black caplet

Miltersen, Sandmann and Sondermann [78] started with the assumption that under the T-forward measure \mathbb{P}_{T} the cash forward $K(t, T)$ over $\left[T, T_{1}\right]$ was of lognormal type with deterministic volatility γ (which we here set constant for easy exposition), that is, they assumed the SDE for $K(t, T)$ has form

$$
\begin{equation*}
d K(t, T)=(d r i f t) d t+K(t, T) \gamma d W_{T}(t) \tag{1.16}
\end{equation*}
$$

and then worked with the corresponding forward contract $F_{T}\left(t, T_{1}\right)$ (because it is a \mathbb{P}_{T}-martingale). Differentiating (1.9) using (1.14), and then comparing the stochastic term with that of (1.16), gives an SDE for $F_{T}\left(t, T_{1}\right)$:

$$
\begin{align*}
d K(t, T) & =\frac{1}{\delta} d\left(\frac{1}{F_{T}\left(t, T_{1}\right)}-1\right) \tag{1.17}\\
& =(d r i f t) d t+\frac{1}{\delta F_{T}\left(t, T_{1}\right)} \int_{T}^{T_{1}} \sigma(t, u) d u d W_{T}(t) \\
& \Rightarrow \quad \int_{T}^{T_{1}} \sigma(t, u) d u=K(t, T) \gamma \delta F_{T}\left(t, T_{1}\right)=\left[1-F_{T}\left(t, T_{1}\right)\right] \gamma \\
& \Rightarrow \quad d F_{T}\left(t, T_{1}\right)=-F_{T}\left(t, T_{1}\right)\left[1-F_{T}\left(t, T_{1}\right)\right] \gamma d W_{T}(t)
\end{align*}
$$

The time t value of a Black caplet struck at κ, fixed at T and paid at T_{1}, is

$$
\begin{aligned}
\operatorname{cpl}(t) & =\mathbf{E}_{0}\left\{\left.\frac{1}{\beta\left(T_{1}\right)} \delta[K(T, T)-\kappa]^{+} \right\rvert\, \mathcal{F}_{t}\right\} \\
& =\mathbf{E}_{0}\left\{\left.\frac{B\left(T, T_{1}\right)}{\beta(T)} \delta[K(T, T)-\kappa]^{+} \right\rvert\, \mathcal{F}_{t}\right\} \\
& =B(t, T) \mathbf{E}_{T}\left\{\left.F_{T}\left(T, T_{1}\right)\left[\frac{1}{F_{T}\left(T, T_{1}\right)}-1-\delta \kappa\right]^{+} \right\rvert\, \mathcal{F}_{t}\right\} \\
& =B(t, T) \mathbf{E}_{T}\left\{\left[1-(1+\delta \kappa) F_{T}\left(T, T_{1}\right)\right]^{+} \mid \mathcal{F}_{t}\right\} .
\end{aligned}
$$

Applying Ito, Miltersen et al then set to zero the drift of the \mathbb{P}_{T}-martingale

$$
v\left(t, F_{T}\left(t, T_{1}\right)\right)=\frac{\mathrm{cpl}(t)}{B(t, T)}
$$

so that $\operatorname{cpl}(t)$ is given by the solution $v\left(t, F_{T}\left(0, T_{1}\right)\right)$ to the non-linear PDE

$$
\frac{\partial v}{\partial t}+\frac{1}{2} \gamma^{2} x^{2}(1-x)^{2} \frac{\partial^{2} v}{\partial x^{2}}=0 \quad \text { with } \quad v(T, x)=[1-(1+\delta \kappa) x]^{+}
$$

