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Preface

A power plant somewhere between Pittsburgh and Chicago releases gasses and 
particulates into the air; they contain mercury, oxides of sulfur, and oxides of 
nitrogen. A busy nearby highway is lined with cars on their morning commute; 
each vents nitrogen from its tailpipe. A livestock feeding operation smells faintly 
of ammonia. Tens, or maybe hundreds, of miles downwind a fi sh lays dying in 
a streambed after a large rainstorm. Sugar maple in a northern hardwood forest 
look unhealthy, show signs of canopy dieback, and are no longer producing seed-
lings. Th e forest is changing. A loon is suff ering from neurotoxicity, the result of 
eating too many fi sh containing too much mercury. Atmospheric pollutant emis-
sions and eventual biological damages are linked. We know this. Th e scientifi c 
community has been studying it for more than 30 years. But between the gas 
and particle emissions and the unhealthy trees and fi sh, stuff  happens. It involves 
transportation and transformation, meteorology, physics, chemistry, biology, and 
ecology. Soils and rocks buff er atmospheric acidity, nutrient cycles are disrupt-
ed, inorganic mercury is converted to its highly toxic methylmercury form that 
is prone to bioaccumulation, and aluminum is mobilized from soil to drainage 
water, where it poisons tree roots and fi sh. Th is book is all about that stuff  in the 
middle, between cause and eff ect. 

Air pollution in New York and elsewhere in the eastern United States began to 
increase in a serious way more than a hundred years ago. Th e amounts of sulfur, 
nitrogen, and mercury that we put into the air increased rather steadily, reach-
ing peak values during the last quarter of the twentieth century. As the scientifi c 
community and then the general public have come to understand the human 
health and ecological price we were paying for the right to pollute, emissions have 
declined, especially in response to federal legislation such as the Clean Air Act 
and its amendments. For the most part, these pollutant levels have continued to 
decline. Nevertheless, legacy eff ects remain. As chemical and in some cases biolog-
ical conditions improve, the scientifi c community is trying to better understand 
how low pollution emissions need to go. How good is good enough? What are the 
ecological, economic, and societal trade-off s? How should we manage our resourc-
es? Th is book will help readers develop an understanding of the complexities and 
begin to answer such questions.

Air pollution in the form of sulfur, nitrogen, and mercury is emitted from a 
wide variety of sources. Th ese include power plants, motor vehicles, agriculture, 
incinerators, and industrial facilities. Th ese pollutants are carried with the prevail-
ing winds and are eventually deposited to the earth’s surface in the form of pre-
cipitation, air particles and gasses, mountain clouds, and fog. Once deposited to 
vegetation or soil surfaces, they move into the soil water, where they can become 
adsorbed and stored on soil, taken up by plants and soil microbes, or leached to 
surface waters. Eff ects in the soil, vegetation, and surface-water ecosystem com-
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partments are varied. A multitude of chemical and biological transformations oc-
cur, altering the chemical characteristics of the deposited substances and their 
behavior in the environment. Key processes relating to elemental cycling, toxicity, 
and bioaccumulation in the food chain vary with contaminant type. Ecological 
impacts are diverse. Depending on the severity of impact, trees may die, plant 
species composition may change, fi sh may be eliminated from a particular body of 
water, estuaries may become overenriched with nutrients, or a potent neurotoxin 
may bioaccumulate in fi sh, which in turn might be consumed by and have adverse 
impacts on fi sh-eating wildlife and humans. Th e costs to individuals and society 
are diverse and often substantial. 

Adverse eff ects on lakes and streams and their watersheds occur throughout 
sensitive regions of New York. Pollutants can impact water quality and harm 
many species of aquatic biota. Th ey also alter the chemistry of watershed soils, a 
process that has potential impacts on plant roots and other terrestrial life forms. 
Scientists study the biogeochemistry of the entire landscape. Th e chemistry of 
drainage water integrates a host of terrestrial and aquatic processes that interact 
with water as it moves from the atmosphere as precipitation through the soil and 
into the groundwater and eventually to streams, lakes, rivers, and estuaries. Th us, 
study of the water can elucidate processes on the terrestrial side. 

