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PREFACE

This book is intended for graduate students as well as for more seasoned faculty and researchers 
alike in the behavioural and social sciences; the statistical methods and concepts covered 
herein are also widely used in education, the health sciences and business and organizational 
research. As an advanced text, this book was written for PhD-level students and researchers 
who are already comfortable with the topics typically covered in a first-year sequence of 
graduate-level applied statistics (see subsequent discussion) who wish to learn about more 
advanced procedures that are commonly used. As such, this text is suitable for a general 
second (or advanced) course in statistical methods for the behavioural and social sciences.

The book might be best understood as a survey of the advanced statistical methods most 
commonly used in modern research in psychology and related fields in the behavioural and social 
sciences. That is, each chapter gives an overview of a major topic which could be expanded into a 
full book on its own, and indeed, good book-length treatments are available for each topic (many 
of these resources are cited in the current text). I hope that the chapters in this text can provide a 
sufficient foundation for readers to begin using a given statistical modeling method for their data. 
But I also strongly encourage readers to delve deeper into any statistical topic that is especially 
pertinent for their research interests; the books and articles cited in the current text (particularly 
the Recommended Reading section concluding each chapter) should provide direction.

Because this text covers advanced statistical methods and is aimed at readers who have 
completed coursework in basic statistics and data analysis, it is necessary to assume comfort 
(more than just familiarity) with a wide range of fundamental topics and principles. If 
necessary, readers should review basic statistics before tackling this book. The following are 
the most critical topics readers are assumed to understand:

•• Basic high school-level algebra; no experience with calculus is assumed (although concepts 
from calculus are mentioned in a few places, familiarity with them is not necessary for 
more general comprehension of the relevant material)

•• Major concepts in research methods and design, including principles of sampling
•• Describing and representing univariate distributions using frequency tables, descriptive 

statistics, and graphs
•• Basic definitions and rules of probability (this text adheres to the frequentist conception 

of probability)
•• Concepts of sampling distributions and standard error; the central limit theorem
•• Logic of null hypothesis significance testing (and limitations of null hypothesis 

testing), including Z and t tests, c2 tests, and definitions of Type I and Type II errors and 
statistical power
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•• Basic one-way analysis of variance (ANOVA)
•• Definition and interpretation of confidence intervals (CIs); correspondence between 

confidence intervals and hypothesis tests
•• Simple correlation and regression (although these topics are also detailed in Chapter 1)

Readers should also be familiar with American Psychological Association (APA) style (APA, 
2010) for presenting statistical results (e.g., t(272) = 2.91, p = .003); this style guide is used 
widely in fields other than psychology.

The following topics are extremely important, and they are touched on in this text but not 
comprehensively detailed:

•• The importance of quality measurement, collecting reliable and valid scores for variables 
of interest

•• Multiple comparison control (i.e., accumulation of Type I error probability across a family 
of null hypothesis tests)

•• Concerns regarding ‘data dredging’ or ‘p hacking’: These problems may be less severe 
when researchers (1) adhere to rigorous research design principles, (2) take reliable 
and valid measurements, and (3) choose statistical models that match theories as 
closely as possible and evaluate models with a wide lens, not abusing null hypothesis 
significance testing

•• Principles for drawing causal inferences from statistical results

PURPOSES AND PERSPECTIVE OF THIS BOOK

Probably the most common reason for setting out to write a textbook is that an instruc-
tor of a given course finds all currently available books unsatisfactory. That was my feeling 
as I planned and taught a course titled ‘Multivariate Analysis’, which is aimed at PhD-level 
graduate students in psychology. Although there is a wide range of textbooks already available 
on the general topic of multivariate data analysis, each one of them has certain limitations. 
Indeed, I have noticed that syllabi for similar courses taught at other universities often list 
several potential textbooks, implying that no one of them is entirely suitable.

The primary reason that I struggled to find an appropriate textbook for my course was 
that the particular topics typically emphasized in so-called ‘multivariate’ texts usually did 
not overlap well with the topics I felt should be emphasized to prepare graduate students for 
careers in which they are likely to need to understand the data analytic techniques that are 
most common in modern research in psychology and the social sciences. In particular, even 
recently published multivariate texts devote entire chapters to traditional multivariate sta-
tistical methods such as multivariate analysis of variance (MANOVA), discriminant function 
analysis, and canonical correlation analysis. Yet, these methods are hardly used in psychologi-
cal research anymore, and in my roles as a research collaborator and statistical consultant, I 
almost never encounter studies for which these methods seem ideally suited. Even during my 
own graduate training in quantitative psychology, we were told that ‘although we are learning 
about these methods, you will probably never use them!’

Instead, the statistical methods most commonly used in modern research in psychology 
and the social sciences generally entail developing, estimating, and testing models for data. 
In his landmark paper, Rodgers (2010) explained that a ‘quiet methodological revolution’ has 
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occurred in which psychology has moved beyond rigid data analytic methods which empha-
size statistical tests above all else in favour of more flexible methods for modeling data based on 
substantive theories and expertise regarding the underlying processes which give rise to empir-
ical data. Perhaps most prominent among these modeling procedures is multiple regression, 
which of course is addressed in most, if not all, multivariate texts. But popular modern appli-
cations of multiple regression for modeling hypotheses regarding moderation and mediation 
seem to receive little, if any, attention. Another important modeling method also commonly 
covered in most traditional multivariate texts is exploratory factor analysis, but it is usually 
preceded by a distracting treatment of principal components analysis, or even worse, princi-
pal components analysis is falsely presented as if it is a type of factor analysis (see Chapter 8).  
Finally, few multivariate textbooks include chapters on both multilevel modeling (also known 
as hierarchical linear modeling) and structural equation modeling, although both have become 
extremely common in modern research.

Finally, a handful of texts present statistical methods in concert with their implementa-
tion using a single particular software package (most commonly SPSS). In my experience, 
researchers (in graduate school and beyond) often become so wedded to one specific statisti-
cal software package that they are later handcuffed by the limitations of that software when 
they encounter problems. For example, many newly developed statistical techniques become 
widely available before they are added to SPSS or SAS.

My hope is that if students have a solid understanding of the basic principles underlying 
a given statistical procedure, then that foundation will allow them to carry out the procedure 
using whichever software package implements the procedure most appropriately. Nonetheless, 
I recognize that students come to understand statistical procedures more completely when 
they can apply them using example data analyses, and for that reason, the website for this text 
includes annotated input and output files from several prominent software packages (i.e., R, 
SAS, SPSS, and Mplus) for each of the major statistical modeling procedures presented herein. 
For the most part, however, statistical software concerns are not addressed in the main body of 
this text because I do not want computing to become a distraction from the conceptual statisti-
cal principles described in the book.

In closing, it is important to disclaim that I am a psychologist, and for that reason, the 
statistical methods and example data analyses presented in this text primarily draw on psy-
chological research. But the methods and techniques I present (and any accompanying advice 
for data analysis) are broadly applicable across a wide range of disciplines.

A NOTE ON EQUATIONS

As a text on advanced statistical modeling methods, it is necessary to present statistical 
models using equations. I strongly believe that having an understanding of the key equations 
underlying a statistical model is critical to understanding how the model represents empirical 
data or addresses a substantive research question. Yet, I have tried to keep the text nontechnical. 
Most equations in the text just involve simple addition and multiplication; occasionally 
exponentials or logarithms are used. Even the matrix algebra equations presented in Chapter 7  
and subsequent chapters can be characterized as organized collections of simple algebraic 
operations based on addition and multiplication. Nonetheless, throughout the text, I have 
tried to explain the conceptual meaning of each potentially unfamiliar element within a given 
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equation rather than assuming that these mathematical expressions are self-explanatory. 
Equations are numbered if they are referred to in the text; un-numbered equations 
tend to be explained immediately without any need to refer to them again.

Most equations presented in this text are variations of regression equations. As such, 
just as the conceptual content of later chapters builds on the content introduced in earlier 
chapters, the equations presented in later chapters usually build on equations first seen in 
earlier chapters. In many instances throughout the text, a newly introduced equation is 
compared with an equation presented earlier, either in the same chapter or in a previous 
chapter. Therefore, as one proceeds through the text, it is wise to keep track of the equations 
(particularly the numbered equations) as they appear so that one can compare a new equation 
with previous equations to identify which features are familiar from previous equations and 
which are new elaborations. Doing so should consequently help one understand the meaning 
of the particular statistical model that the equation pertains to.

Also, in digesting these equations, it is important not to get overwhelmed by notation. 
Whenever a symbol is introduced for the first time, its meaning is explained. I have attempted 
to keep the use of notation consistent throughout the text, but I have also tried to keep my use 
of notation consistent with the methodological literature on the topics covered in this text so 
that readers can more easily consult other resources, which does introduce some inconsistency 
from one chapter to another (especially when moving from multilevel modeling to structural 
equation modeling). To help prevent confusion about the Greek letters used for notation, at 
the beginning of each chapter there is a table giving the Greek letters used in that chapter, its 
English name, and a brief statement of what the Greek letter represents within that chapter.



1
FOUNDATIONS OF 

STATISTICAL MODELING 
DEMONSTRATED WITH  
SIMPLE REGRESSION

CHAPTER OVERVIEW

The major objective of this chapter is to develop an understanding of the principles of 
statistical modeling in general and the simple linear regression model in particular. These 
principles provide a conceptual foundation for the remainder of the text. The main topics 
of this chapter include:

•• Definition and description of statistical modeling as a guiding theme for the text
•• Perspective on effect-size meaning and significance testing used in this book
•• Orientation toward the simple linear regression model
•• The intercept-only model as a model against which to compare the simple linear regres-

sion model
•• Foundational principles for simple linear regression
•• Specification and estimation of the simple linear regression model
•• Statistical inference with the simple linear regression model
•• Dichotomous variables in simple linear regression
•• Basic concepts for regression diagnostics as they pertain to simple linear regression
•• Outliers and unusual cases from the perspective of simple linear regression
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WHAT IS A STATISTICAL MODEL?

