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Foreword
MATLAB is used for so many applications, it defies attempts at categorization. This book demon-
strates some of that interesting diversity.

As you read and use this book, you will find two kinds of knowledge. You may hope to find 
insight to the use of MATLAB and Simulink. That hope will be richly fulfilled, I think. But you 
should be mindful of another kind of knowledge; how others have solved problems. The rich col-
lection of examples and methods go far beyond the software toolset. These span different technical 
disciplines and industries.

The authors show how modeling, simulation, and analysis gets done across a wide range of appli-
cations and industries, including financial markets. Work within and among various professional 
societies further broaden this perspective. Their university work in teaching budding scientists and 
engineers has honed the ability to make complexity approachable.

This book gives readers a chance to look outside their own discipline or industry, to collect ideas 
from afar.

I hope your imagination will be fired while your modeling and simulation skills are being honed.

Steve Roemerman
Chairman & CEO of Lone Star Analysis

Dallas, TX

Simulation has come a long way since the days analog computers filled entire rooms. Yet, it is more 
important than ever that simulations be constructed with care, knowledge, and a little wisdom, lest 
the results be gibberish or, worse, reasonable but misleading. Used properly, simulations can give 
us extraordinary insights into the processes and states of a physical system. Constructed with care, 
simulations can save time and money in today’s competitive marketplace.

One major application of simulation is the simulator, which provides interaction between a model 
and a person through some interface. The earliest simulator, Ed Link’s Pilot Maker aircraft trainer, 
did not use any of the simulation techniques described in this book. Modern simulators, however, 
such as the National Advanced Driving Simulator (NADS), cannot be fully understood without them.

The mission of the NADS is a lofty one: to save lives on U.S. highways through safety research 
using realistic human-in-the-loop simulation. This is an example of the importance simulation has 
attained in our generation. The pervasiveness of simulation tools in our society will only increase 
over time; it will be more important than ever that future scientists and engineers be familiar with 
their theory and application.

The content for Simulation of Dynamic Systems with MATLAB® and Simulink® is arranged 
to give the student a gradual and natural progression through the important topics in simulation. 
Advanced concepts are added only after complete examples have been constructed using funda-
mental methods. The use of MATLAB and Simulink provides experience with tools that are widely 
adopted in industry and allow easy construction of simulation models.

May your experience with simulation be enjoyable and fruitful and extend throughout your careers.

Chris Schwarz, PhD
Iowa City, Iowa
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Preface
In the first article of SIMULATION magazine in the Fall of 1963, the editor John McLeod pro-
claimed simulation to mean “the act of representing some aspects of the real world by numbers or 
symbols which may be easily manipulated to facilitate their study.” Two years later, it was modified 
to “the development and use of models for the study of the dynamics of existing or hypothesized 
systems.” More than 40 years later, the simulation community has yet to converge upon a univer-
sally accepted definition. Either of the two cited definitions or others that followed convey a basic 
notion, namely, that simulation is intended to reinforce or supplement one’s understanding of a sys-
tem. The definitions vary in their description of tools and methods to accomplish this.

The field of simulation is experiencing explosive growth in importance because of its ability to 
improve the way systems and people perform, in a safe and controllable environment, at a reduced 
cost. Understanding the behavior of complex systems with the latest technological innovations in 
fields such as transportation, communication, medicine, aerospace, meteorology, etc., is a daunting 
task. It requires an assimilation of the underlying natural laws and scientific principles that gov-
ern the individual subsystems and components. A multifaceted approach is required, one in which 
simulation can play a prominent role, both in validation of a system’s design and in training of per-
sonnel to become proficient in its operation.

Simulation is a subject that cuts across traditional academic disciplines. Airplane crews spend 
hours flying simulated missions in aircraft simulators to become proficient in the use of onboard sub-
systems during normal flight and possible emergency conditions. Astronauts spend years training in 
shuttle and orbiter simulators to prepare for future missions in space. Power plant and petrochemical 
process operators are exposed to simulation to obtain peak system performance. Economists resort 
to simulation models to predict economic conditions of municipalities and countries for policymak-
ers. Simulations of natural disasters aid in preparation and planning to mitigate the possibility of 
catastrophic events.

While the mathematical models created by aircraft designers, nuclear engineers, and economists 
are application specific, many of the equations are analogous in form despite the markedly differ-
ent phenomena described by each model. Simulation offers practitioners from each of these fields 
the tools to explore solutions of the models as an alternative to experimenting with the real system.

This book is meant to serve as an introduction to the fundamental concepts of continuous sys-
tem simulation, a branch of simulation applied to dynamic systems whose signals change over a 
continuum of points in time or space. Our concern is with mathematical models of continuous-
time systems (electric circuits, thermal processes, population dynamics, vehicle suspension, human 
physiology, etc.) and the discrete-time system models created to simulate them. The continuous sys-
tem mathematical models consist of a combination of algebraic and ordinary differential equations. 
The discrete-time system models are a mix of algebraic and difference equations.

Systems that transition between states at randomly occurring times are called discrete-event 
systems. Discrete-event simulation is a complementary branch of simulation, separate from con-
tinuous system simulation, with a mathematical foundation rooted in probability theory. Examples 
of discrete-event systems are facilities such as a bank, a tollbooth, a supermarket, or a hospital 
emergency room, where customers arrive and are then serviced in some way. A manufacturing plant 
involving multiple production stages of uncertain duration to generate a finished product is another 
candidate for discrete-event simulation.

Discrete-event simulation is an important tool for optimizing the performance of systems that 
change internally at unpredictable times due to the influence of random events. Industrial engineer-
ing programs typically include a basic course at the undergraduate level in discrete-event simula-
tion. Not surprisingly, a number of excellent textbooks in the area have emerged for use by the 
academic community and professionals.
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In academia, continuous simulation has evolved differently than discrete-event simulation. 
Topics in continuous simulation such as dynamic system response, mathematical modeling, differ-
ential equations, difference equations, and numerical integration are dispersed over several courses 
from engineering, mathematics, and the natural sciences. In the past, the majority of courses in 
modeling and simulation of continuous systems were restricted to a specific field like mechanical, 
electrical, and chemical engineering or scientific areas like biology, ecology, and physics.

A transformation in simulation education is underway. More universities are beginning to offer 
undergraduate and beginning graduate courses in the area of continuous system simulation designed 
for an interdisciplinary audience. Several institutions now offer master’s and PhD programs in sim-
ulation that include a number of courses in both continuous and discrete-event simulation. A critical 
mass of students are now enrolled in continuous simulation-related courses and there is a need for 
an introductory unifying text.

The essential ingredient needed to make simulation both interesting and challenging is the inclu-
sion of real-world examples. Without models of real-world systems, a first class in simulation is little 
more than a sterile exposition of numerical integration applied to differential equations.

Modeling and simulation are inextricably related. While the thrust of this text is continuous 
simulation, mathematical models are the starting point in the evolution of simulation models. 
Analytical solutions of differential equation models are presented, when appropriate, as an alterna-
tive to simulation and a simple way of demonstrating the accuracy of a simulated solution. For the 
most part, derivations of the mathematical models are omitted and references to appropriate texts 
are included for those interested in learning more about the origin of the model’s equations.

New and revised topics in the third edition are discussed in the later paragraphs dedicated to the 
content of each chapter. However, certain changes appearing in the third edition apply to the entire 
book, Chapters 1 through 8. These changes consist of the following:

 1. All MATLAB script and function .m files have been renamed and the references to them 
in the text have been changed to reflect the new file names. This eliminates the confusion 
present in the second edition which retained the MATLAB file names from the first edition 
based on the old system for naming chapter sections, figures, tables and exercise problems. 
Simulink model .mdl file names remain unchanged since they do not contain chapter or 
section references in their names.

 2. With very few exceptions, nearly every graph generated in MATLAB has been redone 
to improve its appearance in printed form. Specifically, all line plots and markers are 
produced with a heavier weight, annotation and titles of most graphs have been changed 
to better communicate the significance of each graph. Whilst the graphs are in black and 
white in the text, every graph generated in MATLAB appears on screen in vivid colors to 
enhance their appearance. Updated MATLAB and Simulink files are accessible from CRC 
Press.

