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This book is dedicated to late Professors R. B. Bird  
(February 5, 1924 – November 13, 2020) and  
A. S. Lodge (November 20, 1922 – June 24, 2005),  
both of the University of Wisconsin (Madison), who 
have had a strong  influence on the education and 
 research training of numerous students. They are a 
constant source of inspiration and  motivation to us. 
Their seminal and unique contributions will continue 
to inspire  generations to come.





It is almost 25 years since the first edition of this book was published. On the one 
hand, the fact that this title has continued to be consulted by readers testifies to 
the timelessness and continued relevance of the material covered in this book. On 
the other hand, 25 years is a rather long time in any discipline and it is thus 
deemed appropriate to prepare a revised and updated edition of this work. The 
philosophy and objective of this edition continue to be the same as that of the first 
edition, namely, to develop a text book for graduate and/or advanced year under-
graduate students in the diverse disciplines of chemical and food engineering, 
 mechanical engineering, material science, and polymer and plastics technology, to 
mention a few.

Rheology continues to be an important field of research and it finds applications in 
a variety of industrial sectors such as polymers, foods, cosmetics, paints,  healthcare 
and pharmaceuticals, waste disposal of mine tailings, and biological and biomedi-
cal engineering related products and processes. Some of the currently available 
books cover the new trends in research very well, while only a few books address 
the applications. This book intends to bridge the gap between fundamental con-
cepts and applications. The bulk of the material presented here has been used 
successfully for many years in our respective courses.

This book is designed to be used as a textbook for a graduate or advanced under-
graduate course in polymer rheology. The level is between that of introductory 
texts and of highly advanced research monographs. We consider the introduction 
of a treatment of rheology at this level to be very timely, for few of the existing 
books bring together the fundamentals and applications of rheology. This work 
aims to develop a systematic approach and a clear understanding of the envisaged 
applications. The reader is expected to be familiar with introductory transport phe-
nomena, or equivalent fluid mechanics and heat and mass transfer.

The organization of this book is as follows. The text introduces the subject of rheol-
ogy via the description of unusual phenomena such as rod climbing, extrudate 
swell, stable bubble shapes, segregation of particles in viscoelastic fluids, migra-
tion of particles across the streamlines, etc. In Chapter 2, material functions are 
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defined for a variety of flow situations. Generalized Newtonian fluid models are 
introduced, and their predictions are compared to typical experimental data for 
real materials. Chapter 3 deals with the subject of rheometry. Measurements of 
viscosity, normal stress differences, elongational viscosity, complex viscosity, and 
yield stress, using capillary, concentric cylinder, and cone-and-plate geometries, 
are reviewed in detail. Included here is also a detailed section on the measurement 
of yield stress. Isothermal flows, as well as heat and mass transfer in simple geo-
metries involving generalized non-Newtonian fluids, are dealt with in Chapter 4. 
The subject of linear viscoelasticity is discussed in Chapter 5, whereas Chapter 6 
reviews the area of nonlinear deformation and the formulation of appropriate con-
stitutive equations. The molecular approach to the modeling is dealt with in an in-
troductory fashion in Chapter 7, and topics dealing with the rheology of suspen-
sions and immiscible polymer blends, and flow characteristics of non-Newtonian 
media involving bubbles, drops, and particles, are discussed in Chapter 8, and 
 mixing of complex fluids in Chapter 9. Finally, we present a substantial appendix 
(Chapter 10) dealing with tensor analysis, which is largely based on a text on ad-
vanced mathematics. The material presented in the first five chapters can be used 
as an introduction to the subject. A more advanced course would also encompass 
Chapters 6, 7, and 10, while Chapters 8 and 9 focus on major areas of applications. 
In addition to the general overall updating of the contents, the specific changes 
made in this edition are briefly summarized here: extensive discussion on the 
available methods for the measurement of yield stress (Section 3.5.1); a new 
 section (Section 4.6) on non-Fickian diffusion and the its consequences on mass 
transport in structured fluids; an extended section on the linear viscoelasticity of 
polymer blends (Section 8.2.3); rheology of glass fiber reinforced systems (Section 
8.2.5); and significantly expanded discussion on the rheology of suspensions of 
interactive particles (Section 8.2.6).

Like in the case of the first edition, while making changes in this edition, we have 
been strongly inspired by the monumental book Transport Phenomena (Bird, 
 Stewart, and Lightfoot, 1960, 2006) and by Dynamics of Polymeric Liquids, espe-
cially Volume I (Bird, Armstrong, and Hassager, 1977, 1987). While we do not try 
to match the in-depth coverage of Dynamics of Polymeric Liquids, we present  results 
of our extensive teaching and research experience in this field in a coherent 
 manner, especially from the students’ perspective. In this regard, this book has a 
distinct engineering flavor, covering topics such as mixing and flow of particulate 
systems, which are seldom discussed in other books on rheology. Furthermore, 
statements such as “it can easily be shown” have carefully been avoided as far as 
possible, in favor of a fair amount of detailed explanation. Several homework prob-
lems appear at the end of most chapters. These problems are labeled by a super-
script a or b indicating the level of difficulty. The “b-problems” are the more de-
manding ones.
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In preparing this book, we have made extensive use of the research literature and 
research performed in our respective laboratories by our graduate students and 
research associates over the past 40–50 years. Special thanks go to Drs. C. F. Chan 
Man Fong and M. Grmela, who contributed to many facets of the first edition of this 
book. We acknowledge also the devotion of Ms. D. Heroux, who patiently typed and 
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thankful to Mr. F. St-Louis and Dr. N. Chapleau for preparing the artwork for the 
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1
Because science evolved and developed first through experimentation, it is appro-
priate to introduce the complex field of rheology by discussing some of the intrigu-
ing and paradoxical phenomena encountered with polymeric liquids and some 
particulate suspensions. A similar presentation can be found in most textbooks on 
rheology. For this reason, we have restricted the number of such examples in this 
chapter. Some definitions and a classification are presented first. 

 � 1.1 Definitions and Classification

Rheology is a science that deals with the deformation of materials as a result of 
an  applied stress. It can therefore be considered part of continuum mechanics, 
 although it is also possible to relate the stress to the deformation or to the rate of 
deformation via molecular kinetic theory.

Two physical laws dating back to the seventeenth century are very important in 
the present context. They are:

I. Hooke’s law, describing the behavior of an elastic solid, given in shear by

 (1.1)

where the shear stress σyx (see Chapter 2) is related to the deformation gradi-
ent dux /dy via the constant elastic modulus G.

II. Newton’s law, describing the behavior of a linear viscous fluid, given by

 (1.2)

where the shear stress σyx is related to the rate of deformation dVx /dy, via the 
constant Newtonian viscosity m.

Introduction
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We can consider two limiting cases of material response: that of a non-deformable 
body on the one hand and that of an inviscid fluid on the other hand. For a non- 
deformable body, the elastic modulus is infinite. For an inviscid fluid, the viscosity 
is zero.