Th is book describes these interactions and others. Here I summarize the collec-
tive experience of researchers who have been studying the eff ects of air pollutants 
on soils, waters, and associated biota in New York and across the United States for 
the past three decades. Th is book is targeted to students and practitioners of en-
vironmental science, water and air pollution, soil science, biogeochemistry, water 
resources, and aquatic and terrestrial ecology and to water resource professionals 
and other scientists and natural resource managers.

A host of questions revolve around and depend upon the study of air pollution 
and its eff ects. What lakes are acid-sensitive or acid-impacted? Is a stream limited 
in its primary productivity by nitrogen or something else? Have mayfl ies, zoo-
plankton, or fi sh been impacted by too much acidity? If so, which species? Are for-
est tree distributions and forest health changed by atmospheric nitrogen or sulfur 
input? Has mercury bioaccumulation aff ected piscivorous wildlife such as loons, 
eagles, and mink? What is the critical load of air pollution that sensitive down-
wind resources can tolerate without unacceptable damage? What level of damage 
is acceptable? What have been the eff ects of air pollution on aquatic and terrestrial 
food webs? Are water-quality, soil, and forest conditions getting better, staying the 
same, or getting worse over time? Th e questions are endless. If you have questions 
such as these or if you want answers that you can base policy or management on, 
this book can be of assistance. 

Th e focus is on air pollution eff ects in New York. I highlight, in particular, re-
search results generated in the Adirondack and Catskill Parks, Long Island Sound 
and associated coastal estuaries, and the Great Lakes region. However, I also draw 
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extensively from research conducted elsewhere in the northeastern United States, 
throughout the country, and overseas. Th e principles described in this book are 
applicable to the study of air pollution and its eff ects globally. 

Th e various examples that are provided here deal with studies of environmental 
eff ects from atmospheric deposition of acidifying, eutrophying, and neurotoxic 
air contaminants. However, the principles that are developed and illustrated here 
also apply to the study of other environmental issues besides atmospheric deposi-
tion of sulfur, nitrogen, and mercury. Th e cycles, processes, and transformations 
discussed in this book can also inform the study of agricultural, silvicultural, 
and urban pollutants; climate change; and other aspects of nonpoint- and point-
source pollution. A reader who grasps the materials presented in this book will be 
well equipped to design, implement, and interpret many kinds of pollution eff ects 
studies. 

I hope that the information presented here will help you design, conduct, and 
interpret environmental eff ects studies that will help all of us to better understand 
the impacts of human activities on ecosystem health. Armed with high-quality 
data and appropriate analyses, we can collectively move forward to reduce unac-
ceptable human-caused impacts in an economically responsible fashion and pro-
tect and improve the quality of our natural resources for future generations. 
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1.1. ATMOSPHERIC DEPOSITION IN NEW YORK

New York is home to a wide range of plant and animal species that occupy 
a multitude of ecosystems, from the high peaks of the Adirondack Mountains 
to the southern Great Lakes and the estuaries and coastal waters of the Atlantic 
Ocean. New York’s forests support wildlife and timber production and contribute 
clean water for human consumption and aquatic ecosystem health. Lakes and 
streams support fi sh and the life forms on which they feed and the predators 
that feed on them. Coastal waters and estuaries that include Long Island Sound, 
the Hudson River Estuary, and Raritan Bay provide diverse habitats for aquatic 
species and support fi sheries economies. In addition to the ecologic and economic 
values and the ecosystem goods and services New York’s ecosystems provide, they 
also attract millions of visitors to the mountainous, Great Lakes, and coastal re-
gions each year.

Th e Adirondack and Catskill Mountains regions of New York contain many 
protected lakes and streams that are aff ected by air pollution. Th e Adirondack 
Park, in particular, has been the focus of extensive research and monitoring ef-
forts for more than 30 years so that we can better understand the eff ects of air 
pollution. Surveys have been conducted of hundreds of streams and more than 
a thousand lakes. Th ere have been investigations of short-term changes in water 
chemistry during periods of rain and snowmelt, studies of acidifi cation processes, 
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the development and application of mathematical models to predict the rate of 
future recovery as air pollution levels decline, studies to estimate the critical loads 
of atmospheric deposition required to protect sensitive resources, and periodic 
sampling of dozens of lakes for more than 30 years to document changes over 
time. Much is known about aquatic and terrestrial resource sensitivity and dam-
age in these regions from atmospheric deposition of air pollutants. However, much 
remains to be learned.