A trivial example

Before formally defining statistical model, I will begin with a trivial example model that dem-
onstrates some of the fundamental ideas about models. Growing up in the United States, 
I became accustomed to thinking about temperature on the Fahrenheit scale. I know how 
chilly 40°F is, and I know how warm 75°F is. In Canada, where I now live, temperature is usu-
ally reported on the Celsius scale. Unfortunately, I do not automatically have a good sense of 
what a temperature such as 13°C feels like (should I wear a jacket if I go outside?), so I find that 
I am constantly converting temperatures reported in Celsius into the approximate Fahrenheit 
temperature in my head. Of course, there is a known, precise relation between °F and °C, but 
the conversion isn’t always easy for me to calculate in my head, so I use an approximation 
that I can calculate quickly. Specifically, I multiply the temperature in °C by two and add 30 
to arrive at a value that I know is at least near the temperature in °F.

This approximation is my model for °F given the reported °C, and it can be expressed using 
the following mathematical equation:

	 ° F̂  = 2(°C) + 30.	 (1.1)

The hat symbol (^) over F on the left-hand side of the equation indicates that the formula pro-
duces a predicted value for °F given a particular value for °C. That is, the value for °C is known, 
or observed, whereas the value for ° F̂  is unobserved. (The predicted value is also known as 
the model-implied or fitted value.) So if I am told that it is 13°C outside and I am wondering 
whether I should wear a jacket, then I can quickly calculate

° F̂  = 2(13) + 30 = 56.

Thus, my predicted value for the temperature on the Fahrenheit scale is ° F̂  = 56, which is not 
terribly cold but chilly enough that I will probably put on a jacket.

Now, I know that my model does not usually produce the actual, precise value for °F given 
some temperature in °C. That is, deriving the true °F using this approximation is error-prone, 
and so another way I can write the model is

	 °F = 2(°C) + 30 + ε,	 (1.2)

Table 1.0  Greek letter notation used in this chapter

Greek letter English name Represents

β Lowercase ‘beta’ Regression model parameter
(intercept or slope, depending on subscript)

ε Lowercase ‘epsilon’ Regression model error term

µ Lowercase ‘mu’ Population mean

σ Lowercase ‘sigma’ Population standard deviation

ρ Lowercase ‘rho’ Population correlation

a Lowercase ‘alpha’ Probability of Type I error
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where ε is the error term representing the inaccuracy involved in reproducing the true °F using 
this formula. Next, with some simple algebra, we see that we can substitute Equation 1.1 into 
Equation 1.2 such that

°F = ° F̂+ ε

or

	 ε = °F - ° F̂ . 	 (1.3)

Thus, the error, ε, gives the difference between the true temperature on the Fahrenheit 
scale (°F) and the temperature on the Fahrenheit scale predicted by the model (° F̂ ). 
Equations 1.1 and 1.2 are different ways of expressing the same model for the relation 
between °C and °F.

All statistical models are like my temperature model in Equation 1.1 in that they generate 
predicted values for some outcomes but do so with error. Of course there is an established, true 
relation between the Fahrenheit and Celsius scales, specifically

	 °F = 1.8(°C) + 32. 	 (1.4)

Note that Equation 1.4 is not really a model because there is no error term; given a value for 
°C, we can use Equation 1.4 to calculate the exact, true value for °F.

We can also use Equation 1.4 to evaluate the quality of the model expressed in Equations 1.1  
and 1.2. That is, we can use Equation 1.4 to calculate values for the model’s error term, ε, 
across different values of °C; in other words, we can use Equation 1.4 to find out how well our 
predicted values, ° F̂ , reproduce the true values, °F. For example, if it is 0°C outside (i.e., the 
temperature at which water freezes), the true °F is 1.8(0) + 32 = 32°F, but the model’s predicted 
value is 2(0) + 30 = 30° F̂ . Thus, the model is inaccurate by 2°F, or using Equation 1.3, we have 
ε = 32 - 30 = 2. So although it’s not precise, the model does a reasonably good job of predict-
ing °F when °C is 0, or freezing. But how well does the model do when, for example, it’s 13°C? 
Will the model lead to me being too warm in a light jacket, or will I wish that I had put on 
something heavier? Again, using Equation 1.4, the true °F corresponding to 13°C is 55.4°F, and 
now ε = -0.6, which is reasonably accurate given the model’s purpose; that is, I am unlikely to 
regret my decision to wear a jacket.

To get a more complete picture of how good the model is across a wider range of values 
for °C, we can plot Equations 1.1 and 1.4 in the same graph, as shown in Figure 1.1. I have 
chosen a range of -15°C to 45°C for the x-axis to represent the wide range of outside tempera-
tures experienced in a given year in North America (having lived in Phoenix, Arizona, and 
Toronto, I am familiar with both extremes). Clearly, Equations 1.1 and 1.4 are both equations 
for straight lines but with different intercept and slope values. But in the figure, we see that 
the lines cross above 10°C, where both the predicted value ° F̂  and the true value °F equal 
50. Thus, for 10°C, the model perfectly reproduces the true °F (i.e., ε = 0). To the left of 10°C, 
the line for the predicted values is below the line for the true values, indicating that when 
the temperature is below 10°C, the model underestimates the true °F and the corresponding 
values for the error term ε are all positive. To the right of 10°C, the predicted line is above 
the true line, indicating that when the temperature is above 10°C, the model overestimates 
°F and the values for ε are negative. Nonetheless, across the range of °C plotted, the predicted 
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line never deviates far from the observed line, indicating that the model is good enough for 
the purpose of predicting degrees Fahrenheit across the range of temperatures most com-
monly experienced in North America. But if we were to extend the model in either direc-
tion, to extremely cold temperatures or extremely hot temperatures, the model’s predictions 
would clearly deteriorate.
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Figure 1.1  True and model-predicted relation between Celsius and Fahrenheit

In behavioural and social research, we can never know the true relation between any two 
variables. Equation 1.4 gives us the known, exact relation between Celsius and Fahrenheit, 
but there is no analogous version of Equation 1.4 for the types of variables studied in the 
social and behavioural sciences. Thus, there is no precise way to evaluate the quality of a sta-
tistical model in the manner illustrated in Figure 1.1. Instead, other methods for evaluating 
models must be used, and some of them are discussed throughout this book. Nevertheless, 
this temperature example demonstrates some key ideas about models:

1.	 They are developed to give a useful simplification of some natural phenomenon (e.g., an easy 
way to calculate the relation between Celsius and Fahrenheit).

2.	 They give predictions, but by virtue of the model being a simplification of nature, these pre-
dictions have error (e.g., the difference between model-implied, or predicted, Fahrenheit and 
true Fahrenheit).

3.	 They are tailored to serve a particular use, for which the errors are hopefully small, that 
might not generalize to other uses (e.g., understanding the relation between Celsius and 
Fahrenheit across the range of temperatures commonly experienced in North America but 
not the extreme heat near the surface of the sun).

As statistician George Box famously stated, ‘All models are wrong but some are useful’ 
(Box, 1979: 208).
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Statistical model defined

With these ideas in mind, drawing from Pearl (2000: 202) and Rodgers (2010: 5), a statistical 
model is a set of one or more mathematical expressions (e.g., equations) that provides an ide-
alized representation of reality; this representation represents reality in important ways but is 
necessarily a simplification that ignores certain features of reality. More formally, a statistical 
model specifies a univariate or multivariate population probability density function which is 
hypothesized to generate sample data (Myung, 2003).

The use of such statistical models to analyse quantitative data from behavioural and 
social empirical research studies is the unifying theme of this text. In particular, the text 
is focused on modeling procedures that are especially popular for analysing data in behav-
ioural and social research, namely, multiple regression, factor analysis, multilevel modeling, 
and structural equation modeling (SEM). These modeling procedures are popular in modern 
research mostly because of their broad capacity to help answer a wide range of sophisticated 
research questions and, in so doing, to help with the development and evaluation of important 
substantive theories.

Rodgers (2010) also distinguished between two roles for models. The first is focused on 
evaluating models (and comparing competing models) for a given dataset using existing sta-
tistical modeling methods such as regression and SEM. This first role is the main topic of this 
text, although many of the principles addressed here also apply to the second role. The second 
role ‘involves the development of mathematical models to match topics of explicit interest to 
researchers. Within this second framework, substantive scientists study behaviour and from 
that process develop mathematical models specific to their research domain’ (Rodgers, 2010: 8). 
See Rodgers for examples of research based on this second approach. SEM, for example, is a 
prominent statistical method commonly used for the first role, and its flexibility makes SEM 
adaptable to many different applications, whereas models developed for the second role are 
often specific to a particular application.

First and foremost, statistical models are fundamentally descriptive in that they pro-
vide descriptions of the associations among one or more operational variables (i.e., the actual 
observed measurements in a research study rather than the more abstract concepts) in terms 
of a small set of patterns which are summarized with mathematical formulas. But moving 
beyond basic description, the two other major purposes of statistical models are explanation 
and prediction. Building a model for the purpose of explanation means that the model is 
meant to represent a theoretical account for the variation in some important dependent vari-
able or outcome; typically this account (either explicitly or implicitly) represents the actual 
causal mechanisms, or a subset of potential causal mechanisms, that produce changes in the 
outcome. The adage that ‘correlation does not imply causation’ certainly extends to statistical 
models for observational data, but nonetheless, such models may still represent theoretical 
causal mechanisms. The models presented in this book are mainly presented with the goal 
of theoretical explanation in mind. But determining whether the associations among vari-
ables in a statistical model truly represent causal effects ultimately is the shared responsibility 
of researchers producing those results and the consumers of that research, all of whom must 
carefully consider the quality of the research design (e.g., were observations properly sampled 
and measured? What are potential confounding effects?) as well as the statistical analysis itself.