The behavior of real materials falls between these limiting situations. Table 1.1 
summarizes the observed rheological behavior. For instance, we can say that al-
though most real materials have a finite viscosity, under certain conditions (e. g., 
flow of air over an aerofoil), the effect of viscosity is confined to a thin layer (bound-
ary layer, see Section 4.5). Beyond this, the fluid behavior can be well-represented 
by an ideal inviscid fluid. However, in most confined flow situations, the effects of 
viscosity cannot be ignored. At the other extreme is an ideal elastic material which 
attains an equilibrium deformation when subjected to an external stress. For some 
materials, these limiting behaviors are easily observed. In contrast, the viscosity of 
ice or the elasticity of water may go unnoticed! In between these two extremes, 
the fluid behavior gradually passes from inviscid ideal to viscous, to viscoelastic 
fluid-like, to solid-like, and then to an elastic solid, as summarized schematically in 
Table 1.1.

Many of the terms used in the field of rheology have been carefully defined by 
Lodge (1964). We summarize here some of the important definitions.

Table 1.1 Summary of Rheological Behavior

Continuum 
mechanics

Fluids

Inviscid fluid (ideal case with 
μ = 0)

None

Linear viscous fluid 
( Newtonian behavior)

Water

Non-linear viscous material 
(generalized Newtonian 
behavior defined in 
 Section 1.2)

Suspensions in Newtonian 
media

Linear viscoelastic material Polymer under small 
 deformation

Non-linear viscoelastic 
 material

Concentrated polymer 
 solutions or plastics under 
large deformation

Solids

Non-linear elastic material Rubber
Linear elastic solid Linear Hookean spring
Non-deformable solid (ideal 
case with G = ∞)

None
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1.1.1 Purely Viscous or Inelastic Material

A material is purely viscous or inelastic if, following any flow or deformation his-
tory: (a) the stresses in the material become instantaneously zero (or isotropic) as 
soon as the flow is stopped (deformation rate set to zero); or (b) the deformation 
rate (in the absence of inertial effects) becomes instantaneously zero when the 
stresses are set equal to zero (or are isotropic).

1.1.2 Perfectly Elastic Material 

A material is perfectly elastic if the equilibrium shape is attained instantaneously 
when non-isotropic stresses are applied, or if the stresses become non-isotropic as 
soon as the material is deformed. Hooke’s law (Equation 1.1) describes a perfectly 
linear elastic body, if the modulus G is considered constant. The behavior of a 
 rubber band approximates closely that of a perfectly elastic body, but a highly 
non-linear one, since in this case the modulus changes with deformation.

1.1.3 Viscoelastic Material

Any material which obeys neither the purely viscous nor the perfectly elastic crite-
ria is viscoelastic. The parts of the word, viscous and elastic, describe a rheological 
behavior between that of a purely viscous liquid and that of a perfectly elastic 
solid. In simple terms, a viscoelastic material will not deform instantaneously 
when non-isotropic stresses are applied, or the stresses will not respond instanta-
neously to any imposed deformation or deformation rate. Typical examples are 
polymer solutions and plastics that are known to exhibit memory effects such as 
relaxation, described in Chapter 2. The phenomena described in Section 1.2 are 
mostly due to viscoelasticity.

 � 1.2 Non-Newtonian Phenomena

Most polymer systems, as well as many other complex fluids, do not obey Newton’s 
law of viscosity. These fluids generally exhibit a viscosity that decreases with in-
creasing rate of deformation. This is referred to as pseudoplastic or shear-thinning 
behavior. Very large decreases in viscosity are observed in polymeric fluids, as 
 illustrated in Chapter 2. Moreover, polymeric fluids have a viscoelastic character 
that is responsible for a number of spectacular phenomena not observed with New-
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tonian fluids. The design of many industrial processing operations requires taking 
into account several of these phenomena.

We review here some of the more striking viscoelastic effects. An excellent presen-
tation of rheological or non-Newtonian phenomena can be found in the books of 
Bird, Armstrong, and Hassager (Volume 1, 1977 or 1987) and in another book by 
Boger and Walters (1993). In writing the following sections we have been largely 
inspired by these authors.

1.2.1 The Weissenberg Effect

This phenomenon is illustrated schematically in Figure 1.1. If a rod is rotated in a 
beaker containing a Newtonian fluid such as water, the free surface is deformed by 
a centrifugal force, creating a vortex in the center. In contrast, if a rod is rotated in 
a polymer solution or melt, the fluid tends to climb the rod, and an inverted vortex 
is created. Weissenberg (1947) was able to explain this phenomenon in terms of 
unequal normal stresses present in such materials under steady shearing condi-
tions (see Section 3.2.3).

The polymer molecules in a solution or melt form an entangled network, which, 
when deformed in one direction through the action of a rotating or moving surface, 
generates internal tensions in the flow direction as well as normal to the flow di-
rection. These tensions are the normal stresses mentioned in the previous para-
graph. In fact, if we could measure the pressure at point A on the rod and at point 
B on the beaker, we would observe, contrary to the Newtonian case, that with the 
polymeric fluid, PA > PB. This excess pressure is compensated by an extra hydro-
static head.

Figure 1.1  
Shape of the liquid’s free surface 
for a rotating rod in a reservoir 
(a) Newtonian liquid 
(b) viscoelastic liquid
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1.2.2  Entry Flow, Extrudate Swell, Melt Fracture, and 
 Vibrating Jet

Flow visualization of the entry flow in the case of a sudden contraction is illus-
trated in Figure 1.2. Depending on the liquid rheology and flow conditions, two 
main patterns are observed. The pattern of Figure 1.2 is observed for branched 
polymer melts such as low-density polyethylene (LDPE), polystyrene (PS), and 
polymethyl methacrylate (PMMA). The pattern of Figure 1.2 is typical of linear 
polymer melts such as high-density polyethylene (HDPE) and linear low-density 
polyethylene (LLDPE), as well as Newtonian fluids at low Reynolds numbers.

Figure 1.2  
Main flow patterns in sudden contraction 
flow

The size of the vortices observed for LDPE, PS, etc. (Figure 1.2a) increases first 
with flow rate and eventually becomes unstable. The unstable flow in the reservoir 
appears at the same moment as the helical distortion illustrated in Figure 1.4. This 
has been reported by several authors (Den Otter, 1970, 1971; Ballenger et al., 1971; 
Boger and Ramamurthy, 1972). For linear polyethylenes, the corner vortices are 
usually not observed, and the flow pattern is that shown in Figure 1.2b.