Air pollution in the form of atmospheric deposition of sulfur (S), nitrogen (N), 
and mercury (Hg) has caused substantial damage to sensitive and valuable re-
sources in New York. Additional damage might occur in the future if air pollu-
tion continues at relatively high levels. However, federal and state eff orts over the 
past several decades to curb air pollution emissions from power plants, industry, 
and motor vehicles have resulted in a pronounced decrease in air pollution and 
atmospheric deposition of airborne contaminants in New York and elsewhere in 
the eastern United States. Hopes have risen among environmental scientists and 
policy makers that damaged resources will recover, and indeed some recovery has 
been documented.

Resources considered highly sensitive to the eff ects of atmospheric deposition 
of S, N, and Hg are not evenly distributed across New York. Some areas contain 
extensive sensitive resources; other areas contain few. Resource sensitivity also var-
ies with respect to the types of eff ects. Resources sensitive to acidifi cation are clus-
tered largely in the Adirondack and Catskill Mountains. Acid sensitivity has also 
been documented in the Shawangunk region of the state. Sensitivity to nutrient 
enrichment from atmospheric N deposition occurs statewide, but concern is most 
heavily focused on coastal areas and the Great Lakes region. Sensitivity to Hg 
methylation occurs statewide but is most prevalent in areas containing abundant 
wetland vegetation. Figure 1.1 shows the locations in New York where some of 
these sensitive resources are located.

Resources in the Adirondack and Catskill Mountains have been damaged by 
acidic deposition caused by both S and N air pollutants. In fact, these regions are 
among the most sensitive and damaged in the United States. Sulfur and N have 
been contributed from the atmosphere to soil and drainage water, lowering the 
pH and causing chemical changes that aff ect the suitability of the soil and water 
for supporting sensitive species of algae, plants, and animals. Some of the species 
aff ected are especially important to the citizens of New York, including trout and 
other sport fi sh and sugar maple (Acer saccharum) and red spruce (Picea rubens) 
trees. Estuaries and marine coastal waters have been aff ected by overenrichment 
with nutrient N. Some of that N is deposited from the atmosphere, but other 
important sources include agricultural runoff  and wastewater treatment facilities. 
Added N often acts to stimulate algal growth in estuarine and marine waters, 
leading to a cascade of deleterious impacts on coastal waters and the plants and 
animals that live there.
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Nitrogen deposition, especially to wetlands, meadows, and alpine environ-
ments, can alter competitive relationships among plant species and increase the es-
tablishment of nonnative species at the expense of some of the rare native species. 
Species shifts are thought to occur at N deposition levels as low as 5 to 10 kilo-
grams per hectare per year (kg N/ha/yr) for raised and blanket bogs (Achermann 
and Bobbink 2003) and at even lower levels for alpine plant communities (Sver-
drup et al. 2012). Some wetland plants are well adapted to low-N environments, 
including some species in the genera Sphagnum and Isoetes and some insectivorous 
plants, such as the green pitcher (Sarracenia oreophila) and the roundleaf sundew 
(Drosera rotundifolia). Th e pitcher plant (Sarracenia purpurea), a native of nutri-
ent-poor peatlands in the eastern United States, has been proposed as an indicator 
of high atmospheric N supply (Ellison and Gotelli 2002).

Atmospheric deposition also contributes Hg to natural ecosystems in New 
York. When converted into a methylated chemical form, Hg bioaccumulates in 
food chains and is toxic to humans and wildlife predators. Th e latter include large 
fi sh, river otters (Lontra canadensis), mink (Neovison vison), loons (Gavia spp.), and 
bald eagles (Haliaeetus leucocephalus). Th ere are also complex interactions between 
S and Hg deposition, because sulfate (SO4

2-)-reducing bacteria are believed to 

FIGURE 1.1. LocaƟ ons of the major resources that are known to be sensiƟ ve to atmospheric 
inputs of sulfur, nitrogen, and mercury in New York: the Adirondack, Catskill, and Shawangunk 
regions; the Great Lakes; and coastal estuaries around Long Island.
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be the dominant source of methyl Hg (MeHg) in many natural ecosystems. By 
methylating Hg, these bacteria make it biologically available and facilitate bio-
magnifi cation.