 3. Simulink diagrams have been updated to be compatible with version R2016a of MATLAB/
Simulink. Diagrams with numerous Simulink blocks have been expanded to reveal the 
details of each block and their interconnections.

 4. Certain non-graph figures have been eliminated as a result of being unnecessary, while 
others have been modified to be more informative.

Simulation is best learned by doing. Accordingly, the material is presented in a way that per-
mits the reader to begin exploring simulation, starting with a mathematical model in Chapter 1. 
The notation used to represent discrete-time variables has been simplified in the new edition mak-
ing it easier to comprehend the difference equations developed to approximate the dynamics of 
continuous-time systems. The latter part of Section 1.1 and all of Sections 1.2 through 1.5 have been 
rewritten to better explain the underlying concepts.
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Chapters 2 and 4 remain basically unchanged. They present a condensed treatment of linear, 
continuous-time, and discrete-time dynamic systems, normally covered in an introductory linear 
systems course. The instructor can skip some or all of the material in these chapters if the students’ 
background includes a course in signals and systems or linear control theory.

Numerical integration is at the very core of continuous system simulation. Instead of treating the 
subject in one exhaustive chapter, coverage is distributed over three chapters. Elementary numeri-
cal integration in Chapter 3 is an informal introduction to the subject, which includes discussion 
of several elementary methods for approximating the solutions of first order differential equations. 
Presentation of the topics in Chapter 3 has been completely revised. Much of the material in Chapter 
3 from the second edition appears in a reorganized format while some material has been deleted 
and new material added.

Simulink, from The MathWorks, is the featured simulation program because of its tight 
 integration with MATLAB, the de facto standard for scientific and engineering analysis, and data 
visualization software. Chapter 5 takes the reader through the basic steps of creating and running 
Simulink models. Monte Carlo simulation for estimation of system parameters and probability of 
events occurring in dynamic systems is covered. A new case study is introduced in Section 5.13 
involving logically-controlled flows between two interconnected tanks.

Chapter 6 delves into intermediate-level topics of numerical integration, including a formal pre-
sentation of One-Step (Runga–Kutta) and multistep methods, adaptive techniques, truncation errors 
and a brief mention of stability.

Chapter 7 highlights some advanced features of Simulink useful in more in-depth simulation 
studies. Section 7.7 was added to demonstrate rare event modeling and portfolio risk measurement, 
thereby exposing potential Black Swans as they may pertain to the financial markets. Section 7.8 
was added to introduce SIPmath as a means for efficiently representing uncertainty as probability 
distributions, enabling legacy and future simulation models to communicate with each other.

Chapter 8 is for those interested in more advanced topics on continuous simulation. Coverage 
includes a discussion of dynamic errors, stability, real-time compatible numerical integration and 
multirate integration algorithms for simulation of stiff systems.

The basic minimum requirement for anyone using this text is a first course in Ordinary 
Differential Equations. An outline for a one-semester, preferably senior-level course in continuous 
system simulation is subject to the individual requirements of the instructor as well as the prior 
education of the students. As a starting point, some basic recommendations by the authors for a 
one-semester course are:

Chapter 1 
Sections

Chapter 2 
Sections

Chapter 3 
Sections

Chapter 4 
Sections

Chapter 5 
Sections

Chapter 6 
Sections

For students knowledgeable 
in linear systems theory

1–4 1–8 1–8 Review of 
1–8

1–3, 5, 6, 8, 
9, 11 or 13

1–5, 8

For students not well-versed 
in linear systems theory

1–4 1–8 1–8 1–5 1–3, 5, 6, 8, 
11 or 13

1–4, 8

All remaining sections are appropriate for a second course in a two-semester sequence, either at 
the senior, or more appropriately graduate level. The material in Chapters 7 and 8 is well suited as a 
reference for practicing engineers and researchers involved in more advanced simulation endeavors.

The first and second editions of this text has been field-tested for nearly a decade. Despite numer-
ous revisions based on the scrutiny and suggestions of students and colleagues, some errors man-
age to go undetected. Further suggestions for improvement and revelations of inaccuracies can be 
brought to the attention of the authors at aerospace321@outlook.com and klee.harold@gmail.com.

Numerous individuals deserve our thanks and appreciation for making the third edition pos-
sible. Thanks to Nora Konopka at Taylor & Francis/CRC Press for committing to the third edition 
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and Kyra Lindholm, also with Taylor & Francis/CRC Press, for facilitating the transition from the 
second to the third edition.

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. For product 
 information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

www.mathworks.com
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1 Mathematical Modeling

1.1 INTRODUCTION

1.1.1 Importance of models

Models are an essential component of simulation. Before a new prototype design for an automobile 
braking system or a multimillion dollar aircraft is tested in the field, it is commonplace to “test 
drive” the separate components and the overall system in a simulated environment based on some 
form of model. A meteorologist predicts the expected path of a tropical storm using weather models 
that incorporate the relevant climatic variables and their effect on the storm’s trajectory. An econo-
mist issues a quantitative forecast of the U.S. economy predicated based on key economic variables 
and their interrelationships with the help of computer models. Before a nuclear power plant operator 
is “turned loose” at the controls, extensive training is conducted in a model-based simulator where 
the individual becomes familiar with the plant’s dynamics under routine and emergency conditions. 
Health care professionals have access to a human patient simulator to receive training in the rec-
ognition and diagnosis of disease. Public safety organizations can plan for emergency evacuations 
of civilians from low-lying areas using traffic models to simulate vehicle movements along major 
access roads.

The word “model” is a generic term referring to a conceptual or physical entity that resembles, 
mimics, describes, predicts, or conveys information about the behavior of some process or system. 
The benefit of having a model is to be able to explore the intrinsic behavior of a system in an eco-
nomical and safe manner. The physical system being modeled may be inaccessible or even nonexis-
tent as in the case of a new design for an aircraft or automotive component.

Physical models are often scaled-down versions of a larger system of interconnected compo-
nents as in the case of a model airplane. Aerodynamic properties of airframe and car body designs 
for high-performance airplanes and automobiles are evaluated using physical models in wind tun-
nels. In the past, model boards with roads, terrain, miniaturized models of buildings, and land-
scape, along with tiny cameras secured to the frame of ground vehicles or aircraft, were prevalent 
for simulator visualization. Current technology relies almost exclusively on computer-generated 
imagery.

In principle, the behavior of dynamic systems can be explained by mathematical equations and 
formulae, which embody either scientific principles or empirical observations, or both, related to 
the system. When the system parameters and variables change continuously over time or space, the 
models consist of coupled algebraic and differential equations. In some cases, lookup tables con-
taining empirical data are employed to compute the parameters. Equations may be supplemented by 
mathematical inequalities, which constrain the variation of one or more dependent variables. The 
aggregation of equations and numerical data employed to describe the dynamic behavior of a system 
in quantitative terms is collectively referred to as a mathematical model of the system.

Partial differential equation models appear when a dependent variable is a function of two or 
more independent variables. For example, electrical parameters such as resistance and capacitance 
are distributed along the length of conductors carrying electrical signals (currents and voltages). 
These signals are attenuated over long distances of cabling. The voltage at some location x mea-
sured from an arbitrary reference is written v(x, t) instead of simply v(t), and the circuit is modeled 
accordingly.

A mathematical model for the temperature in a room would necessitate equations to predict 
T(x, y, z, t) if a temperature probe placed at various points inside the room reveals significant vari-
ations in temperature with respect to x, y, z in addition to temporal variations. Partial differential 
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equations describing the cable voltage v(x, t) and room temperature T(x, y, z, t) are referred to as 
“distributed parameter” models.

The mathematical models of dynamic systems where the single independent variable is “time” 
comprise ordinary differential equations. The same applies to systems with a single spatial indepen-
dent variable; however, these are not commonly referred to as dynamic systems since variations of 
the dependent variables are spatial as opposed to temporal in nature. Ordinary differential equation 
models of dynamic systems are called “lumped parameter” models because the spatial variation of 
the system parameters is negligible or else it is being approximated by lumped sections with con-
stant parameter values. In the room temperature example, if the entire contents of the room can be 
represented by a single or lumped thermal capacitance, then a single temperature T(t) is sufficient 
to describe the room. We focus exclusively on dynamic systems with lumped parameter models, 
hereafter referred to simply as mathematical models.