Another spectacular observation that is very important in the transformation of 
plastics is the swell of the extrudate as it emerges from a capillary. This is shown 
in Figure 1.3. A Newtonian fluid (C) normally shows a small decrease (< 20%) in 
diameter as it emerges from the capillary. This is due to inertial effects. In contrast, 
a highly elastic fluid (A), such as a polymer melt, could show a 200% to 400% in-
crease in diameter. This extrudate swell effect is very frequently referred to in the 
literature as the die swell effect. For obvious reasons this terminology should be 
avoided!
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Figure 1.3  
Fluid extrudates from capillary tubes 
A stream of a Newtonian silicone fluid shows 
no diameter increase (C); a solution of 2.44 g 
of polymethyl methacrylate (Mn= 106 kg/kmol) 
in 100 mL of dimethylphthalate shows a 200% 
increase in diameter (A). Both fluids have a 
similar viscosity (From Lodge, 1964, with 
 permission)

Qualitatively, we can explain this phenomenon through the presence of normal 
stresses (extra pressure) created at the wall of the capillary. As the polymeric fluid 
emerges from the capillary, this internal pressure is released, resulting in a lateral 
expansion. Another important contribution is due to memory effects in polymeric 
fluids that behave like rubbery materials. When entering a small capillary die from 
a large reservoir, the fluid is subjected to a rapid change of shape (large deforma-
tion), and as it emerges from the die, it tends through its rubbery nature to recover 
its initial shape (elastic recovery). For this reason, polymeric fluids are often re-
ferred to as fluids with memory. Other effects, such as velocity changes at the 
exit and thermal gradients in the extrudate, also contribute to this phenomenon 
(Tanner, 2000).

Extrudate swell is thus associated with the elastic nature of the fluid, and its mea-
surement is frequently used to characterize polymer melt elasticity in relation to 
its molecular structure, molecular weight, and molecular weight distribution. Ex-
trudate swell is a phenomenon that has to be taken into account in fiber production 
operations. Critical velocity gradients are also complicating and may lead to melt 
fracture.

Melt fracture is observed as a polymer is extruded freely from a die at a rate ex-
ceeding a critical value. The diameter of the extrudate is no longer uniform and 
may exhibit various distortions, all referred to as melt fracture. Figure 1.4 illus-
trates various shapes of melt fracture encountered under different flow conditions.

 � Defects known as sharkskin are shown in Figure 1.4. This is an often periodic 
instability, which depends on the flow rate, temperature, and properties of the 
polymer. In (a), the extrudate is a linear low-density polyethylene (LDPE), 
whereas in (b), it is a high-density polyethylene (HDPE).

 � In some cases, we observe smooth surfaces followed by so-called sharkskin 
zones. This is referred to as a bamboo effect (attributed to the stick-slip phe-
nomenon (c)).
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 � As the extrusion rate is increased, the sharkskin may disappear and the sur-
face of the extrudate may again become smooth, as shown in (d).

 � Helical or screw shapes are frequently encountered in the flow of polystyrene 
(e) or in the flow of polypropylene (f). The amplitude of the distortions in-
creases with increasing flow rate. As the flow rate is further increased, poly-
ethylene, polystyrene, and polypropylene exhibit chaotic distortions (g).

Other polymers may exhibit one or more of the distortions shown in Figure 1.4.

Figure 1.4  
Range of shapes of extru-
dates under melt fracture 
(From Agassant et al., 
1991)
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Distortions similar to melt fracture have been observed in polymer processing, 
such as the calendering of polyvinylchloride (PVC). The film of PVC, usually trans-
parent, becomes partly opaque, and the surface that is not in contact with the 
roller shows surface defects as the roller’s velocity increases, or if the nip between 
the rollers becomes too narrow.

As a final example in this extrusion section, we show in Figure 1.5 the behavior of 
a jet emerging from a nozzle subjected to a transverse vibration. The Newtonian 
fluid (a) breaks into droplets. A concentrated polymer solution (c) emerges as a 
structurally stable non-uniform wave. Dilute (and very dilute) polymer solutions 
(b) exhibit a behavior in between. that of (a) and (c); that is, drops are connected by 
a thread. Chan Man Fong et al. (1993) have presented an analysis of this problem, 
involving elongational as well as oscillatory flow.

Figure 1.5 Liquid emerging from a vibrating nozzle 
(a) Newtonian fluid 
(b) dilute polymer solution 
(c) concentrated polymer solution
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1.2.3 Recoil

One experiment that may easily be performed to show the elastic nature of poly-
meric fluids is the following. If an elastic fluid is forced down a tube by applying a 
pressure gradient, the fluid will deform continuously. At a given time, the pressure 
gradient is set to zero, and the fluid starts to flow in the opposite direction. Photos 
of such an experiment can be found in the textbook of Fredrickson (1964). Recoil 
can be quite spectacular, as shown by Professor Lodge’s experiment in Figure 1.6.

Figure 1.6 Recoil in an elastic fluid 
An aluminum soap solution (aluminum dilaurate in decalin and m-cresol), is being poured from 
a beaker (a) and suddenly cut in midstream (b). In photo (c), we note that the liquid above the 
cut snaps back into the upper beaker (From Lodge, 1964, with permission)

This phenomenon is closely related to the behavior of an elastic band when re-
leased of its tension. For viscoelastic fluids, recoil is only partial and takes a finite 
time. Viscoelastic fluids are said to have a “fading memory”, in the sense that they 
are more affected by a recent deformation as opposed to a deformation experienced 
in the more distant past. Moreover, the effect is strongly dependent on the rate of 
deformation.

1.2.4 Open Syphon

A related experiment with recoil is the open syphon illustrated in Figure 1.7. The 
full beaker containing an aqueous solution of 0.75 mass% polyethylene oxide (WSR 
301) is first tilted over to initiate the flow downward to the lower beaker, then it is 
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set back straight. The polymer solution will continue to flow against gravity (over a 
few cm) and downward until the upper beaker is almost empty. This open-syphon 
phenomenon is due to the highly elastic nature of this polymer solution, which 
 remembers its recent state (fading memory). This flow is mostly elongational, and 
as discussed in Chapter 2 (Section 2.1.4), the elongational viscosity of polymer 
solutions can be quite large compared to their shear viscosity. 

Figure 1.7  
Open syphon 
Open-syphon effect illustrated for an aqueous 
solution of 0.75 mass% polyethylene oxide, 
WSR 301 (From Barnes et al., 1989)

1.2.5 Antithixotropic Effect

The phenomenon of antithixotropy (sometime referred to as dilatancy) illustrated 
in Figure 1.8 is quite spectacular, although rarely observed compared to thixo-
tropic effects observed for foodstuffs such ketchup, paints and other concentrated 
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suspensions. In the case illustrated in the figure, under vigorous shaking of an 
 alkaline perbunan latex (which initially is very much a liquid), a structure is built 
up. This structure is responsible for a sudden, very large increase of its viscosity 
and solid-like behavior. Upon cessation of the shaking, the structure is destroyed 
and the latex regains after a few minutes its natural liquid-like behavior. The same 
phenomenon has been widely reported on youtube as the so-called “cornstarch 
walk on water” effect (https://www.youtube.com/watch?v=RUMX_b_m3Js). People 
are shown walking over a bathtub filled with concentrated solutions of cornstarch 
in water.