In response to atmospheric deposition of S, N, and Hg on New York ecosys-
tems, fi sh, plants, and other life forms have suff ered varying degrees of damage 
from acidifi cation, nutrient enrichment, and toxicity. Citizens of New York have 
shown great concern about air pollution damage to brook trout (Salvelinus fon-
tinalis) and other fi sh species. Th e general public may be less aware of eff ects on 
other life forms.

1.2. AIR QUALITY MANAGEMENT

1.2.1. Clean Air Act
Th e Clean Air Act (CAA) of 1970 was enacted to protect public health and 

welfare from the harmful eff ects of human-generated air pollution. Criteria pol-
lutants are those for which the U.S. Environmental Protection Agency (EPA) has 
established National Ambient Air Quality Standards (NAAQS) as directed by 
the CAA. Standards were established for selected pollutants that are emitted to 
the atmosphere in signifi cant quantities throughout the country and that may 
endanger public health and welfare. Th ese include sulfur dioxide (SO2) and nitro-
gen oxides (NOx). Although reduced N (NHx) also contributes to these eff ects, 
standards have not been set for it. Th e primary NAAQS are designed to protect 
human health, while the secondary NAAQS are designed to protect public welfare 
from the adverse eff ects of pollutant(s). Th e CAA defi nes public welfare eff ects to 
include, but not be limited to, “eff ects on soils, water, crops, vegetation, manmade 
materials, animals, wildlife, weather, visibility and climate, damage to and deteri-
oration of property, and hazards to transportation, as well as eff ects on economic 
values and on personal comfort and well-being.”

Th e CAA as amended in 1977 also established the Prevention of Signifi cant 
Deterioration (PSD) program. Th e primary objective of the PSD provisions is to 
prevent substantial degradation of air quality in areas that comply with NAAQS 
and yet maintain a margin for industrial growth. A PSD permit from the ap-
propriate air regulatory agency is required to construct a new pollution source 
or substantially modify an existing source (Bunyak 1993). A permit application 
must demonstrate that the proposed polluting facility will (1) not violate na-
tional or state ambient air quality standards; (2) use the best available control 
technology to limit emissions; (3) not violate PSD increments for SO2, nitrogen 
dioxide (NO2), or particulate matter (PM); and (4) not cause or contribute to 
adverse impacts to air quality related values (AQRVs) in any Class I area. Class I 
areas include certain national parks and wilderness areas that receive the highest 
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level of federal protection from air pollution damage. Th e PSD increments are 
allowable pollutant concentrations that can be added by industrial development 
to baseline concentrations.

Th e values Congress chose as PSD increments were not selected on the basis 
of concentration limits causing impacts to specifi c resources. Th erefore, it is 
possible that pollution increases that exceed the legal Class I increments may 
not cause damage to Class I areas. It is also possible that resources in a Class I 
area could be adversely aff ected by pollutant concentrations that do not exceed 
the increments.

Th e following questions may be addressed when reviewing PSD permit ap-
plications:

• What are the identifi ed sensitive AQRVs in each Class I area that could be 
aff ected by the new source?

• What are the air pollutant levels that may aff ect the identifi ed sensitive 
AQRVs?

• Will the proposed facility result in pollutant concentrations or atmospher-
ic deposition that will cause the identifi ed critical level to be exceeded or 
add to levels that already exceed the critical level?

• If the critical level of the sensitive indicator is exceeded, what amount of 
additional pollution is considered “insignifi cant”?

Th e fi rst two questions are largely land management issues that should be 
answered on the basis of management goals and objectives for the protected 
area. Th e last two are technical and policy questions that must be answered on 
the basis of analyses of projected emissions from the proposed facility and pre-
dictions of environmental response to given pollutant concentrations (Peterson 
et al. 1992).

In Title IV of the 1990 Clean Air Act Amendments (CAAA), Congress called 
for decreases in annual emissions of SO2 and NOx from utilities that burn fossil 
fuels. Th e legislation specifi cally required utilities to reduce (from 1980 levels) 
annual emissions of SO2 by 10 million tons and annual emissions of NOx by 2 
million tons by the year 2010. As a consequence of Title IV, emissions and depo-
sition of NOx, especially sulfur oxides (SOx), have declined substantially since 
1990. Th e Clean Air Interstate Rule (CAIR) of 2005 further reduced S and N 
emissions and deposition, but that rule has gone through legal challenges.