This converts to a heat equation problem with the transformations

$$
\begin{gather*}
s=\gamma^{2}(T-t), \quad z=\ln \frac{x}{1-x} \tag{1.18}\\
v(t, x)=\frac{e^{-\frac{s}{8}}}{e^{\frac{z}{2}}+e^{-\frac{z}{2}}} u(s, z) \Rightarrow \quad \frac{\partial u}{\partial s}=\frac{1}{2} \frac{\partial^{2} u}{\partial z^{2}} \\
\text { with } u(0, z)=\left\{e^{\frac{z}{2}}+e^{-\frac{z}{2}}\right\}\left[1-\frac{(1+\delta \kappa)}{1+e^{-z}}\right]^{+}
\end{gather*}
$$

which has the solution (substitute in the PDE and integrate by parts)

$$
\begin{aligned}
u(s, z) & =\int_{-\infty}^{\infty} u(0, z+v \sqrt{s}) \mathbf{N}_{1}(v) d v \\
& =\int_{-\infty}^{\Upsilon}\left[\exp \left(-\frac{1}{2}[z+v \sqrt{s}]\right)-\delta \kappa \exp \left(\frac{1}{2}[z+v \sqrt{s}]\right)\right] \mathbf{N}_{1}(v) d v \\
& =\exp \left(-\frac{z}{2}+\frac{s}{8}\right) \mathbf{N}\left(\Upsilon+\frac{\sqrt{s}}{2}\right)-\delta \kappa \exp \left(\frac{z}{2}+\frac{s}{8}\right) \mathbf{N}\left(\Upsilon-\frac{\sqrt{s}}{2}\right) \\
& \text { in which } \Upsilon=-\frac{1}{\sqrt{s}}(z+\ln \delta \kappa)
\end{aligned}
$$

Inverting the transforms (1.18) to go from $u(s, z)$ back to $v(t, x)$

$$
\begin{aligned}
v(t, x) & =x\left\{\frac{[1-x]}{x} \mathbf{N}(h)-\delta \kappa \mathbf{N}\left(h-\frac{1}{2} \gamma \sqrt{T-t}\right)\right\}, \\
h & =\frac{1}{\gamma \sqrt{T-t}}\left\{\ln \left(\frac{1-x}{x} \frac{1}{\delta \kappa}\right)+\frac{1}{2} \gamma^{2}(T-t)\right\}
\end{aligned}
$$

the caplet price $\mathrm{cpl}(t)$ follows from $v(t, x)$ on using

$$
\begin{aligned}
x & =F_{T}\left(t, T_{1}\right)=\frac{B\left(t, T_{1}\right)}{B(t, T)}, \quad \delta K(t, T)=\frac{1-x}{x} \\
\operatorname{cpl}(t) & =B(t, T) v(t, x)=\delta B\left(t, T_{1}\right) \quad \mathbf{B}(K(t, T), \kappa, \gamma \sqrt{T-t})
\end{aligned}
$$

where $\mathbf{B}(\cdot)$ is the Black formula, see Appendix-A.2.3.
A probabilistic proof of this result obtained by the author while trying to articulate the insight of MSS, runs as follows. Simplify notation by setting $\mathbb{P}_{T}=\mathbb{P}, F_{T}\left(t, T_{1}\right)=F_{t}, K_{t}=K(t, T)$ and $W_{T}(t)=W_{t}$. From the SDE (1.17) for F_{t}, if

$$
\begin{gathered}
Z_{t}=\ln \frac{F_{t}}{1-F_{t}} \quad \text { or } \quad F_{t}=\frac{1}{1+\exp \left(-Z_{t}\right)}, \quad \text { then } \\
d Z_{t}=-\gamma\left[d W_{t}-\frac{1}{2} \gamma \tanh \left(\frac{1}{2} Z_{t}\right) d t\right], \quad \exp \left(-Z_{t}\right)=\delta K_{t} .
\end{gathered}
$$

[^0]: ${ }^{1}$ All views expressed in this book are the author's and in no way reflect NAB policy, philosophy or technology.

[^1]: ${ }^{1}$ Though intriguingly, the previous long standing actuarial practice of hedging bonds by matching duration turned out to be equivalent to delta hedging within the HL model.