Figure 1.8 Antithixotropic effect 
Antithixotropic effect demonstrated for an alkaline perbunan liquid latex. (a) shows the liquid 
latex at its rest state and (b) after vigorous shaking the behavior is that of a solid. On cessation 
of shaking the latex will regain, after a few minutes, its original state (a). (From Cheng, 1973 
and Walters, 1980)

1.2.6 Drag Reduction

Most of the preceding effects are observed in the low Reynolds number regime, 
i. e., in the absence of inertial effects. One phenomenon that was of considerable 
interest in research in the 1970s is the drag reduction obtained by adding a small 
quantity of high molecular weight, linear, soluble polymers to a fluid in a turbulent 
flow regime in pipes. Figure 1.9 shows a conventional friction factor-Reynolds 
number plot obtained for two polymer solutions in turbulent tube flow. 

https://www.youtube.com/watch?v=RUMX_b_m3Js
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Figure 1.9 Typical drag reduction data for the turbulent flow of a 100 ppm PIB solution in 
cyclohexane (●) and a 100 ppm ODR solution in kerosene (○) (Adapted from Tiu et al., 1995)

The friction factor and the Reynolds number are defined by

 (1.3)

and

 (1.4)

where D and L are the tube diameter and length respectively, ΔP is the pressure 
drop, (V) is the average fluid velocity, and r and m are the fluid density and viscos-
ity respectively. One fluid was a solution containing 100 ppm (mass parts per mil-
lion) of polyisobutylene (PIB) of a very high molecular weight (~2 × 106 kg/kmol) 
in cyclohexane. The other fluid was a 100 ppm solution of a commercial organic 
drag reducer (ODR) in kerosene. The molecular weight of the polymer was about 
4 × 106 kg/kmol. The figure also shows the theoretical laminar result (f = 16/Re), 
the empirical Blasius equation for the turbulent flow in a smooth pipe 
(f = 0.0791/Re0.25) for Newtonian fluids, and the Virk (1975) asymptote (also known 
as the maximum drag reduction, MDR) for drag-reducing fluids. Both polymer 
solutions exhibit a substantial reduction of the friction in the turbulent flow re-
gime up to critical values of the Reynolds number. A reduction by a factor of about 
2 with respect to the Blasius result obtained for Newtonian solvents is observed. At 
a critical Reynolds number depending upon the polymer soultion, the data show 
an upward turn, suggesting polymer degradation.
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Figure 1.10 compares the drag reduction with the corresponding heat transfer 
 reduction in turbulent flow in a tube, obtained for a 100 ppm polyacrylamide solu-
tion in water. The shear viscosity of this solution was found to be constant and 
slightly larger than that of water (m = 1.2 mPa·s). 

Figure 1.10 Heat transfer (—) and pressure drop data (- - -) for water in a circular pipe 
Friction factor (●) and heat transfer data (♦) for a 100 ppm aqueous polyacrylamide solution 
(From Del Villar et al., 1984)

The pressure drop and heat transfer are reported in terms of the friction factor f 
and the heat transfer factor jH defined by

 (1.5)

The Nusselt number, Nu, and the Prandtl number, Pr, are defined by 

 (1.6)

and

 (1.7)

where h is the heat transfer coefficient, and k and Ĉp are the fluid thermal conduc-
tivity and the heat capacity per unit mass respectively.

Although the viscosity of the polyacrylamide solution used in experiments is 
slightly larger than that of water, the friction factor for the polymer solution is 
 considerably lower than the expected value for water. The heat transfer reduction 
when using the polymer solution is possibly more important at higher values of 
the Reynolds number. For highly turbulent flow conditions, we expect the Chilton–
Colbum (1934) analogy to be valid, that is
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 (1.8)

This is observed here for water only.

This unusual drag reduction phenomenon has initiated a series of industrial and 
military investigations. For example, some fire departments also attempted to 
make practical use of this drag reduction phenomenon, as illustrated in Fig-
ure 1.11. The “rapid” water, containing a small amount of polyethylene oxide, turns 
out to be slippery, and thus leads to safety problems. Well-known drag reducing 
polymers include polyethylene oxide and polyacrylamide with molecular weight 
above 106 kg/kmol. Reductions in friction by a factor of 2 to 5 are possible, but ap-
plications of drag reduction to pipeline transportation and marine applications are 
severely jeopardized by the mechanical degradation of the polymer solutions over 
prolonged use.

Figure 1.11 Effect of drag reduction on fire hose range (Taken from Schowalter, 1978, 
with permission)

There is no clear understanding of the mechanism of drag reduction. Some re-
searchers have associated this effect with the elastic properties of the polymeric 
fluids. However, at low concentrations (in the range of 10 to 100 ppm), the fluids 
hardly exhibit any measurable elastic properties. A more acceptable explanation is 
that those supermacromolecules have a large hydrodynamic volume in the fluid, 
suppressing a considerable number of sites for the formation of eddies, thereby 
reducing the turbulence intensity. Also, such large molecules may get trapped at 
the wall, as a result of the wall roughness conditions. The resulting new surface 
(wall plus polymer) may be smoother than the pipe wall, reducing the pumping 
energy requirements.
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1.2.7 Hole Pressure Error

This experiment illustrates non-Newtonian and viscoelastic effects associated with 
pressure measurements using pressure transducers. Typically, a wall pressure 
measurement, PM, is made by taking a reading at the bottom of a well. As shown in 
Figure 1.12, the measured pressure gives the correct result for a Newtonian fluid 
(N) but is too low for the polymer solution (P). As discussed in Chapter 3, the pres-
sure measured at the wall surface for the flow of a viscoelastic fluid is the sum of 
the thermodynamic pressure, P, and a normal stress component, σyy. The pressure 
measured at the bottom of the well, as shown in Figure 1.12, will thus be lower 
than that measured by a transducer, flush-mounted at the wall of the flow section.

Figure 1.12 Hole pressure error 
The arrows in the polymer solution indicate how an extra tension along a streamline tends to lift 
the fluid out of the cavity resulting in a low pressure reading (Adapted from Bird, Armstrong, 
and Hassager, 1987)

The hole pressure error for different geometries is related to shear and normal 
stresses developed in the fluid. For example, for a circular hole, the hole pressure 
error is associated with the shear stress, the primary normal stress difference, and 
the secondary normal stress difference.

While the current consensus on the secondary normal stress difference seems to 
be that this quantity is about ten times smaller in magnitude than the primary 
normal stress difference, as well as being opposite in sign, its history has been 
quite turbulent. In 1950, Weissenberg postulated the secondary normal stress 
 difference to be zero. Since then, experimenters have found the secondary normal 
stress difference to be positive, again zero, and now negative. The fact that the 
magnitude of this quantity is rather small is probably a major cause of the difficul-
ties associated with its measurement. In addition, the secondary normal stress 
difference is believed to have little bearing on most viscoelastic phenomena.
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However, one notable exception where the secondary normal stress difference 
plays an important role is in the wire coating process. If, because of a disturbance, 
the wire finds itself off center, a force will act to bring the wire back into a central 
position, provided the secondary normal stress difference is negative.

1.2.8 Mixing

Non-Newtonian and elastic effects are also responsible for rather striking flow pat-
terns associated with mixing operations. Figure 1.13 illustrates the difference in 
flow patterns in the vicinity of a sphere rotating in a viscoelastic solution.