A system with a lumped parameter model is illustrated in Figure 1.1. The key elements are the 
system inputs u1(t), u2(t), …, ur(t), which make up the system input vector u(t), the system outputs 
y1(t), y2(t), …, yp(t), which form the output vector y(t), and the parameters p1, p2, …, pm constituting 
the parameter vector p. The parameters are shown as constants; however, they may also vary with 
time.

Our interest is in mathematical models of systems consisting of coupled algebraic and differ-
ential equations relating the outputs and inputs with coefficients expressed in terms of the system 
parameters. For steady-state analyses, transient responses are irrelevant, and the mathematical mod-
els consist of purely algebraic equations relating the system variables.

An example of a mathematical model for a system with two inputs, three outputs, and several 
parameters is
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The order of a model is equal to the sum of the highest derivatives of each of the dependent 
variables, in this case y1(t), y2(t), y3(t), and the order is therefore 2 + 1 + 0 = 3. Equation 1.1 is a 
linear differential equation. Equation 1.2 is a nonlinear differential equation because of the term 
involving the product of y1(t) and y2(t). The mathematical model is nonlinear due to the presence of 
the nonlinear differential equation and the nonlinear algebraic equation (Equation 1.3). It is to be 
borne in mind that it is the nature of the equations that determines whether a math model is linear 

SYSTEM

·······

Input 

u1(t)
u2(t)

ur(t)

u(t) =
Output 

p1 p2 pm y1(t)
y2(t)

yp(t)

y(t) =

FIGURE 1.1 A system with a lumped parameter model.
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or nonlinear. An adjective such as linear or nonlinear applies to the mathematical model as opposed 
to the actual system.

It is important to distinguish between the system being modeled and the model itself. The former 
is unique, even though it may exist only at the design stage, while the mathematical model may 
assume different forms. For example, a team of modelers may be convinced that the lead term in 
Equation 1.1 is likely to be insignificant under normal operating conditions. Consequently, two 
distinct models of the system exist, one third order and the other second order. The third-order 
model includes the second derivative term to accurately reflect system behavior under unusual or 
nontypical conditions (e.g., an aircraft exceeding its flight envelope or a ground vehicle performing 
an extreme maneuver). The simpler second-order model ignores what are commonly referred to as 
higher-order effects. Indeed, there may be a multitude of mathematical models to represent the same 
system under different sets of restricted operating conditions. Regardless of the detail inherent in a 
mathematical model, it nevertheless represents an incomplete and inexact depiction of the system.

A model’s intended use will normally dictate its level of complexity. For example, models for 
predicting vehicle handling and responsiveness are different from those intended to predict ride 
comfort. In the first case, accurate equations describing lateral and longitudinal tire forces are para-
mount in importance, whereas passenger comfort relies more on vertical tire forces and suspension 
system characteristics.

Mathematical modeling is an inexact science, relying on a combination of intuition, experience, 
empiricism, and the application of scientific laws of nature. Trade-offs between model complexity 
and usefulness are routine. Highly accurate microclimatic weather models that use current atmo-
spheric conditions to predict the following day’s weather are of limited value if they require 48 h 
on a massively parallel or supercomputer system to produce results. At the extreme opposite, overly 
simplified models can be grossly inaccurate if significant effects are overlooked.

The difference between a mathematical model and a simulation model is open to interpretation. 
Some in the simulation community view the two as one and the same. Their belief is that a math-
ematical model embodies the attributes of the actual system and simulation refers to solutions of the 
model equations, albeit generally approximate in nature. Exact analytical solutions of mathematical 
model equations are nonexistent in all but the simplest cases.

Others maintain a distinction between the two and express the view that simulation model(s) 
originate from the mathematical model. According to this line of thinking, simulating the dynam-
ics of a system requires a simulation model that is different in nature from a mathematical model. 
A reliable simulation model must be capable of producing numerical solutions in reasonably 
close agreement with the actual (unknown) solutions to the math model. Simulation models are 
commonly obtained from discrete-time approximations of continuous-time mathematical mod-
els. Much of this book is devoted to the process of obtaining simulation models in this way. More 
than one simulation model can be developed from a single mathematical model of a system.

Stochastic models are important when dealing with systems whose inputs and parameters are 
best modeled using statistical methods. Discrete event models are used to describe processes that 
transit from one state to another at randomly spaced points in time. Probability theory plays a sig-
nificant role in the formulation of discrete event models for describing the movement of products 
and service times at different stages in manufacturing processes, queuing systems, and the like. In 
fact, the two pillars of simulation are continuous system simulation, the subject of this book, and 
discrete event simulation.

There is a great deal more to be said about modeling. Entire books are devoted to properly iden-
tifying model structure and parameter values for deterministic and stochastic systems. Others con-
centrate more on derivation of mathematical models from diverse fields and methods of obtaining 
solutions under different circumstances. The reader is encouraged to check the references section at 
the end of this book for additional sources of material related to modeling.

Modeling is essential to the field of simulation. Indeed, it is the starting point of any simula-
tion study. The emphasis, however, in this book is on the presentation of simulation fundamentals. 
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Accordingly, derivation of mathematical models is not a prominent component. For the most part, 
the math models are taken from documented sources listed in the references section, some of which 
include step-by-step derivations of the model equations. The derivation is secondary to a complete 
understanding of the model, that is, its variables, parameters, and knowledge of conditions that may 
impose restrictions on its suitability for a specific application.

Simulation of complex systems requires a team effort. The modeler is a subject expert responsi-
ble for providing the math model and interpreting the simulation results. The simulationist produces 
the simulation model and performs the simulation study. For example, an aerodynamicist applies 
principles of boundary layer theory to obtain a mathematical model for the performance of a new 
airfoil design. Starting with the math model, simulation skills are required to produce a simulation 
model capable of verifying the efficacy of the design based on numerical results. Individuals with 
expert knowledge in a particular field are oftentimes well versed in the practice of simulation and 
may be responsible for formulation of alternative mathematical models of the system in addition to 
developing and running simulations.

A simple physical system is introduced in the next section, and the steps involved in deriving an 
idealized math model are presented. In addition to benefiting from seeing the process from start 
to finish, the ingredients for creating a simulation model are introduced. Hence, by the end of this 
chapter, the reader will be able to perform rudimentary simulation.

1.2 DERIVATION OF A MATHEMATICAL MODEL

We begin our discussion of mathematical modeling with a simple derivation of the mathematical 
model representing the dynamic behavior of an open tank containing a liquid that flows in the top 
and is discharged from the bottom. Referring to Figure 1.2, the primary input is the liquid flow rate 
Fl(t), an independent variable measured in appropriate units such as cubic feet per minute (volumet-
ric flow rate) or pounds per hour (mass flow rate). Responding to changes in the input are dependent 
variables H(t) and F0(t) the fluid level, and flow rate from the tank.

Once the derivation is completed, we can use the model to predict the outflow and fluid level 
response to a specific input flow rate F1(t), t ≥ 0. Note that we have restricted the set of possible 
inputs to F1(t) and in the process relegated the remaining independent variables, that is, other vari-
ables which affect F0(t) and H(t), to second-order importance. Our assumption is that the eventual 

Time: t + ΔtTime: t

H(t + Δt)H(t)

F1(t + Δt)

F0(t + Δt)F0(t)

ΔH

F1(t)

FIGURE 1.3 A liquid tank at two points in time.

H(t)

F0(t)
F1(t) TANK

FIGURE 1.2 Tank as a dynamic system with input and outputs.
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model will be suitable for its intended application. It must be borne in mind that if extremely accu-
rate predictions of the level H(t) are required, it may be necessary to include second-order effects 
such as evaporation and hence introduce additional inputs related to ambient conditions, namely, 
temperature, humidity, air pressure, wind speed, and so forth.

The derivation is based on conditions of the tank at two discrete points in time, as if snapshots of 
the tank were available at times “t” and “t + Δt,” as shown in Figure 1.3.

The following notation is used with representative units given for clarity:

F1(t): Input flow at time t, ft3/min
H(t): Liquid level at time t, ft
F0(t): Output flow at time t, ft3/min
A: Cross-sectional area of tank, ft2

At time t + Δt, from the physical law of conservation of volume,

 V t t V t V( ) ( )+ = +∆ ∆  (1.4)

where
V(t) is the volume of liquid in the tank at time t
ΔV is the change in volume from time t to t + Δt

The volume of liquid in the tank at times t and t + Δt is given by

 V t AH t( ) ( )=  (1.5)

 V t t AH t t( ) ( )+ = +∆ ∆  (1.6)

Equations 1.5 and 1.6 assume constant cross-sectional area of the tank, that is, A is independent 
of H.