Th e CAIR emissions control rule focused primarily on emissions controls on 
coal-fi red electricity generating plants for the purpose of attaining NAAQS for 
particulate matter and ozone (O3). However, the CAIR was challenged in court. 
Th e Cross State Air Pollution Rule (CSAPR) was scheduled to replace CAIR 
in 2012, but it too was litigated and vacated. In April 2014, the U.S. Supreme 
Court revised the earlier District of Columbia circuit court opinion that had 
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previously vacated CSAPR. At the time of this writing, CAIR remains in eff ect 
but will probably be replaced by something diff erent. It is not clear at this time 
what exactly will replace it.

1.2.2. Regional Haze Rule
More recent reductions in S and N emissions and deposition have been driven, 

in large part, by the need for states to comply with regulations aimed at improving 
visibility in Class I areas. Th e EPA promulgated regulations in 1980 to address 
visibility impairment that is “reasonably attributable” to one or a small group of 
sources. Congress subsequently added section 169B to the CAAA to focus atten-
tion on regional haze issues. On July 1, 1999, the EPA promulgated the Regional 
Haze Rule (RHR), which requires states (and tribes that choose to participate) to 
review how pollution emissions in the state aff ect visibility at Class I areas across 
a broad region (not just Class I areas in the state). Th ese rules also require states to 
make “reasonable progress” in reducing any eff ect this pollution has on visibility 
conditions in Class I areas and to prevent future impairment of visibility. Th e 
rule requires states to analyze a pathway that takes the Class I areas from current 
conditions to “natural conditions” in 60 years. “Natural conditions,” a term used 
in the CAA, means that no human-caused pollution can impair visibility. Th is 
program is aimed at Class I areas, which are not found in New York but occur in 
surrounding states (Plate 1). Th us, eff orts to curtail emissions that impact Class I 
areas in nearby states also aff ect air pollutants that are emitted in or transported to 
New York. Th e RHR is improving regional visibility throughout the country and 
is noteworthy because the requirement to improve visibility will result in further 
decreases in S and N deposition. Th is is because ammonium sulfate is typically 
the principal contributor to haze at most locations in the eastern United States.

1.2.3. Federal Water PolluƟ on Control Act
Th e Federal Water Pollution Control Act, commonly known as the Clean Wa-

ter Act (CWA), was promulgated in 1972, and signifi cantly amended in 1977, 
1987, and 1990. Th e primary purpose of the act is to protect and restore the phys-
ical, chemical, and biological quality of the nation’s waters. Th e act established 
the goals of making all navigable waters fi shable and swimmable and eliminating 
the discharge of pollutants into the nation’s waterways. Like the CAA, the CWA 
provides an additional tool to help states meet pollution control mandates. Th e 
impaired streams and anti-degradation sections of this law are pertinent to air 
pollution eff ects assessment because streams acidifi ed by S and/or N deposition 
may qualify to be listed as impaired streams on what is known as the 303(d) list.

States manage and protect water quality under the CWA through the devel-
opment and enforcement of ambient water-quality standards. Water quality stan-
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dards are composed of three interrelated parts: (1) designated benefi cial uses of a 
water body, such as contact recreation or cold-water fi shery; (2) numerical or nar-
rative criteria that establish the limits of physical, chemical, and biological charac-
teristics of water suffi  cient to protect benefi cial uses; and (3) an anti-degradation 
provision to protect water quality that exceeds criteria and to protect and maintain 
water quality in in waters designated as Outstanding National Resource Waters, 
an EPA category. States comply with water-quality standards by controlling the 
type and quantity of point-source pollutants entering waters through the Nation-
al Pollutant Discharge Elimination System (NPDES) and by implementing best 
management practices for nonpoint sources of pollution. Section 303(d) of the 
act requires states to also formally identify waters that do not currently meet wa-
ter-quality standards and bring them into compliance through the development 
and implementation of total maximum daily loads, which establish the maximum 
loadings of pollutants that a water body can receive from point and nonpoint 
(including atmospheric deposition) sources of pollution without exceeding the 
standards.