Figure 1.13  
Flow patterns near a sphere rotating in a viscoelastic fluid 
(a) inertial forces dominate 
(b) elastic forces dominate  
(From Ulbrecht and Carreau, 1985)

Another striking as well as detrimental phenomenon is the one shown in Fig-
ure 1.14. This figure illustrates the existence of stagnant zones when a polymer 
solution is mixed by a helical ribbon agitator. Because there is no macroscale mix-
ing going on in a stagnant zone, a situation such as the one depicted in Figure 1.14 
could be associated with extremely long mixing times, before a homogeneous prod-
uct results.

Figure 1.14 Conical stagnant zone observed in a 2 mass% aqueous solution of sodium 
 carboxy methyl cellulose. A decoloration process is used to determine the mixing time
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Keirstead et al. (1980) reported large differences in mixing effectiveness depend-
ing on the direction of rotation. They reported a difference in mixing time of one 
order of magnitude between rotations in the helix and counterhelix directions, 
when mixing ammonium nitrate gels at 200 rpm.

1.2.9 Bubbles, Spheres, and Coalescence

A variety of industrial phenomena rely on mass transfer resulting from liquid–gas 
contact. The shape of the bubbles is very much affected by the type of fluid. Fig-
ure 1.15 illustrates the shapes of bubbles of different volume in a viscoelastic poly-
acrylamide (PAA) solution and in a Newtonian glycerine solution. Different degrees 
of magnification were used in order to better portray the shapes, especially for the 
small volume bubbles. Note the striking difference in bubble shape between (c) 
and (d). They both portray a 1.0 mL air bubble, rising in a viscoelastic solution in 
(c), and in a Newtonian fluid in (d). Bubble shapes, except for very small volume 
bubbles, are not stable in Newtonian fluids. Several snapshots of bubbles of the 
same volume would result in very different pictures (De Kee and Chhabra, 1988; 
Chhabra, 2006). In viscoelastic fluids, the shapes are stable and vary with increas-
ing volumes, from spherical, to a prolate teardrop, to an oblate cusped teardrop, 
and finally to a spherical cap shape (Chhabra and De Kee, 1992).

Figure 1.15 Shapes of bubbles in a polyacrylamide solution (1 mass% in a 50 mass% mixture 
of glycerine and water): (a) 0.01 mL; (b) 0.1 mL; (c) 1.0 mL; (e) 2.0 mL; (f) 10 mL; and  
(d) a 1 mL bubble in a Newtonian 40 mass% aqueous glycerine solution (From Dajan, 1985 and 
D. De Kee et al., 1990)
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Figure 1.16 illustrates the coalescence phenomena of bubbles in a viscoelastic 
fluid. Photo (a) shows the simultaneous injection of two bubbles. Photos (b) and (c) 
illustrate the capture of the trailing bubble in the wake of the leading bubble, and 
then the film drainage after the bubbles make contact. Photo (d) illustrates the 
tremendous deformations associated with bubble capture, shown here for the 
 simultaneous injection of three bubbles. If the time required for the film to drain 
and thin after bubble contact is made exceeds the period of contact, coalescence 
will not occur. This is usually the case for equal-volume bubbles.

Figure 1.16 Bubble coalescence (From Dajan, 1985 and De Kee et al., 1990) 
(a) Simultaneous injection of two air bubbles V1 = 3.5 mL and V2 = 9.3 mL in the 1.0 mass% 
PAA fluid of Figure 1.14. The initial separation between the bubbles is 24 mm 
(b) A 1.0 mL bubble moves into the wake of a 4.7 mL bubble. The initial separation between the 
bubbles was 9 mm. The fluid is again the 1.0 mass% PAA fluid 
(c) Bubble contact for the system in frame (b) 
(d) Bubble deformation and capture following a three-bubble injection in a 1 mass% aqueous 
carboxy methyl cellulose solution. Each bubble had a volume of 7.5 mL and their initial 
 separation was 30 mm

Figure 1.17 illustrates the motion of a sphere falling in a Newtonian (a) and in an 
elastic (b) fluid. We can observe the successive positions of the spheres. In the case 
of the Newtonian fluid, a constant velocity is obtained, whereas in the elastic fluid 
we observe a deceleration over the distance of the tube.
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Figure 1.17  
Motion of a sphere of radius 11.3 mm and density 
8 × 103 kg/m3 in a Newtonian fluid 
(a) of viscosity 3 Pa·s and in an elastic Boger fluid  
(b) of viscosity 3 Pa·s and relaxation time of 0.05 s 
(From Jones et al., 1994, with permission)

The above are only a few examples of the different behavior exhibited by polymeric 
materials as compared to Newtonian fluids. We could easily discuss several more 
of these effects. However, the idea is on the one hand to draw attention to the strik-
ing differences between the behaviors of Newtonian and non-Newtonian materials, 
and on the other hand to suggest that there is probably a variety of flow phenom-
ena involving viscoelastic liquids that is still to be discovered and explained.
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It has been shown that even for the most complicated constitutive equations for 
fluids, there are special flows for which the response functional manifests itself 
through three viscometric functions only (Coleman, Markovitz, and Noll, 1966). A 
constitutive equation relates the stress to the deformation or to the rate of deforma-
tion. One of these viscometric functions is a non-linear (non-Newtonian) shear vis-
cosity, the other two are differences of normal stresses. The answer to the question 
whether these viscometric functions are independent of each other is of theoretical 
as well as practical value. In this chapter, we define a variety of important material 
functions which we will encounter throughout the book. Frequently used viscosity 
models are presented, and some useful relations between material functions are 
given.

 � 2.1 Material Functions

2.1.1 Simple Shear Flow

Simple shear (viscometric) flow is defined as follows: a fluid is contained between 
two flat parallel plates (infinite in the x- and z-directions), as illustrated in Fig-
ure 2.1.

Material Functions 
and Generalized 
Newtonian Fluids
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Figure 2.1 Sketch defining unidirectional shear flow

We can imagine the liquid to be composed of several thin sheets of fluid, arranged 
parallel to the plates. Under static conditions (both plates are stationary), the ve-
locity profile (assuming we can talk about a velocity profile under static condi-
tions) is represented by a vertical line. If suddenly we decide to set the lower plate 
in motion in the positive x-direction, the velocity profile may be given by the same 
vertical line except for a thin layer in contact with the moving plate. Fluid mole-
cules (or particles) in this layer now will have the plate velocity, V, associated with 
their masses, and as such a different momentum.

It is now feasible for molecules to jump from layer one into the next layer and vice 
versa. Those molecules arriving in layer 1 will, because of the moving plate, in-
stantly adopt the plate velocity. The molecules arriving in layer 2 (from layer 1) 
will increase the momentum of layer 2. Jumps occurring simultaneously in layers 
farther away from the moving plate do not yet affect the net change in velocity pro-
file at this stage. The jumping process from layer to layer will result in momentum 
being transported in the positive y-direction.