The change in volume from t to t + Δt is equal to the volume of liquid flowing in during the interval 
t to t + Δt minus the volume of liquid flowing out during the same period of time. The liquid volumes 
are the areas under the input and output volume flow rates from t to t + Δt as shown in Figure 1.4.

Expressing these areas in terms of integrals,
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The integrals in Equation 1.7 can be approximated by assuming F1(t) and F0(t) are constant over the 
interval t to t + Δt (see Figure 1.4). Hence,

H(t)

t + Δttt + Δttt + Δtt

F0(t)

ΔH

F1(t)

FIGURE 1.4 Volumes of liquid flowing in and out of tank from t to t + Δt.
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Equations 1.8 and 1.9 are reasonable approximations provided Δt is small. Substituting Equations 
1.8 and 1.9 into Equation 1.7 yields

 ∆ ∆ ∆V F t t F t t≈ −1 0( ) ( )  (1.10)

Substituting Equations 1.5, 1.6, and 1.10 into Equation 1.4 gives

 AH t t AH t F t F t t( ) ( [ ]) ( ) ( )+ ≈ + −∆ ∆1 0  (1.11)

 
⇒ + − ≈ −   A H t t H t F t F t t( ) ( ) ( ) ( )∆ ∆1 0  (1.12)
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where ΔH is the change in liquid level over the interval (t, t + Δt). Note that ΔH/Δt is the average 
rate of change in the level H over the interval (t, t + Δt). It is the slope of the secant line from pt A 
to pt B in Figure 1.5.

In the limit as Δt approaches zero, pt B approaches pt A, and the average rate of change in H over 
the interval (t, t + Δt) becomes the instantaneous rate of change in H at time t, that is,

 
lim

∆
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H

t→
=
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H d
d  

(1.14)

where dH/dt is the first derivative of H(t). From the graph, it can be seen that dH/dt is equal to the 
slope of the tangent line of the function H(t) at t (pt A).

A

H

Tangent 

t

Pt Coordinates 

A [t, H(t)]

B

B

[t + Δt, H(t + Δt)]

B′

B′

[t + Δt′, H(t + Δt′)]

t + Δt′ t + Δt

Δt

ΔH

FIGURE 1.5 Average rate of change ΔH/Δt as Δt gets smaller.
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Taking the limit as Δt approaches zero in Equation 1.13 and using the definition of the derivative 
in Equation 1.14 give
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Since there are two dependent variables, a second equation or constraint relating F0 and H is 
required in order to solve for either one given the input function F1(t). It is convenient at this point 
to assume that F0 is proportional to H, that is, F0 = constant × H (see Figure 1.6). The constant of 
proportionality is expressed as 1/R where R is called the fluid resistance of the tank. At a later point, 
we will revisit this assumption.
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(1.17)

Equations 1.16 and 1.17 constitute the mathematical model of the liquid tank, namely,
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where F1, F0, H, and dH/dt are short for F1(t), F0(t), H(t), and (d/dt)H(t).
In this example, the model is a coupled set of equations. One is a linear differential equation and 

the other is an algebraic equation, also linear. The differential equation is first order since only the 
first derivative appears in the equation and the tank dynamics are said to be first order.

The outflow F0 can be eliminated from the model equations by substituting Equation 1.17 into 
Equation 1.16 resulting in
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(1.18)

Before a particular solution to Equation 1.18 for some F1(t), t ≥ 0 can be obtained, the initial tank 
level H(0) must be known.

There are several reasons why an analytical approach to solving Equation 1.18 may not be the 
preferred method. Even when the analytical solution is readily obtainable, for example, when the 
system model is linear, as in the present example, the solution may be required for a number of dif-
ferent inputs or forcing functions. Recall from studying differential equations what happens when 
the right-hand side of the equation changes. A new particular solution is required that can be time-
consuming, especially if the process is repeated for a number of nontrivial forcing functions.

Second, the input F1(t) may not even be available in analytical form. Suppose the input func-
tion F1(t) is unknown except as a sequence of measured values at regularly spaced points in time. 

1 1

H

H
R

R

F0

F0 =

FIGURE 1.6  A tank with out-flow proportional to fluid level.
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An exact solution to the differential equation model is out of the question since the input is not 
expressible as an analytic function of time.

EXERCISES

 1.1  A system consists of two tanks in series in which the outflow from the first tank is the inflow 
to the second tank as shown in the figure below.

 a. Find the algebraic and differential equations comprising the mathematical model of the two 
tank system. Assume both tanks are linear, i.e. the outflows are proportional to the liquid 
levels and R1, R2 are the fluid resistances of the tanks.

 b. Eliminate the flows F0(t) and F2(t) from the model to obtain a model in the form of two dif-
ferential equations involving the system input F1(t) and the tank levels H1(t) and H2(t).

 c. Obtain the model differential equations when F0(t) and F2(t) are present instead of H1(t) and 
H2(t).

 d. The initial fluid levels in the tanks are H1(0) and H2(0) Suppose the flow in to the first tank 
is constant, F t F1( ) = 1, t ≥ 0. Obtain expressions for H1(∞) and H2(∞), the eventual fluid 
levels in Tanks 1 and 2. Do H1(∞) and H2(∞) depend on the initial fluid levels? Explain.

 e. Find the ratio of tank resistances R1/R2 if H1(∞) = 2H2(∞).
 f. Suppose the flow between the two tanks is reduced to zero by closing the valve in the line. 

Show that this is equivalent to R1 = ∞ and determine the values of H1(∞) and H2(∞) 
assuming the inflow to the first tank is still constant.

 1.2 The two tanks in Exercise 1.1 are said to be non-interacting because the flow rate from the 
first tank only depends on the fluid level in the first tank and is independent of the fluid level 
in the second tank. Suppose the discharged fluid from the first tank enters the second tank at 
the bottom instead of the top as shown in the figure below.

The flow between the tanks is now a function of the fluid levels in both tanks. The driving 
force for the inter-tank flow is the difference in fluid levels and for the time being we can 
assume the two quantities are proportional. That is,

 
F t H t H t F t

H t H t
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where R12 represents a fluid resistance involving both tanks. The fluid resistance of the second 
tank is still R2.

 a. The general form of the differential equation model for the system of interacting tanks is

 

dH

dt
a H a H b1

11 1 12 2 1 1+ + = F
 

 

dH

dt
a H a H b F2

21 1 22 2 2 1+ + =
 

 Note: H1, H2 and F1 are short for H1(t), H2(t) and F1(t).
 Find expressions for a11, a12, a21, a22, b1, b2 in terms of the system parameters A1, A2, R12, 

and R2.
 b. The tanks are initially empty, H1(0) = 0 and H2(0) = 0. The flow in to the first tank is con-

stant, F t F t1 1 0( ) , .= ≥  Show that the final fluid levels in both tanks after a sufficient period 
of time has elapsed, H1(∞) and H2(∞), can be obtained from the solution of the following 
system of equations:

 

a H a H b F

a H a H b F

11 1 12 2 1 1

21 1 22 2 2 1

( ) ( )

( ) ( )

∞ + ∞ =

∞ + ∞ =  

 c. Solve for H1(∞) and H2(∞) in terms of the system parameters A1, A2, R12, R2 and the con-
stant inflow F1. Are the results different if the tanks are not initially empty? Explain.

 d. Using the following baseline values unless otherwise stated:

 A A R R F1 2 12 2 125 3 1 5= = = = = ft  ft per ft /min  ft per ft /min2 3 3, , ,   ft /min3

 

 Find the eventual fluid levels H1(∞) and H2(∞) and flows F0(∞) and F2(∞).
 e. Repeat Part (d) with A2 = 75 ft2.
 f. The valve between the tanks is opened some resulting in R12 = 2 ft per ft3/min. The remain-

ing baseline values remain the same. Find H1(∞), H2(∞) and flows F0(∞) and F2(∞).
 g. Suppose Tank 1 initially holds 10 ft of liquid and Tank 2 has 4 ft. Find the initial rates of 

change in level for both tanks.
 h. Is it possible for the fluid level in Tank 2 to exceed the level in Tank 1? Explain.
 i. How does the model change if there is a separate flow, say F3(t) directly in to the top of Tank 2?
 1.3 Consider a cone shaped tank with circular cross sectional area like the one shown in the figure 

below.

 a. How does this affect the derivation of the mathematical model?
 b. Find the math model for this case.