1.2.4. Other LegislaƟ on
New York State has enacted statewide emissions regulations for coal-fi red power 

plants. Th e original law, the State Acid Deposition Control Act, was passed in the 
1980s. A second law, the Acid Deposition Reduction Program (ADRP), was passed 
in 2004 that will require fossil fuel–fi red electric generators in New York State to 
reduce NOx and SO2 emissions. Aff ected sources must reduce SO2 emissions to 50 
percent below the levels allowed by Phase 2 of the federal acid rain program. Aff ect-
ed sources must reduce NOx emissions during the non-O3 season (October–April) 
to a level that corresponds with the NOx reductions that were achieved starting on 
May 1, 2003, through the implementation of the CAIR NOx Ozone Season Trad-
ing Program for the O3 season (May–September). Although these regulations do 
not address emissions from upwind states, they do contribute to the overall pattern 
of regional emissions controls that infl uence atmospheric deposition of S, N, and 
Hg at the locations of sensitive ecosystem receptors in New York.

1.3. ECOSYSTEM FUNCTIONS AND SERVICES

Ecosystem services refer to the fundamental value of ecosystems to human 
welfare. Ecosystems provide many goods and services that are critical for the func-
tioning of the biosphere and provide the basis for the delivery of tangible benefi ts 
to human society. Th ese include food, materials, pharmaceuticals, ecosystem pro-
cesses and cycles, recreation, relaxation, and spiritual enrichment. Terminology 
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regarding ecosystem services, human value, ecosystem function, and social benefi t 
can be confusing (Table 1.1). ICSU-UNESCO-UNU (2008), Th e Millennium 
Ecosystem Assessment (MEA; 2005), and the EPA (2008) have defi ned ecosystem 
services to include supporting, provisioning, regulating, and cultural services:

• Supporting services support the provision of other ecosystem services 
through such actions as production of biomass, production of atmospheric 
oxygen, soil formation and retention, nutrient cycling, water cycling, and 
provision of habitat.

• Provisioning services include products such as food, fi ber, and medicinal 
and cosmetic products (Gitay et al. 2001).

• Regulating services include carbon sequestration; climate and water regula-
tion; protection from natural hazards such as fl oods, water and air purifi ca-
tion; and disease and pest regulation.

• Cultural services satisfy human spiritual, educational, and aesthetic needs 
and foster appreciation of ecosystems and their components.

TABLE 1.1. Key terms that are central to the ecosystem service concept based on the 
example of acidifi caƟ on eff ects on recreaƟ onal fi shing

Term DescripƟ on Examples

Final ecosystem service End product component of 
nature that yields human 
well-being

Sport fi shery, surface 
water

Intermediate service Intermediate product 
needed to support fi nal 
ecosystem services 

Water quality needed 
to support a sport 
fi shery

Value Importance to people, 
expressed in monetary or 
nonmonetary terms

Opportunity to fi sh 
in an aestheƟ cally 
pleasing locaƟ on that 
contains suitable sport 
fi sh

FuncƟ on/process Intermediate step that 
contributes to the service

Nutrient cycling, cleans-
ing of drainage water 
as it fl ows through soil, 
microclimate regulaƟ on

Social benefi t or source of 
well-being

Arises from the human use 
of an ES, oŌ en in combi-
naƟ on with other conven-
Ɵ onal goods and services

RecreaƟ on, spiritual 
enrichment, relaxaƟ on, 
natural biodiversity 
maintained
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In evaluating the eff ects of air pollutants on ecosystem services, each service 
should be geographically referenced and expressed where possible in generally 
comparable units of measure (Gimona and van der Horst 2007; Naidoo et al. 
2008). Th is allows comparison of loss or gain in ecosystem services across space 
and across time. Services that can be measured and stacked to facilitate prioriti-
zation of key regions or watersheds are especially important to human well-being 
because key areas such as the Adirondack and Catskill Parks provide a multitude 
of services in proximity to centers of human population and provide services that 
are highly valued by the citizens of New York.

Regulating services include natural cycles and processes and the ways they ben-
efi t people. It is diffi  cult to estimate their value. Cultural services include a variety 
of emotional, psychological, and spiritual benefi ts that humans derive from nat-
ural ecosystems; these are also diffi  cult to quantify. Cultural services also include 
benefi ts related to outdoor recreation and ecotourism, which are important com-
ponents of rural economies in New York. Such services include fi shing, hunting, 
hiking, swimming, boating, and wildlife viewing. Sources of human well-being, 
ecosystem services, and the social benefi ts of ES are closely related (Figure 1.2).