Eventually, provided the gap between the plates is small enough and the flow is 
laminar, a linear velocity profile will be established for which we can write

  (2.1)

where the shear rate is

 (2.2)

The force per unit area required to keep the lower plate moving at a constant veloc-
ity V defines the corresponding shear stress σyx, which is directly proportional to 
the plate velocity and inversely proportional to the distance between the plates. 
That is,
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 (2.3)

The interpretation of the subscripts yx has been given by Bird, Stewart, and Light-
foot (2006) as follows: σyx represents a shear stress exerted in the x-direction on a 
fluid surface of constant y by the fluid in the region of lower y. It can also be inter-
preted as a flux of x-momentum transferred in the y-direction. The quantity on the 
right-hand side of Equation 2.3, , is a shear component of the rate-of-deforma-
tion tensor, , defined as

 (2.4)

where  and  are the velocity gradient tensor and its transpose, respec-
tively;  thus represents nine components.

Labeling the axes x and y is of course arbitrary. In a more general way, we can refer 
to the quantity on the left-hand side of Equation 2.3 as σij, where both i and j can 
take on the values 1, 2, or 3. In the particular case of Cartesian coordinates, 1 re-
fers to the x-direction, 2 to the y-direction, and 3 to the z-direction. σij thus rep-
resents a quantity characterized by nine components. This quantity is a second- 
order tensor. We recall that a first-order tensor (or a vector) such as, for example, 
the velocity, requires three components to be defined (Vx, Vy, and Vz in Cartesian 
coordinates), and that a zero-order tensor (a scalar), such as temperature, requires 
only one numerical value to be completely defined.

The nine components of the stress tensor can be represented by a 3 × 3 matrix as 
follows:

 (2.5)

Any component of the stress tensor can be interpreted as the component of a force 
per unit area acting on a specific surface of a material elementary volume as de-
picted in Figure 2.2 for Cartesian coordinates. Let us consider surface (2), which is 
normal to the x2-axis:  represents the net force acting on the surface per unit 
area; its magnitude and orientation depend on the flow field. This force per unit 
area is a vector that can be decomposed into three components, σ21, σ22, and σ23.
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Figure 2.2  
Decomposition of the force acting on 
a surface of a cubic element

The same procedure can be followed for the other surfaces. Since this material 
 element is in equilibrium with its surroundings, only three resulting forces are 
independent, that is , , and  (Lodge, 1964). Nine independent components 
are thus generated: the first index in σij refers to the surface considered and the 
second gives the direction of the force. Finally, in equilibrium, no resultant torque 
can be acting on the material element: hence, σ12 = σ21, σ13 = σ31, and σ23 = σ32 
(Lodge, 1964). The stress tensor is symmetric, and this reduces the number of in-
dependent stress components from nine to six.

Of particular interest in our context (shear flow) is the component σ21 (the shear 
stress), which by symmetry equals σ12, and the components σii on the diagonal. We 
will be mainly interested in differences among those normal stresses, as they 
 explain a variety of rheological phenomena. As outlined next, the shear stress σ21 
is related to the shear rate . In this context, the second subscript (1) indicates 
the direction of flow, and the first subscript (2) indicates the direction in which the 
velocity changes.

2.1.1.1 Steady-State Simple Shear Flow
For steady-shear flow, where the shear rate  is constant, we define the following 
material functions (using  for the shear rate and subscripts y and x instead of 
2 and 1).

 � Non-Newtonian viscosity:

 (2.6)
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 � Primary (or first) normal stress coefficient:

 (2.7)

 � Secondary normal stress coefficient:

 (2.8)

The quantities (σxx – σyy) and (σyy – σzz) represent the primary normal stress differ-
ence N1 and the secondary normal stress difference N2 respectively. The relation 
between ψ1 and ψ2 is normally taken as ψ2 ≈ –0.1 ψ1. In the majority of flow situa-
tions, the secondary normal stress coefficient ψ2 is not all that important. Fig-
ure 2.3 to Figure 2.5 show typical viscosity–shear rate and primary normal stress 
difference–shear rate behavior for a variety of viscoelastic solutions, such as a 
2.0 mass% solution of polyacrylamide (Separan AP 30) in a 50 mass% mixture of 
water and glycerine, and a 6.0 mass% solution of polyisobutylene (PIB) in Primol 
355. Primol 355 is a pharmaceutical-grade white oil with a viscosity of 0.15 Pa·s at 
298 K. Note the tremendous drop in viscosity over the shear rate range shown 
here. This behavior is typical for viscoelastic solutions. The primary normal stress 
coefficient data show a similar trend. However, note that the limiting behavior at 
low shear rates is not accessible, and that the drop with increasing shear rate is 
more severe in the primary normal stress difference.

Figure 2.3 (a) Viscosity–shear rate plots and (b) primary normal stress coefficient–shear rate 
plots for typical viscoelastic solutions 
The 1.0 and 7.5 PS are respectively 1.0 and 7.5 mass% solutions of narrow molecular weight 
polystyrene (Mw = 860,000 kg/kmol) in Aroclor 1248 (Data from Ashare, 1968). Aroclor 1248 
is a chlorinated diphenyl with a viscosity of 0.3 Pa·s at 298 K. The 7.0% AL is a 7.0 mass% 
 solution of aluminum laurate in decalin and m-cresol (Data from Huppler, 1965). The 2.0% PAM 
is a 2.0 mass% solution of polyacrylamide (AP30 of Dow Chemical) in a 50 mass% mixture 
of water and glycerine. The 6% PIB is a 6.0 mass% solution of polyisobutylene 
(Mw ~1.5 × 107 kg/kmol) in Primol 355 (Data from De Kee, 1977)
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Figure 2.4 Viscosity η and primary normal stress difference N1 versus shear rate  for PEO 
(Mv = 1.8 × 106 kg/kmol) solutions of different concentration: (a) in water (b) in a 50 mass% 
mixture of water and glycerine (Data from Ortiz, 1992; see Ortiz et al., 1994)

In Figure 2.4 we show typical data obtained using a Union Carbide (N-60 K) poly-
ethylene oxide (PEO) with a molecular weight of 1.8 × 106 kg/kmol for solutions of 
1 to 3 mass% in water (a) and in water and glycerine (b). Shear thinning becomes 
more important with increasing polymer concentration. At low shear rate we can 
observe a zero shear rate viscosity plateau, which is more pronounced at higher 
concentrations. The water–glycerine solvent produces viscosities and normal 
stresses of a higher magnitude than the aqueous solutions. The data obtained with 
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different rheometers were within 15% (in the worst case) and superposed well. The 
three instruments used were a Weissenberg rheogoniometer, a Rheometrics (now 
TA Instruments) controlled stress rheometer (RSR), and a Bohlin (now Malvern) 
VOR rheometer.