10 Simulation of Dynamic Systems with MATLAB® and Simulink®

1.3 DIFFERENCE EQUATIONS

The tank model from the previous section, given in Equation 1.18, is a first-order differential equa-
tion. First-order systems, that is, systems governed by a first-order differential equation are treated 
in detail in Chapter 2. Simulation of a first-order system requires finding an approximate solution 
to the differential equation.

A first-order system is shown in Figure 1.7, where u(t), t ≥ 0 is the input; y(t), t ≥ 0 is the output; 
y(0) is the initial condition, i.e. y(t) at t = 0; f [y(t),u(t)] is the mathematical function model of the 
dynamic system.

Examples of f [y(t),u(t)] are:

 1. f [y(t),u(t)] = ay(t) linear first-order system with no input
 2. f [y(t),u(t)] = ay(t) + bu(t) linear first-order system with input u(t)
 3. f [y(t),u(t)] = ay2(t) + bu(t) nonlinear first-order system with input u(t)

Given the system model,

 

d

dt
y t f y t u t( ) [ ( ), ( )]=

 
(1.19)

An approximate solution for the response y(t), t ≥ 0, given the input u(t), t ≥ 0 and the initial condi-
tion y(0), can be obtained at discrete points in time tn = nT, n = 0, 1, 2, …. The discrete points are 
separated from each other by the step size T.

The approximate solution is yA(n), n = 0, 1, 2, … where yA(n) ≈ y(tn) = y(nT), n = 0, 1, 2, ….
Figure 1.8 illustrates the difference between y(t), t ≥ 0 and yA(n), n = 0, 1, 2, …. It is useful for 

deriving an equation which can be solved to generate yA(n), n = 0, 1, 2, ….

First-order system: 

y(t)u(t)
y(t) = f [y(t),u(t)]d

dt

y(0)

FIGURE 1.7 A first-order system with input u(t) and output y(t).

(n + 1)T

Tangent to y(t) at t = nT

nT 
t 

y(t) 

y[(n + 1)T]

yA(n + 1)

yA(n)

y(nT)
T

FIGURE 1.8 Illustration of the difference between y(t) and yA(n).
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The tangent to y(t) at t = nT is shown in Figure 1.8. Its slope is numerically equal to the first deriva-

tive 
dy

dt
 at t = nT. From Equation 1.19,

 
At ( ) [ ( ), ( )]t nT

d

dt
y t f y nT u nT

t nT

= =
=

,
 

(1.20)

Approximating 
d

dt
y t

t nT

( )
=

 by the slope of the line connecting yA(n) and yA(n + 1),

 
f y nT u nT

y n y n

T
A A[ ( ), ( )]
( ) ( )

≈
+ −1

 
(1.21)

Replacing y(nT) with yA(n), and writing u(nT) as u(n) for short,

 
f y n u n

y n y n

T
A

A A[ ( ), ( )]
( ) ( )

=
+ −1

 
(1.22)

Note the use of the equality in Equation 1.22, which enables yA(n) to be solved for, giving

 y n y n Tf y n u n nA A A( ) ( ) ( ), ( )   + = +   =1 0 1 2, , , ,… (1.23)

Equation 1.23 is called a difference equation, and given the initial condition yA(0), is easily solved 
in a recursive manner. To illustrate, consider the first-order system

 

d

dt
y t y t u t t y( ) ( ) ( ) ( )+ = = =2 3 0 1,

 
(1.24)

 

dy

dt
f y u y u= = − +( ), 2

 
(1.25)

Using Equation 1.23, the difference equation for obtaining yA(n), n = 0, 1, 2, … is

 y n y n T y n u n nA A A( ) ( ) [ ( ) ( )],  + = + − + =1 2 0 1 2, , , ...  (1.26)

 = − + =( ) ( ) ( ),  1 2 0 1 2T y n Tu n nA , , , ...  (1.27)

Letting α = (1−2T),

 y n y n Tu n nA A( ) ( ) ( ),  + = + =1 0 1 2α , , , ...  (1.28)

where

 
u n u nT u t t nT n

t nT t nT
( ) ( ) ( ) ,  ,= = = = =

= =
3 3 0 1 2, , ...

 
(1.29)

Replacing u(n) in Equation 1.28 with u(n) in Equation 1.29 gives

 y n y n nT nA A( ) ( ) ,  + = + =1 3 0 1 22α , , , ...  (1.30)

Equation 1.30 is the difference equation which is solved recursively to generate the approximate 
solution yA(n), n = 0, 1, 2, ….
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Starting with n = 0,

 n y y TA A= = +0 1 0 3 2: ( ) ( ) (0)α  (1.31)

Choosing yA(0) = y(0) gives

 n y yA= =0 1 0: ( ) ( )α  (1.32)

 n y y TA A= = +1 2 1 3 2: ( ) ( ) (1)α  (1.33)

 
=   +α αy T( )0 3 2

 
(1.34)

 = +α2 20 3y T( )  (1.35)

 n y y TA A= = +2 3 2 3 2: ( ) ( ) (2)α  (1.36)

 
= +



 +α α2 2 20 3 6y T T( )

 
(1.37)

 = + +α α3 20 3 2y T( ) ( )  (1.38)

 n y y TA A= = +3 4 3 3 3 2: ( ) ( ) ( )α  (1.39)

 
= + +



 +α α α3 2 20 3 2 9y T T( ) ( )

 
(1.40)

 
= + + + α α α4 20 3 2 3y T( ) ( )

 
(1.41)

The smaller the time step T, the closer yA(n), n = 0, 1, 2, … will be to the exact solution y(t) at 

t = 0, T, 2T, …. Finding an approximate solution for y(t) on the interval 0 ≤ t ≤ tfinal requires 
t

T
final  

iterations of the difference equation. There is a trade-off between accuracy of the approximate 

 solution yA(n), n = 0, 1, 2, … and the computational effort to generate it.
Equation 1.25 with input u(t) = 3t and initial condition y(0) = 1 is easily solved by analytical 

methods. The exaxt solution is given by

 y t e t tt( )  = + − ≥−1 75 1 5 0 75 02. . . ,  (1.42)

EXAMPLE 1.1

 a. Find the approximate solution to the differential equation (Equation 1.24) over the 
interval 0 ≤ t ≤ 2 by recursive solution of the difference equation (Equation 1.30) for 
T = 0.01, 0.025, 0.05 and 0.1. Plot the approximate solution for each value of T and the 
exact solution given in Equation 1.42.

 b. Compare approximate and exact solutions at t = 0, 0.2, 0.5, 1, 1.5, 2 when T = 0.01 and 
T = 0.1.

 a. Matlab program “Ch1_Ex1_1.m” solves the difference equation (Equation 1.30) recur-
sively and also computes points along the exact solution (Equation 1.42). The results are 
shown in Figure 1.9.

  Note, the approximate solution is known only at times tn = nT, n = 0, 1, 2, …. For 
purposes of clarity, only a subset of the discrete points are plotted except for the case 
when T = 0.1.
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  Figure 1.9 illustrates how the accuracy of the approximate solution can be improved 
by decreasing the time step T (at the expense of requiring additional calculations). 
The approximate solutions are seen to converge to the exact solution as the time step 
decreases. Further it appears that setting the time step below T = 0.025 may not be nec-
essary unless extreme accuracy is required.

 b. Tables 1.1 and 1.2 compare the approximate and exact solution at t = 0, 0.2, 0.5, 1, 1.5 
and 2 when T = 0.01 and T = 0.1, respectively.

  Note the percent error,

 
% Error

( ) ( )
( )

= ×
−

100
y n y t

y t
A n

n  
(1.43)

  is roughly 10 times greater when the time step T = 0.1 compared to when T = 0.01.