Models built for theoretical explanation usually are used only to describe outcomes that 
are observed within a given dataset (e.g., what is the association between personality and 
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depression among university students?), whereas models built for the purpose of prediction 
are meant to provide accurate forecasts for critical outcomes that have not yet been observed 
(e.g., given a high school student’s score on an academic achievement test, what is her likely 
university grade-point average?). Principles for developing statistical models for the different 
purposes of explanation and prediction tend to be complementary but not always. For further 
discussion of these issues, see Pedhazur (1997, especially pp. 195–8, and references therein).

Throughout this text, I frequently use the terms predictor and predicted values but doing so 
does not imply that I am referring to pure prediction in this sense of estimating unobserved 
values or future outcomes. Instead, I use these terms in a more descriptive mathematical 
sense. In any statistical model fitted to a dataset, the score on an independent or explanatory 
variable for a given research participant, or case, in that dataset can be used to obtain, or pre-
dict, values on the dependent or outcome variable for that same case; hence, this explanatory 
variable may be referred to as a predictor. If the predicted value on the outcome variable for a 
given case is close to the actual observed value for that case in the dataset, then the statistical 
model has performed well (for that case).

Section recap

Statistical models

A statistical model is a set of one or more mathematical expressions that provides an 
idealized representation of reality; this representation represents reality in important ways 
but is necessarily a simplification that ignores certain features of reality.

Fundamentally, models describe the variability of an important outcome or dependent 
variable as a function of one or more predictors or independent variables; these descrip-
tions may reflect (causal) explanation or may simply be used for prediction.

SIGNIFICANCE TESTING AND EFFECT SIZES

Null hypothesis significance testing (NHST) has been the dominant paradigm in data analysis for 
behavioural and social research since the middle of the 20th century, and criticism of NHST 
is just as old (e.g., Jones, 1952; Rozeboom, 1960). In psychology, debate over the usefulness 
(or lack thereof) of NHST bubbled over as a result of a now-famous article by Cohen (1994), 
leading the American Psychological Association (APA) to create a Task Force on Statistical 
Inference (TFSI) consisting of a team of eminent quantitative methodologists. The Task Force 
was charged with evaluating the possibility of banning NHST from psychology journals (or at 
least those published by APA). They ultimately concluded that although NHST has its flaws, 
it should remain available as a tool for data analysts but should also be supplemented with (if 
not subsumed by) other statistical information (see Wilkinson and the Task Force on Statistical 
Inference, 1999).

What has happened since then? In the APA’s flagship journal, Rodgers (2010) argued that 
a ‘quiet methodological revolution, a modeling revolution’ has occurred which has made the 
NHST controversy mostly irrelevant. In particular:
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A basic thesis of this article is that the heated (and interesting) NHST controversy during the 

1990s was at least partially unnecessary. In certain important ways, a different methodological 

revolution precluded the need to discuss whether NHST should be abandoned or continued. 

This quiet revolution, a modeling revolution, is now virtually complete within methodology. But 

within the perspective of the diffusion of innovations, this revolutionary thinking is only begin-

ning to spread to the applied research arena and graduate training in quantitative methods. 

Identifying the revolution is one mechanism that will promote its diffusion. The methodological 

revolution to which I refer has involved the transition from the NHST paradigms developed 

by Fisher and Neyman–Pearson to a paradigm based on building, comparing, and evaluating  

statistical/mathematical models. (Rodgers, 2010: 3–4).

This book adheres to the premise by Rodgers that a modeling revolution has occurred, and 
indeed, it’s focused on ‘building, comparing, and evaluating’ models as the dominant para-
digm in data analysis for modern behavioural and social research. But, as Rodgers implied, 
modeling is hardly a new enterprise in quantitative methodology (in fact, several prominent 
applied statistics texts already take this perspective, e.g., Maxwell and Delaney, 1990, 2004). 
Modeling is already a major data-analytic approach for most quantitative research in the 
behavioural and social sciences; the ‘quiet revolution’ is ‘almost complete.’ The task now is to 
give this epistemological system a more explicit focus in how researchers are trained, which 
this book aims to help accomplish.

It is important to understand that this focus on modeling does not imply that NHST is no 
longer used; instead, NHST still plays ‘an important though not expansive role’ (Rodgers, 
2010: 1) in the context of comparing models and evaluating estimates of their parameters. 
Thus, my perspective for this book is that significance testing through the calculation and 
reporting of p values is one tool that can be useful for evaluating and comparing models (or 
parts of models), but other tools [e.g., confidence intervals (CIs)] can be helpful as well. I 
readily acknowledge that students and researchers often misunderstand the exact meaning 
of a significance test and related concepts (definitions of p value, Type I and II error, etc.) 
and that NHST has limitations, and we will keep these issues in mind as we use NHST to 
examine models. I won’t review these definitions and limitations here because they have 
been thoroughly addressed elsewhere, and frankly I wish to move beyond them (but read-
ers not familiar with these issues should at least consult Cohen, 1994, and Wilkinson and 
TFSI, 1999).

It is satisfying to recognize that the father of NHST, Sir Ronald Fisher, advocated a 
model-based approach for statistical inference in the context of nonrandom sampling. 
Statistics textbooks commonly present statistical inference (i.e., generalizing from sample 
statistics to population parameters) using NHST as being valid only when the data come 
from a simple random sample, but behavioural and social research is often conducted 
using nonrandom samples. Thus, a critical aspect of Fisher’s model-based approach is the 
acknowledgement that there is no basis for statistical inference when observations are 
nonrandomly sampled from a finite population, but inference is legitimate under nonrandom 
sampling from an infinite population (Fisher, 1922). With this infinite-population inference 
approach, the researcher first specifies a statistical model that represents the process that 
generated the outcome variable(s) according to certain population parameters, which are 
the target of inference. Next, a parametric distributional assumption is imposed on the 
model to represent the link between the fixed, observed values of the outcome variable and 
the realizations of a random variable. Finally, it is critical to incorporate model parameters 
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to account for any meaningful departure from simple random sampling and the sampling 
design that was used (i.e., sampling based on stratification or clustering or disproportionate 
sampling). For a detailed discussion of Fisher’s model-based inferential framework, please 
read Sterba (2009). This framework (along with some adaptations discussed by Sterba) rep-
resents the perspective used in this text for model-based statistical inference assuming an 
infinite population. This is also the perspective widely adapted across almost all of behav-
ioural research, even if it’s not explicitly acknowledged (although certain areas of social 
research are more concerned with finite-population inference).

One result of the NHST controversy in psychology is that it has led to a greater emphasis 
on the importance of effect-size calculation and reporting. Put simply, effect size is the 
extent to which a predictor is associated with an outcome variable. In other words, effect 
size is the strength of the relation between two variables. As such, effect size is really a sim-
ple concept (but see Kelley and Preacher, 2012, for a thorough discussion of defining effect 
size), but it is my impression that the cries for more effect-size reporting have made the issue 
overly complicated and have needlessly confused students and researchers. These pleas seem 
to have created an impression among psychologists in particular that effect-size reporting 
must always consist of a sophisticated-sounding standardized effect-size statistic (e.g., Cohen’s 
d or omega squared) when simpler, familiar descriptive statistics (e.g., unstandardized mean 
differences), graphs, and estimates of model parameters are often (if not always) more effective 
at conveying effect size in meaningful units (Wilkinson and TFSI, 1999; for further discussions 
of this issue, see Baguley, 2009, and Frick, 1999). To the extent that quality research reports 
(e.g., journal articles) in the behavioural and social sciences have always included descriptive 
statistics, graphs, and estimates of model parameters, they have therefore also always included 
effect-size information, even prior to the recent pleas for effect-size reporting (see Pek and 
Flora, in press, for further discussion).

The models presented in this text share the property that the associations among variables 
are represented with parameters (e.g., a regression slope coefficient) and, thus, that the size of 
a given parameter is a measure of effect size. This point was emphasized and demonstrated by 
Steinberg and Thissen (2006), who argued that when results of statistical models are reported, 
effect sizes ‘are most clearly expressed in tabular or graphical presentation of parameter esti-
mates’ (p. 413; emphasis mine). The parameters need not be standardized; in fact, Wilkinson 
and TFSI (1999) exclaimed that, ‘If the units of measurement are meaningful on a practical 
level (e.g., number of cigarettes smoked per day), then we usually prefer an unstandardized 
measure (regression coefficient or mean difference) to a standardized measure (r or d)’ (p. 599). 
Thus, although there is a potentially overwhelming plethora of standardized effect-size statis-
tics available to researchers, this text is focused on interpretation of the estimates of a model’s 
parameters as the primary mode for effect-size conveyance.

Section recap

Effect size and significance testing

Effect size is simply the extent to which one or more predictor (or explanatory) variables is 
associated with an outcome (or response) variable. In other words, effect size is the strength 
of the relation between one or more independent variables and a dependent variable.
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In the context of statistical modeling, parameter estimates are effect-size statistics and 
these effects are usually most clearly conveyed in unstandardized form.

Despite its logical flaws, null hypothesis significance testing (NHST) remains a useful 
tool for testing the effects in a model and for comparing models.

SIMPLE REGRESSION MODELS

All statistical methods covered in this text involve using parametric models. A parametric 
model is a mathematical expression that uses parameters to represent hypothetical relations 
among variables in the population. In other words, the model represents a hypothetical pro-
cess that generates the outcome variable(s) according to certain population parameters. The 
first model we will examine extensively is the simple linear regression model. I expect 
that any reader of this text is already familiar with simple regression as it is almost always 
covered in introductory statistics textbooks and courses. Here, the purpose of studying the 
simple regression model in some detail is to establish a solid foundation for presenting more 
complicated and advanced modeling procedures because the same statistical principles and 
methods continue to apply as the two-variable simple regression model is expanded into 
larger models for more than two variables. Indeed, a few ideas addressed here even for simple 
regression may be new for some readers. This chapter also provides a familiar context, simple 
regression, in which to introduce the reader to the terminology, notation, and style that will 
be used throughout this text.