Figure 2.5 Steady-shear viscosity and primary normal stress difference of the M1 fluid at 
25 °C. Data obtained on a Weissenberg rheogoniometer, model R-18

Figure 2.5 reports the steady-shear viscosity and primary normal stress difference 
for a so-called Boger fluid (Boger, 1977), which is a very dilute solution of a high 
molecular weight polymer in a very viscous solvent. The Boger fluid here is 
0.244  mass% of a polyisobutylene in a mixed solvent consisting of 7  mass% of 
 kerosene in polybutene, known as M1 (Sridhar, 1990). As shown in the figure, the 
viscosity is almost constant (very little shear thinning) and the primary normal 
stress difference is quadratic with respect to the shear rate (ψ1 = constant) for the 
lower values of the shear rate. Boger fluids that are non-shear-thinning but elastic 
are useful model fluids for investigating rheological effects in various flow situa-
tions (Boger and Walters, 1993).
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2.1.2 Sinusoidal Shear Flow

For small-amplitude oscillatory shear flow, the lower plate in Figure 2.1 would be 
required to oscillate sinusoidally in the x-direction, with small amplitude, with a 
range of frequencies ω. This situation is illustrated in Figure 2.6. In this case, we 
define a complex viscosity as follows:

 (2.9)

with

 (2.10)

and

 (2.11)

For small deformation (in the linear viscoelastic domain as discussed in Chapter 
5), inertial effects can be ignored, and the stress response is a sine wave of the 
same frequency as the input function, but out of phase. Here Re[—] stands for the 
real part of [—];  and  represent the complex amplitudes of  and σ21 respec-
tively; η' is referred to as the dynamic viscosity and is associated with energy dis-
sipation (due to viscous effects); while the coefficient of i, η", represents an elastic 
contribution associated with energy storage, and which could be labeled dynamic 
rigidity.

Figure 2.6 Sketch defining sinusoidal shear flow
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It is also possible to work in terms of a quantity G*, defined as

 (2.12)

where the storage modulus G' = ωη" and the loss modulus G" = ωη'. These material 
functions are used for material characterization, and they relate to molecular struc-
ture (Ferry, 1980).

Figure 2.7 illustrates the dependence of the dynamic viscosity η' and the storage 
modulus G' on the frequency ω, for 3.0 mass% PEO solutions of different molecular 
weights. We observe that at a given frequency, ω, both η' and G' increase with 
 molecular weight, and at high frequency they both approach a simple power-law 
behavior, almost independent of the molecular weight of the polymer.

From another vantage point, small-amplitude oscillatory (SAOS) data are usually 
reported in terms of the norm of the complex viscosity , storage modulus (G'), 
or loss modulus (G"), in each case as a function of the radial frequency. For simplic-
ity, the bars in the norm of the complex viscosity are frequently omitted, to write 
simply .

Figure 2.8 reports the complex viscosity and the storage modulus as functions of 
the angular frequency of three polymer melts, namely, a high molecular weight 
polylactide (HPLA), a low molecular weight polylactide (LPLA) and a poly[(buty-
lene adipate)-co-terephthalate] (PBAT) at 160 °C. The behavior is typical of homo-
geneous polymer melts with the complex viscosity, exhibiting a plateau at low fre-
quencies and a rapidly decreasing value at high frequencies (shear thinning). The 
storage modulus (Figure 2.8b) is seen to increase with frequency, with an initial 
slope of 2 (log–log scales), corresponding to a so-called terminal zone.
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Figure 2.7 Effect of the viscosity-average molecular weight (Mv) on the dynamic data for 
3 mass% PEO solutions in water and glycerine: 
(a) η' data 
(b) G' data 
(Data from Ortiz, 1992 (see Ortiz et al., 1994))
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Figure 2.8 (a) Complex viscosity,  and (b) storage modulus, G', as functions of angular 
 frequency, ω, for three molten commercial polymers: a high molecular weight polylactide 
(HPLA), a low molecular weight polylactide (LPLA) and a poly[(butylene adipate)-co-terephthal-
ate] (PBAT) at 160 °C (from Nofar et al., 2016)
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2.1.3 Transient Shear Flows

Transient or time-dependent shear flows are associated, for example, with the 
start-up of processes involving the displacement of viscoelastic materials. Under 
such initial flow conditions, stresses can reach magnitudes which are substantially 
larger than their steady-state values achieved for the applied shear rate.

2.1.3.1 Stress Growth Experiment
For stress growth, after onset of steady simple shear (the lower plate in Figure 2.1 
starts moving in the positive x-direction), we have

 (2.13)

where  is the constant velocity gradient for t > 0, and h(t) is the unit step func-
tion 

 (2.14)

and

 (2.15)

We define the time-dependent shear stress and normal stress coefficients as fol-
lows:

 (2.16)

 (2.17)

and

 (2.18)

Figure 2.9 illustrates this experiment schematically. The lower part of the figure 
shows the effect of the imposed shear rate  on the reduced shear stress growth 
function. η( ) is the steady-shear viscosity value. At low , the function in-
creases monotonically. At higher values of , stress overshoot occurs. The time 
at which the maximum overshoot occurs decreases with increasing shear rate, and 
the magnitude of the overshoot increases with increasing shear rate. The higher 
the shear rate, the sooner steady state is attained. The response of a Newtonian 
fluid (η+/η), in the absence of inertial effects, is given by the unit step function.
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Figure 2.9  
Stress growth experiment

Similar behavior would be observed for the reduced normal stress growth function. 
The normal stress growth process evolves over a longer time period than the shear 
stress growth process. This behavior is typical for viscoelastic solutions. Fig-
ure 2.10 illustrates the stress growth function η+( , t) for a 20 mass% polysty-
rene (PS) of molecular weight 1.3 × 106 kg/kmol in dibutyl phthalate. For imposed 
shear rates exceeding 1 s–1, overshoots are observed. A single monotonically in-
creasing function of time is obtained for small values of time and/or small values 
of shear rate, as predicted by linear viscoelastic behavior (see Chapter 5).

Figure 2.10 Shear stress growth function for a 20 mass% PS solution  
(Data from Attané, 1984, with permission)
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Figure 2.11 shows the normal stress growth function  (t, ) for a 25 mass% PS 
of molecular weight 1.3 × 106 kg/kmol in dibutyl phthalate. Here too, we observe 
an overshoot for  exceeding the value of 1 s–1. As in the case of stress growth, 
linear viscoelastic behavior is evident for short times even at higher shear rates.

Figure 2.11 Normal stress growth function for a 25 mass% PS solution  
(Data from Attané, 1984, with permission)

Reduced normal stress growth functions for the 6.0 mass% PIB solution referred to 
earlier (see Figure 2.3) are shown in Figure 2.12. The observed undershoot at large 
time for  = 4.34 s–1 is probably due to the interaction of the sample with the 
measuring instrument. This type of coupling effect is discussed in Section 3.3.4.
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Figure 2.12 Normal stress growth function for a 6.0 mass% PIB solution in Primol  
(Data from De Kee, 1977)

2.1.3.2 Stress Relaxation Following Steady-Shear Flow
Similarly, for stress relaxation after cessation of steady simple shear (the lower 
plate in Figure 2.1 is suddenly stopped), the shear rate is given by

 (2.19)

Here  is the initial constant shear rate, and the transient shear stress and nor-
mal stress coefficients are defined as

 (2.20)

 (2.21)

and

 (2.22)

Figure 2.13 illustrates this experiment schematically. The lower part of the figure 
shows the effect of the imposed shear rate on the reduced shear stress relaxation 
function. η( ) is the steady-shear viscosity value.
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Figure 2.13  
Stress relaxation following steady-shear 
flow

A more rapid decrease in shear stress is observed with increasing initial shear rate 
. For a Newtonian fluid, the stress relaxes instantaneously to zero. The normal 

stress relaxation function  (t, ) follows a similar pattern but evolves over a 
longer time period.