Let us now apply what we have learned about finding approximate solutions of first-order system 
response to the tank example in Section 1.2. Recall that the tank dynamics are governed by the 
first-order differential equation (Equation 1.18),

 
A
dH
dt R

H F+ =
1

1

 
(1.44)

Solving for the derivative function f (F1, H) gives

 
 f F H

dH
dt A

F
R
H( , )1 1

1 1
= = −









 
(1.45)

2.5
yA(n), n = 0, 8, 16, ...

Exact and approximate solutions for various numerical values of the time step T

y(t), t ≥ 0

T = 0.01

yA(n), n = 0, 4, 8, ...

y(t), t ≥ 0

T = 0.025

1.5

1.5
0.5

0 0.5

1

1

2

2 1.50 0.5 1 2

2.5

1.5

0.5

1

2

2.5
yA(n), n = 0, 2, 4, ...

y(t), t ≥ 0

T = 0.05

yA(n), n = 0, 1, 2, ...

y(t), t ≥ 0

T = 0.1

1.5

1.5
0.5

0 0.5

1

1

2

2 1.50 0.5 1 2

2.5

1.5

0.5

1

2

FIGURE 1.9 Comparison of exact and approximate solution of first-order system response for different 
values of T.
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Based on Equation 1.23, the difference equation for approximating the tank level response is

  H n H n Tf F n H nA A A( ) ( ) [ ( ), ( )]+ = +1 1  (1.46)

 
= + ⋅ −







H n T

A
F n

R
H nA A( ) ( ) ( )

1 1
1

 
(1.47)

 
= −







 +







1 1

T
AR

H n
T
A
F nA( ) ( )

 
(1.48)

Given the input flow F1(t), t ≥ 0 and the intial tank level HA(0), Equation 1.48 is the difference 
equation which can be solved recursively to obtain the approximate tank level response HA(n), 
n = 0, 1, 2, …. Starting with n = 0,

  
n H

T
AR

H
T
A
FA A= = −







 +







0 1 1 0 01: ( ) ( ) ( )

 
(1.49)

  
n H

T
AR

H
T
A
FA A= = −







 +







1 2 1 1 11: ( ) ( ) ( )

 
(1.50)

 
= −







 −







 +










1 1 0 01

T
AR

T
AR

H
T
A
FA( ) ( )









 +









T
A
F1 1( )

 
(1.51)

 
= −







 + −














1 0 1 0

2

1
T
AR

H
T
AR

T
A
FA( ) ( ) ++









T
A
F1 1( )

 
(1.52)

TABLE 1.2
Comparison of Exact and Approximate (T = 0.1) Solution 
of First-Order System Response at Different Times

n tn = nT yA(n) y(tn) % Error

0 0 1 1 0

2 0.2 0.7240 0.7231 0.13

5 0.5 0.6743 0.6438 4.74

10 1.0 1.0718 0.9868 8.61

15 1.5 1.7063 1.5871 7.51

20 2.0 2.4148 2.2821 5.98

TABLE 1.1
Comparison of Exact and Approximate (T = 0.01) Solution 
of First-Order System Response at Different Times

n tn = nT yA(n) y(tn) % Error

0 0 1 1 0

20 0.2 0.7233 0.7231 0.03

50 0.5 0.6468 0.6438 0.47

100 1.0 0.9951 0.9868 0.84

150 1.5 1.5988 1.5871 0.74

200 2.0 2.2955 2.2821 0.59
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n H
T
AR

T
AR

H
T
AR

A A= = −






 −







 + −



2 3 1 1 0 1

2

: ( ) ( ) 









 +
























+

T
A
F

T
A
F

T
A

1 10 1( ) ( )






F1 2( )

 
(1.53)

 
= −







 + −















1 0 1 0

3 2

1
T
AR

H
T
AR

T
A
FA( ) ( )) ( ) ( )+ −







 +







1 1 21 1

T
AR

F
T
A
F

 
(1.54)

Based on the first few iterations, a general formula for finding HA(n), for any n, is

 
H n

T
AR

H
T
A

T
AR

A

n n

( ) ( )= −






 +







 −







1 0 1

−− −

=

−

∑ =
k

k

n

F k n
1

0

1

1 0 1 2( ), , , , ...
 

(1.55)

where HA(0) is replaced by the initial tank level H(0).
When specific values of HA(n) are required, say HA(100), Equation 1.55 eliminates the need for 

recursive solution of Equation 1.48 to find HA(n), n = 0, 1, 2, …, 99. The summation in Equation 
1.55 requires some effort; however, the z-transform introduced in Chapter 4 provides a way to 
avoid the sum altogether.

The quantity 1−








T
AR

 must be less than 1 for both stable and accurate results. Keeping this in 

mind, Equation 1.55 demonstrates the diminishing influence of the initial tank level as time progresses.
Equation 1.55 also indicates that all past inputs F1(k), k = 0, 1, 2, …, n−1 are needed to obtain 

Ha(n), a property known as infinite memory. However, recent input flow values are weighted 
higher than older values (see Equation 1.54).

EXAMPLE 1.2

A tank with cross-sectional area of 10 ft2 receives a constant input flow of 5 ft3/min. The fluid 
resistance of the tank is 2 ft per ft3/min, and the tank is initially filled to a level of 4 ft.

 a. Find the difference equation for obtaining an approximate solution for the level H(t) 
using a time step of T = 0.25 min.

 b. Solve the difference equation recursively to obtain the approximate fluid level HA(n), 
n = 1, 2, 3.

 c. Use Equation 1.55 to find HA(3) and compare your answer to the result from part (b).

a. 
T
A

T
AR







 = = −







 = −

0 25
10

0 025 1 1
0 25
10

.
. ,

.
(

     
22

0 9875
)

.=

 H H F n nA( ) ( ) , ( ) , , , , ...0 0 4 5 0 1 21= = = =      

 The difference equation (Equation 1.48) is

 H n H n nA A( ) . ( ) ( . ) , , , , ...+ = + =1 0 9875 0 025 5 0 1 2  (1.56)

 b. HA(n), n = 1, 2, 3 are computed as follows:

 

n H HA A= = +
=

0 1 0 9875 0 0 125:

4.0750

( ) . ( ) .

 
(1.57)

 

n H HA A= = +

= +

=

1 2 0 9875 1 0 125

0 9875 4 0750 0 125

4 1491

: ( ) . ( ) .

. ( . ) .

.  

(1.58)
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n H HA A= = +

= +

=

2 3 0 9875 2 0 125

0 9875 4 1491 0 125

4 2222

: ( ) . ( ) .

. ( . ) .

.  

(1.59)

 c. From Equation 1.55 with n = 3,

 

HA

k

k( ) ( . ) ( ) . ( . ) ( )

. .

3 0 9875 4 0 025 0 9875 5

3 8519 0 025

3

0

2
3 1= +

= +

=

− −∑
(( . ) ( ) ( . )( )

.

0 9875 5 0 9875 5 5

4 2222

2 + +





=  

Due to the simple nature of the input, that is, F t F1( ) = , t ≥ 0, the analytical solution of the first-
order differential equation model (Equation 1.44) is given by

 H t RF H RF e t AR( ) [ ( ) ] /= + − −0  (1.60)

It is instructive to compare the approximate solution based on the difference equation approach 
with the exact solution shown in Equation 1.60. Table 1.3 includes both solutions at equally 
spaced intervals for the first 2 min of the response.

Graphs of the exact response H(t) and the approximate response HA(n), n = 0, 8, 16, … are 
shown in Figure 1.10.

By observation of Figure 1.10, it appears that the exact and approximate solutions for the tank 
level are in close agreement. The step size T is the determining factor in terms of how close the 
two solutions are at the discrete points in time where the approximate solution is defined.

Generally speaking, an assessment of whether the numerical value selected for T is reasonable 
cannot be made on the basis of comparing the approximate solution with the exact solution to 
the differential equation. Analytical solutions are rare due to the complexity of most real-world 
system models. A logical approach to finding an acceptable step size is to obtain approximate 
solutions with different step sizes (an order of magnitude apart) and comparing the results. If the 
approximate solutions are substantially identical, the smaller step size is eliminated from consid-
eration. Conversely, if the approximate solutions are not close, the larger value of T is discarded. 
Eventually, a value for T will be found, which balances accuracy and computational requirements. 
This point will be revisited in greater detail after the subject of numerical integration is discussed.