However, many of the supporting and regulating services MEA (2005) and 
others have identifi ed are inconsistent with a defi nition of ecosystem services that 
is measurable, mappable, and capable of being stacked and valued. Th ere are also 
diffi  culties of double-counting of intermediate products or services when the value 
of one ecosystem service is embedded in the value of another ecosystem service. 
For example, supporting services, such as nutrient cycling, constitute intermediate 
services that should not be valued directly because they are already included in 
the process of assessing impacts on a fi nal ecosystem service, such as provision of 
a trout fi shery (Sullivan 2012).

Boyd and Banzhaf (2007) stress the importance of separating intermediate 
and fi nal services for economic valuation. It is these fi nal ecosystem services that 
satisfy the need to measure, stack, map, and assign value such services. Interim 
products, functions, processes, and cycles are intermediate to or contribute to 
fi nal ecosystem services but are not themselves fi nal services (Sullivan 2012). 
Given the importance of these considerations, and in keeping with the econom-
ic issues raised by Boyd and Banzhaf (2007), a fi nal ecosystem service can be 
defi ned as follows:

an endpoint component of nature that can be enjoyed, consumed, or 
used by people to generate human well-being and that can be measured, 
stacked, mapped, and valued using a common currency. (Sullivan 2012)

Resource management and public policy should focus in large part on these 
fi nal ecosystem services, which are determined by the processes, cycles, and inter-
mediate services that are the focus of ecological research.
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A decrease in ecosystem services is often refl ected in economic loss. Deter-
mination of the net impact of changes in ecosystem services requires a complete 
accounting of costs and benefi ts using a common currency for valuation of eco-
system services. Th is is important because society and makers of environmental 
public policy will be less likely to ignore the consequences of air pollution and the 
benefi ts of mitigation if the economic costs and damages are clearly defi ned and 
are expressed in terms of monetary value. Restoration of ecosystem services that 
have been lost due to air pollution damage can aff ect a wide range of potential 
benefi ts to society (Table 1.2).

Calculation of a change in ecosystem services caused by an environmental stress 
such as acidifi cation, Hg biomagnifi cation, or nutrient enrichment must be based 

FIGURE 1.2. RelaƟ onships among sources of human well-being, ecosystem services, and so-
cial benefi ts that accrue from ecosystem services, using the example of recreaƟ onal fi shing. 
Adapted from Boyd and Banzhaf 2006; Sullivan and McDonnell 2012.
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TABLE 1.2. AnƟ cipated ecosystem service benefi ts to be realized by moving from a 
state of criƟ cal load exceedance to non-exceedance in the Adirondack Mountains

Ecosystem service AnƟ cipated benefi ts Notes

Provisioning services

ProducƟ on of maple syrup 
and related products

ConƟ nued or increased pro-
ducƟ on of food products

Important regional 
benefi t

Catch of brook trout and 
other game fi sh in sport 
fi shery

ConƟ nued or increased 
catch of sport fi sh

Important regional 
benefi t, especially in 
the Adirondack and 
Catskill Parks

ProducƟ on of maple wood 
for furniture and other 
wood products industry

ConƟ nued or increased 
wood producƟ on

Limited benefi t

ProducƟ on of spruce wood 
for wood products

ConƟ nued or increased 
wood producƟ on

Provision of wildlife hab-
itats

ConƟ nued provision of 
habitat for species associ-
ated with sugar maple or 
red spruce trees or surface 
waters

Diffi  cult benefi t to 
quanƟ fy

Regula  ng services

ClimaƟ c regulaƟ on Decreased greenhouse gas 
producƟ on or increased 
carbon sequestraƟ on 
can reduce potenƟ al for 
climate warming impacts

Diffi  cult benefi t to 
quanƟ fy

Water regulaƟ on Improved tree health in 
some habitat types can 
maintain or enhance water 
storage, reducing the 
impacts of fl ooding and pro-
viding increased stream fl ow 
during low fl ow periods

Diffi  cult benefi t to 
quanƟ fy

Erosion regulaƟ on Decreased eff ect on vege-
taƟ on cover can limit pos-
sible increases in erosion 
during heavy precipitaƟ on 
events

Diffi  cult benefi t to 
quanƟ fy