Figure 2.14 shows the stress relaxation of the 20 mass% PS solution of Figure 2.10. 
For very small values of shear rate (  ≤ 0.015 s–1), the function is independent of 
shear rate, as predicted by linear viscoelasticity (see Chapter 5).

Figure 2.14 Shear stress relaxation for the 20 mass% PS solution of Figure 2.10  
(Data from Attané, 1984, with permission)

Figure 2.15 illustrates the normal stress relaxation for the 25 mass% PS solution of 
Figure 2.11.
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No experiment at low enough values of initial shear rate  could be performed to 
verify the linear viscoelastic behavior. Linear viscoelastic behavior would be char-
acterized by a single response curve, independent of the value of . Reduced nor-
mal stress relaxation for the 2.0 mass% PAM solution referred to earlier (see Fig-
ure 2.3) is shown in Figure 2.16.

Figure 2.15 Normal stress relaxation for the 25 mass% PS solution of Figure 2.11  
(Data from Attané, 1984, with permission)

Figure 2.16 Normal stress relaxation for a 2.0 mass% solution of polyacrylamide (PAM) in a 
50 mass% mixture of water and glycerine (Data from De Kee, 1977)
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2.1.3.3 Stress Relaxation Following a Sudden Deformation
The stress relaxation after a sudden deformation is defined as

 (2.23)

where G(t, ) is the relaxation modulus and  is the magnitude of the applied 
shear strain. The experiment and typical qualitative results are illustrated in Fig-
ure 2.17. For small values of the applied deformation ( ), the relaxation 
 modulus is a unique monotonically decreasing function of time. For large values of 
deformation ( ), the modulus is also a decreasing function of the applied 
 deformation, and the data frequently result in parallel curves on log–log plots, as 
shown in Figure 2.17.

Figure 2.17  
Shear stress relaxation following a sudden 
deformation

2.1.4 Elongational Flow

2.1.4.1 Uniaxial Elongation
In the case of simple (uniaxial) elongation at constant volume, the flow is non-vis-
cometric, and the velocity profile is given by

 (2.24)

 (2.25)

and

 (2.26)

where  is the elongational rate, which is constant at steady state. The elonga-
tional viscosity is defined as
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 (2.27)

Note that σzz + P = πzz, the total normal stress component in the flow direction. The 
isotropic term P is equal to −σxx or −σyy for uniaxial elongational flow.

Furthermore, we can also define an elongational stress growth function as

 (2.28)

by analogy to the definition in Equation 2.16. It is experimentally extremely diffi-
cult to generate steady elongational viscosity at high elongational rates. Most au-
thors report elongational growth functions as illustrated in Figure 2.18 for molten 
polymethyl methacrylate (PMMA) using an extensiometer in which the sample is 
clamped at both ends, with controlled elongational velocity (Froelich et al., 1986). 
For short times, the data describe a unique and monotonically increasing function 
of time. A plateau indicative of steady state is attained for the smallest value of the 
elongational rate,  = 0.002  s–1. For higher elongational rates, the elongational 
growth function increases with the rate at large times, and no steady values are 
attained, mostly because of instrument limitations. The figure also shows that the 
classical Trouton relation, valid for Newtonian fluids, is verified here at low elonga-
tional rates under steady-state conditions:

 (2.29)

Figure 2.18 Uniaxial elongational properties of PMMA at 170 °C 
The polymer is a commercial sample supplied by Norsolor, France, under the trade name of 
Altulite 2773. The average molecular weight is Mw ≈ 130,000 kg/kmol with a polydispersity, 
Mw/Mn, of 1.9 (Data from Bousmina, 1992, with permission)
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For measuring the elongational properties of low-viscosity fluids, many techniques 
have been developed. So far, these techniques generate results which can differ by 
several orders of magnitude (Hudson and Jones, 1993). One of the more promising 
techniques has been developed by Tirtaatmadja and Sridhar (1993). Their tech-
nique involves a controlled exponential separation of two disks, which hold the 
fluid sample to be tested. Figure 2.19 illustrates the extensional viscosity growth 
function of a polyisobutylene (PIB) solution for different elongational rates. Note 
that steady-state conditions are seen to be reached for only a few values of the elon-
gational rate (  = 2.0 and 2.7 s–1).

Figure 2.19 Elongational properties of 0.31% PIB in a mixture of polybutene and tetradecane 
at 19.5 °C. The zero-shear viscosity at 20 °C is 21.63 Pa·s (Data from Tirtaatmadja, 1993, 
with permission)

At very short times, the Trouton ratio is less than 3, increasing exponentially with 
time as predicted by linear viscoelasticity. Then, for times up to 2 s, a value of 3 is 
observed for the data at low . The increase of  with time becomes more pro-
nounced as a larger value of the elongational rate is imposed. This behavior is re-
ferred to as strain hardening in extensional flow, in contrast to the shear-thinning 
behavior usually observed in simple shear flow. For flexible high molecular weight 
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polymers in solution, the magnitude of the elongational viscosity, as shown in Fig-
ure 2.19, can be two to four decades higher than the shear viscosity. This PIB solu-
tion is a so-called Boger fluid, and its recipe is very similar to that of the M1 fluid 
discussed in Section 2.1.1 (see Figure 2.5).

2.1.4.2 Biaxial Elongation
Biaxial extension or elongation is defined by the following velocity components:

 (2.30)

 (2.31)

and

 (2.32)

where  is a positive extension rate. The biaxial extensional viscosity is defined 
as

 (2.33)

Biaxial extensional properties play an essential role in many polymer processing 
situations, such as film blowing. More general definitions for extensional flow can 
be found in Dealy and Wissbrun (1990).

These relations define only a fraction of the material functions that are currently in 
use. Several other tests have been developed that give rise to material response 
functions that we have not mentioned. Nevertheless, the definitions presented 
here will suffice for our purposes.

 � 2.2 Generalized Newtonian Models

Fluids such as gases, water, organic solvents, molten metals, and electrolytes are 
made up of relatively small molecules, and their viscosity (m or h0) at a given pres-
sure and temperature is constant. Such fluids are known as Newtonian. That is, m 
is not a function of shear rate  or of shear stress σ21. When larger molecules or 
weak structures are involved, such as polymer molecules or flocs, bubbles in foams 
and droplets in emulsions, the viscosity is no longer constant under flow.