TABLE 1.3
Comparison of Approximate and 
Exact Tank Level Response

n tn = nT HA(n) H(tn)

0 0 4.0 4.0

1 0.25 4.0750 4.0745

2 0.5 4.1491 4.1481

3 0.75 4.2222 4.2208

4 1.0 4.2944 4.2926

5 1.25 4.3657 4.3635

6 1.5 4.4362 4.4335

7 1.75 4.5057 4.5027

8 2.0 4.5744 4.5710
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EXERCISES

 1.4 Find the difference equation, similar to Equation 1.48, relating F0(n + 1) to F0(n) and F1(n).
 1.5 A tank with cross sectional area A = 5 ft2 is initially filled to a level of 10 ft. The flow out is 

given by F0 = H/R, R = 1 ft per ft3/min. There is no flow in to the tank.
 a. Find HA(n), n = 0, 1, 2, …, 10 when T = 2.5 min.
 b. Find HA(n), n = 0, 1, 2, …, 25 when T = 1 min.
 c. Find HA(n), n = 0, 1, 2, …, 100 when T = 0.25 min.
 d. Plot the results and comment on the differences.
 1.6 Repeat Exercise 1.5 for the case where the outflow is described by F0 = cH1/2, c = 3 ft3/min 

per ft1/2.
 1.7 Rework Example 2.1 using the Trial and Error method for determining a suitable value of T. 

Start with T = 10 min and calculate HA(n), n = 0, 1, 2, …, nf where nfT = 100 min. Repeat the 
steps with T = 5 min, 2.5 min, 1.25 min, etc. until the approximations of H(10), H(20), H(30), …, 
H(100) are in agreement to at least one place after the decimal point. Use Table E1.7 for com-
parisons. Extend the table to smaller values of T if necessary.

TABLE E1.7

n
HA(n)
T = 10 n

HA(n)
T = 5 n

HA(n)
T = 2.5 n

HA(n)
T = 1.25

0 0 0 0

1 2 4 8
2 4 8 16
3 6 12 24
4 8 16 32
5 10 20 40
6 12 24 48
7 14 28 56
8 16 32 64
9 18 36 72
10 20 40 80

11

T = 0.25 min

HA(n), n = 0, 8, 16, ...

H(t), t ≥ 0

0 2010 4030 6050 8070
t (min)

90 100

Approximate and exact tank level vs. time

H
 (f

t)

0

1

2

3
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5

6

7
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10

FIGURE 1.10 Approximate and exact solutions for tank level vs. time.
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 1.8 An alternate model of the tank relates the outflow and liquid level according to

 
F t H t0

1 2
( ) ( )

/
=  α

 

 a. Develop a new discrete-time model of the tank using the above relationship in conjunction 
with the differential equation A(dH/d) + F0 = F1. The tank cross-sectional area is 10 ft2 
and the input flow is constant at 5 ft3/min. The tank is initially filled to a level of 4 ft. 
Assume α = 2 ft3/min per ft1/2.

 b. Calculate the approximate tank level for the first minute using a step size T = 0.25 min.
 c. Consider the same tank with zero flow in and an initial fluid level of 25 ft. Write a  program 

to calculate the approximate level of the tank as it empties. Choose T = 0.1 min.
 d. The analytical solution for the level H(t) when F1(t) = 0, t ≥ 0 is given by

 
H t H

t

A
( ) /= −







0

1 2
2

2

α

 

 where H0 is the initial tank level. Compare the results from Part (c) to the exact solution. 
Present the comparison of results in tabular and graphical form.

 1.9 A holding tank serves as an effective way of smoothing variations in the flow of a liquid. For 
example, suppose the liquid flow rate from an upstream process is

 
F t F f

t

T
t1

2
0( ) sin ,= +







 ≥

π

 

 where F is an average flow, f is the fluctuation about the average flow, and T is the period of 

the fluctuations. Nominal parameter values for the input flow rate are F = 250 ft /min3 , f = 
50 ft3/min and T = 15 min.

  A holding tank is placed between the source F1(t) and a downstream process which 
requires a more constant input flow rate, F0(t) as shown in Figure E1.9. The  downstream 
process requires that the sustained fluctuations in the flow F0(t) be no larger than 10 ft3/min. 
Assume the tank is linear and the fluid resistance R = 0.25 ft per ft3/min.

 a. Find the difference equation for F0,A(n), n = 0, 1, 2, 3, …. Leave the tank cross sectional 
area A as a parameter.

 b. Write a program to solve the difference equation with Δt = 0.5 min for a starting value of 
A = 100 ft2. Graph both F0,A(n) and HA(n), n = 0, 1, 2, …  for a period of time  sufficient to 
determine if the design criterion is satisfied. Assume the tank is initially empty.

FIGURE E1.9



19Mathematical Modeling

 c. Repeat part (b) with a new value of A until the design criterion is satisfied, i.e. the sustained 
fluctuations in F0(t) are equal to 10 ft3/min.

 d. Graph the discrete-time signals F1(n) and F0,A(n), n = 0, 1, 2, 3, …  for the tank whose area 
is the value determined in Part (c).

1.4 FIRST LOOK AT DISCRETE-TIME SYSTEMS

The variables F1(t), F0(t), and H(t) in the liquid tank shown in Figure 1.3 are referred to as con-
tinuous-time (or simply continuous) signals. The reason is because there is a continuum of values 
betwen any two points along the t-axis where the variables are defined. Equation 1.18 is a contin-
uous-time model and the system is a continuous-time system because it involves only continuous-
time variables.

In contrast to the continuous-time signals F1(t), F0(t), and H(t), the sequence of sampled 
input flow values, F1(n), n = 0, 1, 2, … and the sequence of approximate tank levels HA(n), 
n = 0, 1, 2, … are classified as discrete-time (discrete for short) signals because the independent 
variable “n” is discrete in nature. The difference equation (Equation 1.48) is referred to as a dis-
crete-time model, and the underlying system with purely discrete-time input and output signals is 
likewise a discrete-time system.

Figure 1.11 illustrates both the continuous and discrete representations of the tank dynamics.

1.4.1 Inherently dIscrete-tIme systems

The discrete model of the tank dynamics relates HA(n), an approximation of the continuous tank 
level H(t) and F1(n), the sampled version of the continuous flow F1(t). In contrast, inherently discrete-
time systems involve discrete signals which are not related to continuous signals. For example, 
consider a discrete-time system governed by the difference equation

 
y n y n

u n

y n
n( ) ( )

( )
( )

, , , ,= − +
−











 =

1
2

1
1

0 1 2 …
 

(1.61)

Equation 1.61 is simply a rule for transforming a discrete input signal u(n) into an appropriate 
discrete output signal y(n). Is this discrete-time system useful? Let us investigate its behavior for the 
case where u(n) is a constant, for example, u(n) = 25, n = 0, 1, 2, …. Before we are able to com-
pute y(n), n = 0, 1, 2, …, a starting or initial value, in this case y(−1) must be given. If we choose 
y(−1) = 1, the first few values of y(n) are

 
n y y
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= = − +
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13: ( ) ( )
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( )  
(1.62)

Continuous-time system 

Discrete-time system 
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FIGURE 1.11 Continuous-time and discrete-time representations of tank dynamics.
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Using different positive constants for u(n) and other starting values for y(−1) will reveal an inter-
esting property of the system, namely

 
lim ( )
n

y n u
→∞

=
 

(1.67)

Hence, the primary purpose of the discrete-time system governed by Equation 1.61 is to compute 
the square root of its positive-valued constant input u(n). The discrete signals u(n) and y(n) are plot-
ted in Figure 1.12.

Another inherently discrete-time system is one we are all familiar with, namely, an interest- 
bearing account such as a bank account. The discrete signals of interest are y(n), the account balance 
at the end of the nth interest period, and u(n), the net deposit for the nth interest period. Figure 1.13 
shows the discrete-time system.