To begin nailing down the terminology and notation used in this text, let’s take a quick, 
initial look at the simple linear regression model. It is a model for the score of case, or individ-
ual i on some outcome variable Y, given that individuals score on some predictor variable X. 
‘Individual i’ is a potentially observed unit in the (infinite) population of interest; most often, 
these units of observation are individual people (i.e., research participants), but of course in 
certain research areas, the units of observation might instead be animals, cities, parent–child 
dyads, or business firms, among other possibilities. One way to write the simple regression 
model is with the linear equation

	 Yi = β0 + β1Xi + εi. 	 (1.5)

The parameters in the model are the intercept, denoted β0, and the slope, denoted β1. The 
slope term is also often called the regression coefficient because in the language of basic 
algebra, β1 is the coefficient of Xi in the equation. There are three variables in this simple 
regression model in that there are three terms with the subscript i, indicating that they vary 
across observations. The parameters do not have the i subscript because they are constants; 
they do not vary across observations.

The outcome variable is Yi; other terms that are more or less synonymous with out-
come variable include dependent variable, response, and criterion. The predictor variable is Xi; 
other terms that are more or less synonymous with predictor variable, depending on context, 
include independent variable, regressor, explanatory variable, and covariate. Often, researchers 
prefer to use the terms independent and dependent variable in the context of experimental 
research, whereas the terms predictor and outcome variable are used in observational, natural-
istic research, and finally the terms explanatory and response variables might be generalizable 
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to any research context. Personally, I view these sets of terms as essentially interchangeable 
regardless of the research context because they are treated the same way mathematically 
when statistical models are fitted to data. For brevity, and perhaps just out of habit, I primar-
ily use the terms predictor and outcome variable throughout this text (although, incidentally, 
most examples come from observational research contexts, but the principles presented in 
this text apply to models for experimental data as well).

The third variable in Equation 1.5 is the disturbance or error term, εi, which represents 
the inaccuracy of the model’s ability to reproduce the value of the outcome variable perfectly 
for a given observation. Unlike Yi and Xi, which are directly measured by the researcher, the 
error is an unobserved variable that is not directly measured and instead arises as a property 
of the model. Although it is not explicitly indicated in Equation 1.5, the simple regression 
model also includes a parameter, σ2, to capture the variance of the errors; that is, σ2 = VAR(εi).

This text follows the standard notational practice in the statistics and methodology literature 
of using Greek letters to represent population parameters. There is an unfortunate tendency in 
some research areas (as well as the output format of the IBM SPSS Statistics® software package) 
to use the lowercase Greek letter beta (β) to denote the sample statistic estimating the standard-
ized regression slope (often referring to it as the ‘beta weight’),1 whereas a capital Roman letter 
B is used to denote the sample statistic estimating the unstandardized regression slope.2 I feel 
that the latter notational practice is likely to become confusing as the ordinary linear regression 
model is expanded into more elaborate models, and it is much clearer if Greek letters such as 
β are always used to represent population parameters. Estimates of model parameters calcu-
lated from sample data are statistics, but they will also be referred to as parameter estimates 
throughout this text. To distinguish parameter estimates from the actual parameter symboli-
cally, we use the ‘hat’ symbol. For example, µ̂, or ‘mu hat’, is the estimate of the population 
mean parameter µ (also commonly denoted as Y  to represent the sample mean of variable Y), 
whereas β̂ , or ‘beta hat’, is the sample estimate of a population regression slope parameter β.

Section recap

Simple linear regression model

The simple linear regression model for the relation between an outcome variable Y and a 
predictor X is

Y
i
 = β

0
 + β

1
X

i
 + ε

i
.

The intercept parameter, β
0
, is the predicted value of Y when X equals 0.

The slope parameter, β
1
, is the predicted amount that Y changes when X increases by 1.

The magnitude of β
1
 is therefore a (population) effect size for the association between 

X and Y.

1Standardized regression slopes are defined and discussed in Chapter 2.

2Contrary to popular impression, this notational practice is also not consistent with the APA style guide; 

see APA, 2010: 119 and 122.
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Research example for the simple regression model

To provide a context in which the simple regression model might be used, let’s consider 
an actual research study: A graduate-student researcher is interested in whether and how 
certain personality characteristics relate to aggression. The researcher collects a sample of 
N = 275 undergraduate university students who each complete the Buss-Perry Aggression 
Questionnaire (BPAQ; Buss and Perry, 1992) and the Barratt Impulsiveness Scale (BIS; Barratt, 
1994), among other questionnaires. At a basic level, the researcher wants to devise a model for 
aggression (operationalized with BPAQ scores) to represent (or describe or explain) how and 
why people vary on this important outcome. 
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Figure 1.2  Univariate distribution of BPAQ scores

Next, we might apply a density smoother (technically, a kernel density estimate) over the his-
togram of the sample data to approximate the (infinite) population probability distribution 
(see Wand and Jones, 1995). Likewise, we can superimpose the normal distribution curve 
that best fits the sample data; the histogram with the smoother and normal curve is shown 
in Figure 1.3. Now we can see that the sample distribution of BPAQ is remarkably close to a 
normal distribution; although the estimated density has a few small bumps, it is close to the 

This dataset is available on the text’s webpage (https://study.sagepub.com/flora) along with 
annotated input and output from several popular statistical software packages showing 
how to reproduce the analyses presented in this chapter.

Before beginning to fit models to empirical data, it is always wise to examine the data descrip-
tively and especially graphically. Thus, for this example, we begin by looking at the sample 
distribution of the outcome variable, BPAQ scores. Because the BPAQ score is an (approxi-
mately) continuous variable and there are N = 275 observations, it’s best to examine its 
distribution graphically rather than with a frequency table, for instance, with the boxplot 
and histogram in Figure 1.2. These plots show that the sample distribution of BPAQ scores 
is unimodal and (approximately) symmetric, with the bulk of the scores falling between 2.0 
and 3.0. The center of the distribution seems to be just above 2.5, and there are no outliers.
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superimposed normal curve.3 Having an outcome variable with a distribution that’s so close to 
a normal distribution is nice but unusual. But as we will see in later chapters, it is not always 
problematic for the outcome to be non-normal, and sometimes we don’t need to do anything 
about it at all. Next, we might wish to have some numerical summaries, or descriptive sta-
tistics, to describe the sample distribution of BPAQ more specifically, as shown in Table 1.1. 
These summary statistics essentially support the observations made earlier from the graphs.

Initial model for Y: Intercept-only model

Our first model for the BPAQ outcome variable isn’t interesting or substantively informa-
tive, but it will give us a standard against which to compare the main regression model 

3Note that the y-axis for Figure 1.3 is ‘density,’ or relative frequency on a probability scale, whereas the y-axis 

of the previous histogram in Figure 1.2 is just raw ‘frequency,’ on the scale of the number of cases at each 

observed value of BPAQ. Scaling frequency into relative frequency does not affect the shape of a distribution.

Table 1.1  Univariate descriptive statistics from aggression dataset

Variable Min Q1 Mdn Q3 Max M SD Skewness Kurtosis

BPAQ 1.35 2.24 2.62 3.00 4.03 2.61 0.52 0.01 -0.41

BIS 1.42 1.42 2.27 2.54 3.15 2.28 0.35 0.36 -0.22

Age 17.00 18.00 18.00 20.00 50.00 20.21 4.96 3.70 15.43

Alcohol 0.00 3.00 12.00 24.00 96.00 16.00 15.87 1.50 3.09

Note. N = 275. Min = minimum, Q1 = first quartile (or 25th percentile), Mdn = median (or 50th percentile), Q3 = third 
quartile (or 75th percentile), Max = maximum, M = mean, SD = standard deviation.

Figure 1.3  Histogram of BPAQ with fitted kernel density smoother (solid curve) and fitted 
normal distribution (dashed curve)
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that incorporates the BIS predictor. In the absence of any predictor variable, the best model 
for BPAQ scores is simply an expression of the distribution’s central tendency, such as the 
population mean, µ. Of course we also know that there is variation around the mean, in that 
many (if not all) of the observations are not exactly equal to the mean. With this in mind, 
we can express this initial model like so:

	 Yi = µ + εi, 	 (1.6)

where Yi is the BPAQ score for case i and the error term, εi, indicates that case i is likely to have 
a value of Y that deviates from the mean. This model is referred to as the intercept-only 
model because we can view it as a regression model without any predictors; that is, Equation 
1.6 can be rewritten as

	 Yi = β0 + εi,	 (1.7)

where β0 = µ. Note also that Equation 1.7 is equivalent to Equation 1.5 if β1 = 0. This  
intercept-only model also includes the parameter σ2 for the error variance; that is, σ2 = VAR(εi). 
In the intercept-only model, the error variance summarizes the extent to which observations 
differ from the mean, which is the value of Y predicted by the model for every case in the 
population.

The parameter estimates for the intercept-only model are the familiar sample mean, Y
(recall that Y = µ̂ , and therefore, for this model, Y = β̂0), and sample variance, sY

2 2= σ̂ . The 
square root of the sample variance, s2  = s, is of course the sample standard deviation. Recall 
that the sample variance is calculated from the squared deviations of the mean from each 
observation:

	 VAR( )
( )

Y s
Y Y

N
SS

NY

i
i

N

Y= =
−∑

−
=

−
=2

2

1

1 1
,	 (1.8)

where SS stands for sum of squares.
Next, if we substitute the sample mean for the population mean (i.e., substitute the 

parameter estimate for the parameter) in the model, we have

Yi = µ  + ei

or

Yi = Y  + ei.

Thus,

Yi - Y  = ei.

Note that because we have substituted parameter estimates for the actual population param-
eters, the deviation between the observed Yi and the value of Yi predicted by the model 
expressed in terms of parameter estimates is a residual term denoted ei. In general, for both 
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the intercept-only model and more complex regression models, the residual ei for a given case 
i based on the estimated model will almost always differ from the error term εi based on the 
true population model.

Next, following from the definition of SS, we have

( ) ( )Y Y Y e SSi i
i

N

i

N

i
i

N

e− = − =∑∑ ∑ =
== =

2 2

11

2

1
µ .

This is a simple but important result that generalizes to other, more elaborate models: The 
sum of squared residuals is the sum of squared deviations of the model’s predicted Y (here, 
the predicted Y is just the mean) from the individual observed Y values.

From Table 1.1, we see that the sample mean BPAQ score is 2.61 which, absent any predic-
tor variables, gives the estimated predicted value of BPAQ for all cases in the population. Yet, 
the standard deviation of BPAQ is 0.52, indicating that there are substantial individual differ-
ences in the BPAQ outcome variable; soon we will incorporate predictor variables to explain 
this variability.

Furthermore, given the shape of the BPAQ distribution displayed in Figure 1.3, we should 
be comfortable that it is a reasonable approximation of a normal distribution such that  
Yi ~ N(µ, σ2); that is, the outcome Y is distributed as a normal variable with population mean 
µ and variance σ2. This statement then implies that the errors from the intercept-only model 
are also sampled from a normal distribution such that εi ~ N(0, σ2); that is, ε is distributed as 
a normal variable with mean 0 and variance σ2. Therefore, in this basic intercept-only model, 
the variance of the outcome variable equals the variance of the errors, but that won’t be the 
case as soon as we add other variables to the model. Because the variance of the errors equals 
the variance of Y, the model has not explained any of the variation in the outcome. One 
way to evaluate the quality of subsequent models is to see how much of the variation in Y is 
explained; that is, how much smaller is the error variance compared with the observed vari-
ance of Y? In other words, how much better is a model with one or more predictors of Y than 
a model without any predictors?

Section recap

Intercept-only model

The intercept-only model is

Y
i 
= β

0 
+ ε

i
.

Because this model has no predictor variables, its parameter estimates are the sample 
mean Y = µ and sample variance s2 = σ

2
.

Because the model does not explain any of the outcome variable’s variability, the resid-
ual variance is equal to the observed variance of Y.

Subsequent models which do include one or more predictors can be compared with 
this initial model to determine the amount of observed variance that is explained by the 
predictor(s).
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Focal model for Y: Simple regression with a single predictor

In the current research example, the main goal is to model aggression (measured with BPAQ) 
as a function of personality traits, such as impulsivity (measured with the BIS), not merely to 
describe the univariate distribution of BPAQ scores without any predictors. Thus, answering 
the actual substantive research question depends on devising a model that’s more elaborate 
than the intercept-only model. Hopefully for this hypothetical personality researcher, the 
new model with BIS will be a statistical improvement over the basic intercept-only model. 
Again, before estimating the model, we should investigate the data graphically. Now that we 
are introducing a second variable, BIS scores, we can use a scatterplot to visualize the distribu-
tion of BPAQ scores conditioned on BIS scores, as depicted in Figure 1.4. The plot suggests 
that those with higher impulsivity scores tend to have higher aggression scores. That is, BPAQ 
scores covary with BIS scores, but the relation is far from perfect.
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Figure 1.4  Scatterplot of BPAQ scores against BIS scores

The sample product-moment covariance between two variables is the fundamental, 
basic ingredient that allows us to estimate the parameters of linear models (including 
advanced linear models, such as structural equation models). Consider the formula for the 
sample variance again:
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This is an index of the amount that Y varies with itself. The formula for sample covariance is 
similar, but it incorporates both Y and X:

COV( , )
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where SCP stands for sum of cross-products in that ( )( )Y Y X Xi i- -  is the cross-product 
between Y and X for a given case. Thus, sYX is an index of the amount that Y covaries with X 
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in the sample. In our current research example, the covariance between BPAQ scores and BIS 
scores is sYX = 0.06. But the value of a covariance depends on the scales of Y and X; for this 
reason, covariance can be difficult to interpret as a basic descriptive statistic measuring the 
(linear) association between X and Y.

Therefore, to aid interpretation of the association between two variables, the covariance 
can be standardized into the Pearson product-moment correlation (usually simply 
referred to as the ‘correlation’ or ‘correlation coefficient’). The population correlation is rep-
resented with the Greek letter rho, ρ, whereas the sample correlation is represented with the 
Roman letter r. Thus, r estimates ρ. As readers are likely aware, a correlation is always4 a value 
between -1 and +1, which is obtainable with the formula

	 r
Y X

Y X

s

s s
YX

Y X

= =
COV

VAR VAR

( , )

( ) * ( ) 2 2
.	 (1.9)

In our current example, the correlation between BPAQ and BIS is r = .32, which is con-
sistent with the earlier observation that individuals with higher BIS scores tend to have 
higher BPAQ scores. More impulsivity is associated with more aggression. A 95% CI esti-
mate of ρ is (.21, .42); that is, with 95% confidence, the interval from .21 to .42 captures 
the population correlation. In other words, a population correlation between BPAQ and 
BIS in the range of .21 to .42 is likely to have produced these data.

The correlation describes the extent to which two variables are linearly associated, implying 
that a straight line going through the middle of the points in the bivariate scatterplot (i.e., 
the simple regression line) does an adequate job of representing, or modeling, the pattern of 
covariation between Y and X. It is easier to assess the quality of the straight-line model if we 
also add a nonparametric LOWESS (‘LOcally WEighted Scatterplot Smoothing’) regression 
curve to the plot, which is designed to capture more subtle, nonlinear regularities in the data 
that might not be well represented with the parametric regression line (see Fox, 2008: 21–4 
and 496–507 for details on how LOWESS curves are calculated). Because it’s nonparametric 
and is susceptible to chance variations in sample data, this LOWESS curve is difficult to use 
for population inference, but it can help evaluate the adequacy of the parametric linear regres-
sion model, given the observed data.5 As shown in Figure 1.5 for the current example, the 
LOWESS curve is consistent with the straight line, so we should be comfortable using the line 
as a model for the data. Hence, although the relation between BPAQ and BIS is not particularly 

4Here, the word ‘always’ is emphasized because when estimating certain advanced models, the obtained 

parameter estimates sometimes imply that a correlation between two variables is greater than +1 or 

less than -1. Such an estimated model solution must be discarded as improper because any correlation 

outside the -1 to +1 range is inherently nonsensical. This result commonly occurs in the context of 

advanced modeling procedures such as multilevel modeling (Chapter 6) and structural equation 

modeling (Chapters 9 and 10).

5The LOWESS curve is especially susceptible to chance variations in data when the sample size is small; in 

this case, only a few cases may cause the curve to display dramatic bends. In such a situation, the curve 

may overfit the data rather than smoothing over minor, sample-specific variation. One can control the 

extent to which a LOWESS curve captures such minor data characteristics by adjusting its span (see Fox 

and Weisberg, 2011: 117). In our current example, the sample size is rather large, and so the LOWESS curve 

is resistant to the influence of just a few unusual cases.
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strong, it does appear as if the ordinary simple regression line is a reasonable model for the 
relation. That is, there doesn’t seem to be any particular pattern in the data that would be 
grossly misrepresented by the straight line that best fits the data, namely, the least-squares 
regression line, which is defined later in this section.

As a quick aside, when a scatterplot shows a consistent nonlinear trend, the bivariate asso-
ciation may be effectively described using Spearman’s rank-order correlation coeffi-
cient. Spearman’s correlation is calculated by first transforming both variables into ranks, 
and then Spearman’s correlation is the product-moment correlation between the two sets of 
ranks (see Chapter 8 for an example). The discrepancy between this rank-order correlation and 
the original, raw-score, product-moment correlation can be used as a diagnostic to determine 
whether a linear regression model is likely to be distorted by nonlinear patterns in the data.
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Figure 1.5  Scatterplot of BPAQ scores against BIS scores with fitted linear regression line 
(solid line) and fitted LOWESS curve (dashed line)

But before considering the actual mathematical formulas for the linear model, it is important to 
distinguish between predicted values of Y, also known as fitted or model-implied values, and 
observed values of Y. The observed values of Y are the actual measured values for the outcome 
that are in the dataset. In the current example, there are N = 275 participants, or cases, with BPAQ 
aggression scores. Each of the 275 BPAQ scores is an observed value of Y. We can see in Figure 
1.5 that most of the observed values do not fall on the regression line, and some are far from the 
line. The predicted values of Y, represented as Ŷ , are the Y values determined by the regression 
line across the X continuum. As we are using BIS impulsivity scores to predict or model BPAQ 
scores, then the Ŷ  values are the predicted, model-implied BPAQ scores at each possible BIS score 
(i.e., at each value of X). Because the prediction is not perfect (the correlation between BPAQ and 
BIS does not equal 1), most of the observed BPAQ scores do not equal the score that is predicted 
by the linear regression of BPAQ on BIS. Next, the residual for the individual, or case, i is the 
difference between that participant’s observed Y value and the corresponding predicted Ŷ  value, 
given the estimated linear effect of the observed value for the predictor X:

ei =Yi − Ŷi.
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So observed scores falling on an estimated regression line have residuals equal to zero, whereas 
observed scores that are far from the line have large residuals.

Section recap

Foundations for a simple linear regression model

A scatterplot of an outcome variable against a potential predictor helps determine whether 
it is appropriate to model the relation between the two variables using a straight-line func-
tion, i.e., a linear regression equation.

Covariance is a descriptive value measuring the strength of linear association between 
two variables; the product-moment correlation is a covariance which has been standard-
ized to range between -1 and +1.

A predicted value, Y , is the outcome variable score for individual i that is predicted 
from the regression line given that individual’s score on the predictor variable, X

i
.

An observed value, Y
i
, is the actual outcome variable score for individual i regardless of 

that individual’s score on the predictor variable, X
i
.

Given a population regression equation, the regression error for individual i is ε
i
 = Y

i
 - Y i
 .

Given an estimated regression equation, the residual for individual i is e
i
 = Y

i
 - Y i

 .

Simple linear regression: Model specification

Model specification simply refers to establishing the model’s parameters with one or 
more equations giving the hypothetical mathematical relations among the variables. Often 
specification also involves statements about a model’s assumptions regarding variance terms 
or probability distribution, although these assumptions sometimes arise because of estima-
tion method (see later discussion in this section) and are not always a part of specification. 
Specification of the simple linear regression model was presented earlier, but here it is reiter-
ated with slightly more detail.

The one-predictor linear regression model can be specified in two equivalent ways. The 
first expression is in terms of the predicted values of the outcome variable:

	 Ŷ Xi i= +β β0 1
,	 (1.10)

where Ŷi  is the predicted value on the outcome for case i and Xi is the observed value of the 
predictor for the same case i. As described previously, β0 is the intercept parameter for the 
line, which is the value of Ŷ  when X = 0. β1 is the slope parameter of the line, also called 
the regression coefficient, which is the amount that Ŷ  differs when X increases by one unit. 
In other words, a one-unit increase in X is associated with a change in Ŷ  equal to β1. Of 
course sometimes β1 is a negative number, indicating the amount that Ŷ  decreases per unit 
increase in X, just as a correlation can be positive or negative.

The second way of expressing the same model substitutes the observed Y for the predicted 
Y on the left-hand side of the equation:

	 Yi = β0 + β1Xi + εi,	 (1.11)
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where Yi is the observed score on the outcome for case i; β0, β1, and Xi are the same as that 
presented earlier, and εi is the error term. Because ε i i iY Y= − ˆ , it is easy to see that the two 
expressions of the model (Equations 1.10 and 1.11) are algebraically equivalent. Finally, a 
third parameter of the model is the variance of the errors, σ2 = VAR(εi), which captures the 
extent to which observed values differ from predicted values.

Because β1 measures the amount or extent to which the predictor variable is related to the 
outcome, it is an effect-size parameter. More specifically, because β1 describes the linear effect 
of X on Y in terms of the scale of Y, it is an unstandardized effect-size measure. The correlation 
is a type of standardized effect-size measure because it indicates the strength of the linear rela-
tion between two variables on a standard scale from -1 to +1 rather than the observed scale 
of the outcome variable.

Simple linear regression: Model estimation

In statistical modeling, estimation refers to the process of calculating estimates of model 
parameters from sample data. For any particular kind of model, there are many potential 
methods of estimation, but of course, some are better than others, where ‘better’ typically 
means that parameter estimates from an optimal estimation method are unbiased, consist-
ent, and efficient, provided the method’s assumptions are met. Briefly, a parameter estimate 
is unbiased if the mean of its sampling distribution equals the true value of the parameter at 
a given sample size; an estimate is consistent if its value approaches the parameter value as 
the sample size increases toward infinity; and an estimate is efficient if, compared with other 
estimation methods, its sampling distribution has the smallest variance.

In simple linear regression, the model parameters β0 and β1 are most commonly estimated 
from sample data using formulas derived using the ordinary least-squares (OLS) method 
of estimation. When its assumptions are met, parameter estimates calculated with OLS are 
unbiased, consistent, and efficient. These assumptions are addressed in both this chapter and 
subsequent chapters on linear regression.

The OLS formulas give values for β̂0  and β̂1 such that the set of squared residuals in the 
sample are as small as possible. More specifically, the line defined by the OLS estimates of β̂0

and β̂1 minimizes the sum of squared residuals, which is also known as the error sum 
of squares:6

SSe = e Y Yi
i

N

i i
i

n
2

1

2

1= =
∑ = −∑ ( ) .

Substituting the simple regression line as the model for Ŷ , we see that the residual sum of 
squares is

SSe = ( ) ( [ ])Y Y Y Xi
i

N

i i
i

N

i−∑ = −∑ +
= =1

2

1
0 1

2� � �β β .

6But the term ‘error sum of squares’ is misleading because of the distinction between residuals, which are 

deviations from Ŷ  based on sample estimates of the parameters, and errors, which are deviations from Ŷ  

based on the true (but unknown) parameters. In practice, this sum-of-squares term can only be calculated 

using residuals.
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The goal of OLS estimation is then to find parameter estimates, β̂0
 and β̂1

, that make the quan-
tity SSe as small as possible. Calculus is required to show the derivation of the formulas for β̂0

and β̂1  that lead to the minimization of squared residuals (see Fox, 2008: 78–81). The result of 
this basic calculus problem gives the OLS estimate of β1 as

	 ˆ ( , )
( )

β1 = =










COV
VAR

Y X
X

r
s
s

Y

X

.	 (1.12)

With this expression, it is easy to see that if both X and Y are standardized (i.e., transformed 
so that their sample means equal 0 and variances equal 1), then the slope estimate is equal to 
the correlation.7 Next, given the estimate of β1, the OLS estimate of β0 is

ˆ ˆβ β0 1= −Y X.

Incidentally, when both X and Y are standardized, the intercept estimate equals zero.
For the current example modeling BPAQ aggression scores as a function of BIS impulsiv-

ity scores, the parameter estimates are β̂0  = 1.52 and β̂1  = 0.48, and thus, the estimated OLS 
regression line is

ˆ . .Y Xi i= +1 52 0 48 .

This is the equation of the line going through the middle of the points in the scatterplot in 
Figure 1.5. In fact, an OLS regression line is guaranteed to pass through the point ( , )X Y . The 
slope estimate β̂1 = 0.48 indicates that a one-unit increase in BIS scores predicts an increase of 
0.48 in BPAQ scores. Again, this is the effect of BIS on BPAQ; it is an effect-size estimate for this 
data analysis. The intercept estimate β̂0  = 1.52 indicates that with a BIS score equal to zero, the 
predicted BPAQ score is 1.52. In this example, the intercept parameter is not substantively useful 
because a BIS score equal to 0 is outside of the range of the data, given the way that the question-
naire is scored. The intercept parameter often is of little interest in ordinary regression modeling, 
but in certain contexts, the interpretation of the intercept may be extremely important.

Section recap

Specification and estimation of the simple linear regression model

Specification establishes a model’s parameters using one or more equations giving the 
hypothetical mathematical relations among the variables. Often specification also involves 
statements about a model’s assumptions regarding variance terms or probability distributions.

Once a model is specified, estimation is the procedure by which the model’s parameters 
are estimated from sample data.

Ordinary least squares (OLS) is the most common estimation method for linear regression. 
OLS produces the parameter estimates that minimize the sum of squared residuals.

7Standardized regression coefficients are discussed in Chapter 2.
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Simple linear regression: Statistical inference

The relation between BPAQ and BIS scores is clearly evident in the scatterplot, but the simple 
regression slope estimate β̂1  = 0.48 does not seem like a strong effect size given the observed 
scales of BPAQ and BIS. Thus, an important aspect of model interpretation does in fact involve 
significance testing and confidence interval estimation to determine whether this slope esti-
mate is distinguishable from a population slope equaling zero (using a significance test) or, 
more comprehensively, to determine a plausible range for the value of the population slope 
(using a confidence interval or CI).

To make such inferences from the OLS parameter estimates to the unknown population 
parameters, it is necessary to make some assumptions about the error random variable, that is, 
the deviations from the estimated model. Primarily, we assume that εi ~ N(0, σ2), meaning that 
the errors come from a normal distribution with its mean equal to zero and variance equal-
ing σ2. Thus, in contrast to popular perception, in OLS regression, the normal distribution 
assumption is about the unmeasured errors and there is no explicit assumption that either 
measured variable Y or X is normal. Additionally, the fact that there is no i subscript on σ2 is 
important because it reflects the assumption that the error variance is the same (i.e., constant 
variance) for all observations, regardless of their value for X. This constant variance assump-
tion is also known as homogeneity of variance or homoscedasticity: The variance of 
the errors is assumed homogeneous, or constant, across all values of X. Finally, there are a few 
other assumptions for OLS regression that we address in later chapters.

Usually, we are most interested in testing the null hypothesis that the regression slope 
equals zero:

H0: β1 = 0.

Note that if the null hypothesis is true, the regression model

Yi = β0 + β1Xi + εi

becomes

Yi = β0 + 0 × Xi + εi

or

Yi = β0 + εi,

which is the intercept-only model presented earlier (Equation 1.7). Thus, the significance test 
for the slope β̂1  is also a model comparison test indicating whether the one-predictor, simple 
regression model is significantly different from the intercept-only model.

The ratio of the OLS estimate of a simple regression slope to its estimated standard error fol-
lows a t distribution with (N – 2) degrees of freedom. Thus, the null hypothesis for the slope 
is evaluated with a t test:

	 t
s

=
ˆ

ˆ

β

β

1

1

,	 (1.13)
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where sβ̂1
 is the estimated standard error of β̂1

. A formula for this standard error estimate is

s
SS n

SS
e

x
ˆ

/ ( )
β1

2
=

− .

Recall that the standard error of a statistic is the standard deviation of its sampling dis-
tribution; hence, the standard error reflects the average amount that a statistic (such as a 
sample mean or a regression slope estimate) randomly drawn from its sampling distribution 
is expected to differ from the true parameter value.

Additionally, we can get a confidence interval estimate of β1 using the usual symmetric 
confidence interval approach based on the t distribution:

ˆ
ˆβ
β1

1

± ×s tα,

where ta  is the appropriate critical t value for a (1 - a)% confidence interval and a is the prede-
termined probability of a Type I error (usually a = .05, leading to 95% confidence intervals). Of 
course, there is an exact correspondence between the t test and the confidence interval in that 
the null hypothesis is not rejected at the given alpha level if the confidence interval overlaps 0 
and is rejected if the confidence interval does not contain zero. Ultimately, though, the confi-
dence interval is more informative than the null hypothesis significance test: Not only does the 
confidence interval indicate whether 0 (the value given by the null hypothesis) is a plausible 
value for the population slope parameter, but also the confidence interval gives a whole range 
of plausible values for the plausible parameter values.

This form of the t test and confidence interval construction also applies to the intercept 
estimate, β̂0, but these results are often of little, if any, substantive interest (although standard 
statistical software does typically include the estimated standard error, t, and p value of β̂0  
within regression modeling output).

In the current example of the regression of BPAQ aggression scores on BIS impulsivity 
scores, sβ̂1

 = 0.085. Therefore, we have

t
s

=
ˆ

ˆ

β

β

1

1

 = 
0 4777
0 0854

5 59
.
.

.= .

The two-tailed p value for this t statistic is less than .0001, so using the conventional Type 
I error probability a = .05, we reject the null hypothesis that the population slope equals 
zero. Thus, even though the effect-size estimate β̂1  is somewhat small, its true popula-
tion value is likely to differ from zero. Furthermore, this t test implies that the simple 
regression model with BIS as a predictor explains the data significantly better than the 
intercept-only model does.

Compared with the null hypothesis test, more specific information regarding the likely 
value of the population regression slope is given by a confidence interval around the slope 
estimate. Here, the 95% confidence interval estimate of β1 is (0.31, 0.65), suggesting that a 
population slope of any value between 0.31 and 0.65 is likely to have produced these data. 
Hence, the data suggest that the population effect size could be as large as 0.65. This would 
seem like a large effect given that the BPAQ and BIS have similar scales; a one-point increase 
in BIS would predict a BPAQ score that is larger by 0.65 BPAQ units. But the lower end of the 
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confidence interval suggests that the population effect could be 0.31, less than half as large as 
that suggested by the upper end.

Additionally, recall that in the intercept-only model, the variance of the residuals equals 
the variance of Y:

VAR(Yi) = VAR(β0 + εi) = VAR(εi).

Therefore, the intercept-only model does not explain any variance in Y. Let’s call the 
intercept-only model for our current example ‘Model 0’. The variance of BPAQ, and thus 
of the residuals from Model 0, equals 0.2746. Then, let Model 1 be the simple linear regres-
sion of BPAQ on BIS. The residual variance from Model 1 equals 0.2463. Thus, adding the 
predictor BIS has reduced the residual variance by (0.2746 - 0.2463) = 0.0283. The ratio 
(0.0283) / (0.2746) = 0.1031 then indicates the proportion of variance in BPAQ explained 
by Model 1. The (positive) square root of this proportion, .1031, equals the correlation 
of .32 between BIS and BPAQ given earlier.

More generally, the coefficient of determination, R2, is a descriptive statistic often 
reported as a measure of the overall standardized effect size given by a regression model. This 
statistic may be calculated as

R
Y e

Y
2 =

−VAR VAR
VAR
( ) ( )

( )
.

Because the sample-size terms in the numerator and denominator of this equation cancel out, 
it simplifies to an expression based on sum-of-squares terms:

	 R
SS SS

SS
Y e

Y

2 =
− .	 (1.14)

Consequently, in addition to the significance test for β̂1, we can also compare the intercept-
only model to the one-predictor simple regression model using R2, which indicates the 
proportion of variance in the Y that’s accounted for by including X in the model. In simple 
linear regression, R2 also equals the squared correlation, r2, between X and Y and the p value 
for the t test for β̂1  is identical to the p value for the significance test of the correlation. 
Hence, in our current example, we can also conclude that the proportion of the variance in Y 
accounted for by BIS is significantly greater than zero.

Section recap

Statistical inference with the simple linear regression model

The null hypothesis that β
1
 = 0 can be evaluated using a t test in which

t
s

=
β



1

1β

,

where s
β1

 is the estimated standard error of β1.

(Continued)
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Even more information about the true parameter value is provided by a confidence interval, 
which can be calculated with

β
β α



1
1

± ×s t ,

where t
α
 is the critical t value for a (1 - α)% confidence interval with a as the predetermined 

Type I error probability.
The validity of these inferential methods depends on the assumption that the errors are 

normally distributed with constant (homogenous) variance across the range of X.
The coefficient of determination, R2, gives the proportion of outcome variable variance 

explained by the predictor(s) in a regression model.

Simple regression with a dichotomous predictor

Contrary to what is presented in some introductory statistics texts, the predictor variable 
in a simple correlation or regression analysis need not be continuous. The predictor can 
also be dichotomous (i.e., categorical with two values or categories, or binary) without 
violating any assumptions, although the outcome variable should still be continuous. 
For instance, continuing with our applied research example, we can use simple linear 
regression to model the relation between BPAQ aggression scores and gender. A scatterplot 
depicting the relation between BPAQ and gender is in Figure 1.6, with gender dummy-coded 
so that 0 = male and 1 = female. Because gender is a nominal variable, the choice of numer-
ical values for its two categories is completely arbitrary, and the results presented here 
generalize to any numerical coding scheme for a binary variable. But dummy codes of 0 
and 1 produce an especially convenient interpretation of the OLS regression parameters, as 

(Continued)
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Figure 1.6  Scatterplot of BPAQ scores against gender with fitted regression line
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we will see later in the book (dummy coding is addressed further in Chapter 3). In addition  
to providing further insights about the simple regression model, the primary purpose of 
this section is to build a foundation for Chapter 3, which describes how categorical predic-
tors with any number of categories (i.e., not just binary variables) can be incorporated in 
a linear regression model.

Because there are only two possible values of X, 0 and 1, a straight line is the mathemati-
cally simplest way to connect the middle of the points in the plot above X = 0 to the middle 
of the points above X = 1. Specifically, when X is binary and coded 0 or 1, the OLS regression 
line is the line connecting the point (0, YX =0 ) to the point (1, YX =1). This line is superimposed 
in Figure 1.6, which provides the scatterplot of BPAQ scores against gender.

Once the binary predictor has been coded into two numerical values (such as the dummy 
codes used here), the formulas presented earlier for the OLS regression parameter estimates are 
directly applicable with the two dichotomous values used for Xi. In our current example with 
gender dummy coded, the estimated OLS regression line modeling BPAQ scores as a function 
of gender is

ˆ . .Y Xi i= −2 66 0 06 .

Because β̂0, the estimated intercept, is the predicted value of Y when X = 0, then 2.66 is the 
predicted BPAQ score among males. The intercept estimate is in fact the mean BPAQ score 
for males:

ˆ . . ( ) .Y Ymale male= − = =2 66 0 06 0 2 66 .

Next, because β̂1, the estimated slope, is the predicted difference in Y when Xi changes by one 
unit, then -0.06 is the predicted difference in Y between males and females. This parameter 
estimate thus gives the difference between the male mean and the female mean:

ˆ . . ( ) .Y Yfemale female= − = =2 66 0 06 1 2 60 .

Once again, the estimated regression slope represents the unstandardized effect size; the 
simple mean difference between males and females on the outcome is β̂1 = 0.06. Here, this 
is a small effect given that the range of observed BPAQ scores is approximately 1.0 to 4.0. 
Additionally, the plot in Figure 1.6 clearly illustrates the weakness of the effect. Thus, even 
though the scale of the BPAQ operational variable is essentially meaningless, we can easily 
tell that this simple mean difference is a small effect without converting it to some type of 
standardized effect size.

Moving on to inference, when the predictor in a simple regression model is binary, the t 
test of whether the slope significantly differs from 0 (Equation 1.13) is equivalent to the well-
known independent-groups t test comparing the outcome variable means of the two groups 
formed by the dichotomous predictor variable:

t
s

Y Y
sY Y

= =
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−
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1 2 1
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where sY Y2 1-  is the standard error of the difference between means calculated using the familiar 
pooled-variance statistic formed under the homogeneity of variance assumption. Thus, the 
independent-groups t test is a special case of significance testing in OLS regression. Likewise, 
the p value for the correlation between a dichotomous X and a continuous Y will be equal to 
that for the t test.8 In the current example, this t test is not significant, t(273) = -0.797, p = .43, 
implying that the gender difference on BPAQ scores may not differ from zero in the popu-
lation. Finally, the confidence interval for the regression slope is identical to a confidence 
interval for the difference between two independent means; in the current example, the 95% 
confidence interval is (-0.22, 0.09), conveying a range of plausible values for the population 
mean difference (µfemale - µmale).

Because the number of male participants (n = 57) is much smaller than the number of 
females (n = 218) in this sample, we should pay extra attention to the viability of the homo-
geneity of variance assumption because it is well known that the consequences of hetero-
geneous variance for the t test are more serious when the group sample sizes are markedly 
discrepant. The sample variances of BPAQ are similar across gender (s2

male = 0.26, s2
female = 0.28), 

which should restore some comfort with the homogeneity of variance assumption despite 
the unbalanced sample size. But regardless of the homogeneity of variance assumption, as we 
observed earlier, the estimated effect size is tiny, and therefore, nonsignificance seems to be 
the appropriate result for this t test.

Dichotomous outcome?

In contrast to the previous section where a continuous outcome variable is regressed on a 
dichotomous predictor, it is critical to recognize that when the outcome itself is dichoto-
mous, the simple linear regression model is not appropriate for the data. If Yi is coded as 
either 0 or 1 for each observation i, then the regression line will typically produce pre-
dicted values, Ŷ , that are outside the range from 0 to 1 and thus improper. Furthermore, 
the residuals cannot be normally distributed with homogeneity of variance, which leads 
to incorrect significance tests and confidence intervals for the parameters (Fox, 2008: 337). 
Instead, it is more reasonable to model dichotomous outcomes using a nonlinear mod-
eling procedure such as logistic regression (or, similarly, probit regression). More generally, 
whenever the outcome variable is categorical, whether dichotomous or with multiple cat-
egories, the ordinary linear regression model is likely to produce misleading results and 
alternative nonlinear models for categorical outcomes, such as those within the class of 
generalized linear models, are more appropriate (see Fox, 2008, for a textbook-length 
treatment of these models). Fortunately, having a solid understanding of ordinary linear 
regression provides an excellent foundation for learning about logistic regression and other 
generalized linear models.

8The product-moment correlation between a dichotomous variable and a continuous variable 

calculated according to the formula presented earlier (Equation 1.9) is a special type of correlation 

known as the point-biserial correlation. Here, the point-biserial correlation between gender and 

BPAQ is r = -.05. In that the correlation is a type of standardized effect measure, the same value is 

obtained regardless of the numerical coding scheme used for the dichotomous variable (dummy-coded  

or otherwise).
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Section recap

Dichotomous variables in the simple linear regression model

When a continuous outcome variable is regressed on a dummy-coded dichotomous (or 
binary) predictor, the intercept estimate will equal the mean of the group coded zero,
β 0 0= =YX , and the slope estimate will equal the difference between the means of the two 
groups, β1 1 0= −= =( )Y YX X .

Furthermore, the t test for the slope estimate is equivalent to the independent-groups 
t test and a (1 - α)% confidence interval for the population slope is identical to a (1 - α)% 
confidence interval for the difference between the two population means.

It is generally inappropriate to model a dichotomous outcome variable (or any categorical 
outcome) using a linear regression model.

BASIC REGRESSION DIAGNOSTIC CONCEPTS

Regression diagnostics are graphical and numeric methods for evaluating the extent 
to which a regression model fitted to data is an adequate representation of that data and 
for evaluating the trustworthiness of inferential conclusions about the model’s parameter 
estimates. In particular, regression diagnostics are used to check the extent to which the 
model’s assumptions have been violated and to examine whether any unusual or outlying 
observations may be impacting the results. Although diagnostic methods primarily show 
their strength when applied to multiple regression models (i.e., models with two or more 
predictors), I introduce the basic concepts here because they can be more plainly and simply 
illustrated with the simple regression model.

Linearity

First and foremost, as emphasized earlier, the simple regression model specifies a linear rela-
tion between the predictor and outcome variables. Linearity is most easily examined with a 
scatterplot of the observed variables (although this may not be sufficient when we move to 
multiple regression), which can be enhanced with a superimposed nonparametric regression 
curve as demonstrated previously in Figure 1.5. In this example, the straight-line regression 
model did seem to be a good representation of the positive (but weak) relation between BPAQ 
scores and BIS scores.

But let’s also consider an example where things don’t work out so well. The student 
researcher who collected the BPAQ aggression data was also interested in studying alcohol 
use among university students. Therefore, N = 270 participants in her study also answered 
questions about their quantity and frequency of alcohol use over the past year, which the 
researcher then combined to produce an overall alcohol-use index.9 Next, although most 
of the undergraduate-student participants were 18 or 19 years old, there was a considerable 

9Specifically, the study used the Quantity × Frequency index described in Chassin, Flora, and King (2004).
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number of nontraditional students who were in their late-20s or 30s, and even a few as old 
as 50. The results reported in the literature suggest that heavy alcohol use is most common 
among young adults and declines thereafter. Thus, the researcher is interested in examining 
the association between age and alcohol use in her sample.

Although I recommend examining data descriptively before proceeding with model fitting, 
and we will look at the alcohol-use data momentarily, for didactic purposes, let’s first consider 
the results from the OLS simple regression of alcohol use on age. The estimated regression 
slope is β̂1  = -0.46, indicating that for each one-year increase in age, the predicted amount of 
alcohol use declines by 0.46 of a point on the alcohol-use scale. This estimated effect seems 
somewhat weak given that the alcohol-use scale ranges from 0 to as high as 95 in the current 
sample, but it is significantly different from zero, t(268) = 2.41, p = .02. Further demonstrating 
the weakness of the effect, R2 is only .02. Thus, the researcher might be tempted to conclude 
that there is a small, but significant, negative relation between age and alcohol use, and stop 
there. But as we see next, this conclusion, although correct in a broad sense, also may be an 
oversimplification of the data.

The scatterplot of alcohol use by age in Figure 1.7 (enhanced with the fitted regression 
line and a nonparametric LOWESS regression curve) supports the notion that high amounts 
of alcohol use are less common among older participants compared with those in early adult-
hood. But this simple observation seems to neglect some other complexities in the data. One 
immediately noticeable issue is that there are far fewer participants at the older ages than at 
age 20 and younger, implying that these data give us scant information about the popula-
tion level of alcohol use among older individuals. But more pertinent to our discussion of 
the adequacy of the linear regression analysis is that the LOWESS curve suggests that the 
typical amount of alcohol use increases from the youngest age until around age 23, but then 
decreases steadily until around age 35.10 This nonlinear pattern is consistent with the results 

10As described in Footnote 5, with small samples, the LOWESS curve may overfit the data. Here, though, 

N is large, especially at the younger ages, implying that the LOWESS curve is likely capturing meaningful 

trends in the data. 
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Figure 1.7  Scatterplot of alcohol-use scores against age with fitted linear regression line 
(solid line) and fitted LOWESS curve (dashed line)
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in the published literature on alcohol use among young adults and is therefore important 
to recognize in these data, but the straight-line model only captures the broad observation 
that older participants tend to have lower amounts of alcohol use than younger participants. 
Nonetheless, this subtle nonlinear trend is not the only challenge that these data pose for the 
linear regression model, as we will see shortly.

Distribution of residuals

Next, recall from earlier that correct inference for the regression parameters assumes that the 
errors are normally distributed with constant, or homogeneous, variance, εi ~ N(0, σ2). When 
this assumption is violated, the Type I error rate (if the null hypothesis is true) and power (if 
the null hypothesis is false) of the t test for the slope parameter estimate is compromised, and 
the width of its confidence intervals are incorrect. Because of the central limit theorem, if the 
sample size is large (>100 or so for a simple regression model), then the normality assumption 
is less critical, and hypothesis tests and confidence intervals are still valid, as long as the other 
assumptions are met. Nevertheless, non-normality still impacts the efficiency of OLS esti-
mates, meaning that alternative estimators of the regression parameters can produce smaller 
standard errors and therefore are associated with greater statistical power and more narrow 
confidence intervals for the estimates. Therefore, it is important to evaluate the tenability of 
the assumption that the errors are normally distributed with homogeneity of variance.

Recall that the errors from the population model (Equation 1.11) differ from the residu-
als from the regression equation formed with the sample-based OLS parameter estimates. 
Because the errors are unobservable, we must instead work with the residuals. With most 
statistical software packages, it is possible to extract the residuals from a fitted regression 
model and then the residuals can be examined like any other variable. Returning to the 
example regression of BPAQ aggression scores on BIS impulsivity scores, Figure 1.8 pre-
sents a histogram of the residuals from this model. Not surprisingly, given the approximate 
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Figure 1.8  Histogram of residuals from OLS regression of BPAQ scores on BIS scores with 
fitted kernel density smoother (solid curve) and fitted normal distribution (dashed curve)
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normal distribution of BPAQ and its reasonably linear (but weak) association with BIS, these 
residuals appear to provide a reasonable approximation of a normal distribution. In con-
trast, Figure 1.9 gives a histogram of residuals from the regression model of alcohol use on 
age, which is clearly non-normal.

Homoscedastic versus heteroscedastic residuals

Perhaps more important than determining whether residuals are normally distributed is 
determining whether they are homoscedastic, meaning that their variance is consistent 
across the values of the predictor X; in other words, it’s important to examine the residu-
als for homogeneity of variance. In our example regression of BPAQ scores on BIS scores, 
because the predictor (BIS) is approximately continuous, it’s best to examine the residuals 
conditioned on BIS using a scatterplot, as in Figure 1.10. To aid interpretation, the scatterplot 
in this figure is enhanced with a nonparametric LOWESS curve along with smoother applied 
to the root-mean-square positive and negative residuals from the LOWESS curve (see Fox 
and Weisberg, 2011: 117–18), which give a graphical summary of the spread of the data in 
the plot. Because these dashed curves are approximately equidistant from each other as they 
move from low to high levels of BIS, the residuals in the plot are in fact evidencing homo-
scedasticity; that is, the spread of the data is constant across the values of the predictor, BIS. 
Therefore, we can be satisfied that the homogeneity of variance assumption is met for this 
linear model. Incidentally, the fact that the solid LOWESS curve in the plot is mostly straight 
and horizontal is further evidence that a linear model is a good representation of the relation 
between BPAQ and BIS scores.

Unlike the model regressing BPAQ on BIS, the estimated linear model predicting alcohol 
use from age appears to have heteroscedastic residuals, that is, residuals which are unevenly 
spread across the age predictor. In particular, Figure 1.11 displays a scatterplot of this model’s 

Figure 1.9  Histogram of residuals from OLS regression of alcohol-use scores on age with 
fitted kernel density smoother (solid curve) and fitted normal distribution (dashed curve)
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residuals against age, again enhanced with the nonparametric LOWESS spread. In this figure, 
the residuals are more spread out at younger ages (especially around age 20) compared with 
higher values of age. Thus, the homogeneity of variance assumption is violated for this model, 
which then casts doubt on the inferential conclusion that the linear slope in the regression of 
alcohol on age significantly differs from zero. Note that Figure 1.11 also further illustrates the 
nonlinear pattern in the data.

Investigating the variability in a dataset can have value beyond just evaluating the homo-
geneity of variance assumption for regression. Here, for example, it may be of substantive 
importance to recognize there is much more variation in the amount of alcohol use among 
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Figure 1.10  Scatterplot of residuals against BIS scores with fitted LOWESS curve (solid 
line) and smoothed root-mean-square positive and negative residuals from the LOWESS 
curve (dashed lines)
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Figure 1.11  Scatterplot of residuals against age with fitted LOWESS curve (solid line) 
and smoothed root-mean-square positive and negative residuals from the LOWESS curve 
(dashed lines)