Consider an account with an interest rate i (per interest period). The balance at the end of the nth 
interest period, y(n) is the sum of

• the balance at the end of the (n – 1)st period: y(n – 1)
• the interest earned for the nth interest period: i ⋅ y(n – 1)
• the net deposit for the period: u(n)

30

20
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0–1 1 2 3
n

4 5 6

0–1 1 2 3 4 5 6

Input of inherently discrete-time system

Output of inherently discrete-time system
15

10

u(
n)

y(
n)

5

0

0

FIGURE 1.12 Illustration of using discrete-time system in Equation 1.61 to find a square root.
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Therefore, the model for this inherently discrete-time system is

 y n y n iy n u n( ) ( ) ( ) ( )= − + − +1 1  (1.68)

EXAMPLE 1.3

A college trust fund is set up with $5000 on Jan 1, 2000. Starting on Jan 1, 2001 and every year 
thereafter, $1000 is added to the fund, which earns 7.5% interest annually.

 a. Track the end of year fund balance for the first several years.
 b. Find the account balance at the end of Year 18th year.

 a. The discrete-time model is

 y n y n y n u n n( ) ( ) . ( ) ( ), , , ,= − + − + =1 0 075 1 1 2 3 … (1.69)

  with input

 u n n( ) , , , ,= 1000 1 2 3 = … (1.70)

  and initial condition y(0) = 5000.
  The account balance at the end of years 1, 2, and 3 are computed as follows:

 

n y y y u= = + +
= + +
=

1 1 0 0 075 0 1

5000 0 075 5000 1000

6375

: ( ) ( ) . ( ) ( )

. ( )

 

(1.71)

 

n y y y u= = + +
= + +
=

2 2 1 0 075 1 2
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7853 13

: ( ) ( ) . ( ) ( )

. ( )

.  

(1.72)

 

n y y y u= = + +
= + +
=

3 3 2 0 075 2 3

7853 13 0 075 7853 13 1000

9

: ( ) ( ) . ( ) ( )

. . ( . )

4442 11.  

(1.73)

 b. The recursive solution could be continued for n = 4, 5, 6, …, 18 resulting in the fund’s 
 balance at the end of the 18th year. However, a general solution of the discrete-time 
model is preferable since it can be evaluated for any value of the variable n.

Expressing the discrete-time model in Equation 1.68 as

 y n i y n A n( ) ( ) ( ) , , , ,= + − + =1 1 1 2 3 … (1.74)

 = − + =αy n A n( ) , , , , ...1 1 2 3  (1.75)

where α = 1 + i and A is the constant net deposit each interest period.

Savings
accountu(n) y(n)

FIGURE 1.13 Example of an inherently discrete-time system.



22 Simulation of Dynamic Systems with MATLAB® and Simulink®

 n y y A= = +1 1 0: ( ) ( )α  (1.76)

 n y y A= = +2 2 1: ( ) ( )α  (1.77)

 = + +α α[ ( ) ]y A A0  (1.78)

 = + +α α2 0y A A( )  (1.79)

 n y y A= = +3 3 2: ( ) ( )α  (1.80)

 = + + +α α α[ ( ) ]2 0y A A A  (1.81)

 = + + +α α α3 20y A A A( )  (1.82)

suggesting the general expression for y(n) is

 y n y A nn n( ) ( ) ( ... ) , , , , ...= + + + + + =−α α α α0 1 0 1 22 1   (1.83)

Further simplification is possible using the closed form of the finite geometric series in 
Equation 1.83 resulting in
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(1.84)

The account balance after 18 years is computed from Equation 1.84 with α = 1.075, y(0) = 5000 
and A = 1000.
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= 66 41.  

(1.85)

The results from part (a) can be verified using the general solution in Equation 1.84.

EXERCISES

 1.10 Prove that the output of the discrete-time system in Equation 1.61 will approach the square 
root of the input, any positive constant “A”. In other words, show that

 
Lim
n

y n
→∞

=( ) A
 

where u(n) = A, n = 0, 1, 2, 3, …

1.5 CASE STUDY: POPULATION DYNAMICS (SINGLE SPECIES)

The population of a country is under investigation. Unlike the liquid tank example, there is no scien-
tific principle to serve as a foundation for deriving a mathematical model that can be used to predict 
future populations. Instead, empirical observations of historical birth and death rates, immigration 
and emigration patterns, and a host of other pertinent data are utilized.

One hundred years of observed population data, recorded at intervals of 10 years, is given in 
Table 1.4.
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Based on the available data, researchers are convinced that the population is adequately modeled 
by the following differential equation, referred to in the literature as logistic growth (Haberman 
1977).

 

dP

dt
cP P Pm= −( )

 
(1.86)

P = P(t) is the population “t” years after the initial population was recorded. The parameters 
c and Pm influence the specific growth pattern behavior. The model ignores immigration and 
emigration and all other external inputs, which influence dP/dt, the rate at which the population 
changes.

The system model in Equation 1.86 is said to be autonomous, meaning there are no additional 
terms independent of P, as might be the case if immigration or emigration inputs as a function of 
time were considered. The dynamics depend soley on initial conditions and the system parameters. 
It is also referred to as an unforced system since there are no external inputs.

Statistical analyses of the population data has resulted in estimated values for c and Pm to be 
1.25 × 10−9 and 25 million, respectively. It is now 100 years since the initial population was mea-
sured. Government planners are interested in determining what the likely population will be over 
the next several decades. A method is needed to obtain an approximate solution for P(t), that is, a 
difference equation for PA(n) ≈ P(nT), n = 0, 1, 2, … is required.

Emplying the method from Section 1.2 for obtaining a difference equation to approximate the 
dynamics of a first-order system,

 P n P n T f P nA A A( ) ( ) [ ( )]+ = + ⋅1  (1.87)

where f [pA(n)] is the derivative function, that is,

 f P n cP n P P nA A m A[ ( )] ( )[ ( )]= −  (1.88)

Combining Equations 1.87 and 1.88 results in

 P n P n TcP n P P nA A A m A( ) ( ) ( )[ ( )]+ = + −1  (1.89)

TABLE 1.4
Population Data for 100 Years

t (years) Pobs(t), millions

0 3.0000

10 3.2276

20 4.5759

30 6.9570

40 8.7618

50 9.1536

60 11.2669

70 14.5153

80 16.5059

90 17.9563

100 19.5078
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Note, Equation 1.89 could just as easily have been found by simply replacing 
dP

dt
 in Equation 

1.86 with the divided difference term 
P n P n

T
A A( ) ( )+ −1

 and replacing P with PA(n) on the right hand 

side of the equation.
Simplifying Equation 1.89 leads to the required difference equation, namely

 P n Tc P P n P nA m A A( ) { [ ( )]} ( )+ = + −1 1  (1.90)

Since our interest is in predicting populations for 100 years and beyond, we need to solve Equation 
1.90 over a suitable range of values for the discrete-time variable “n”. The appropriate integer values 
depend on the size of our time step T. For simplicity, we shall choose T = 1 year, necessitating the 
calculation of PA(101), PA(102), …, PA(130) to obtain predictions for a 30-year time span.

A recursive solution seems like our only alternative, since a general solution is not easily achiev-
able. The Matlab file “Ch1_CaseStudy.m” includes the necessary statements to solve Equation 1.90 
recursively and produce the results shown in Table 1.5. Note, the initial value PA(0) is the initial 
observed population of 3 million.

A comparison of the numbers for Pobs(t) and PA(n) indicates that the modelers were justified in 
assuming logistic growth of the population for the 100 years corresponding to the recorded data. 
Naturally, this assumes that the approximate solution values PA(n), n = 0, 1, 2, …, 100 are reason-
ably close to the exact solution P(t), t = 0, 1, 2, …, 100.

Ordinarily, dynamic population models are not amenable to exact solutions. However, the ana-
lytical solution to Equation 1.86 is known and given in Equation 1.91.

 
P t

P P

P P P e
tm
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cP tm

( )
( )

( ) [ ( )]
=

+ −
≥−

0
0 0

0,  
 

(1.91)

Knowing the exact solution, P(t), to the continuous model differential equation, we can evaluate 
P(t) at t = 0, 10, 20, …, 100 years for comparison with the discrete output PA(n), n = 0, 10, 20, …, 100 
years obtained from solution of the difference equation. This allows us to determine if the current 
step size T = 1 year needs to be adjusted.

Comparing the last two columns in Table 1.5 should convince us that the step size T does not 
need to be reduced. While its possible to reduce the discrepancy between the approximate and 
exact solutions by lowering T, it’s hardly justified in view of the fact that the logistic growth model, 
Equation 1.86, is itself only an approximate representation of the true population dynamics.

The data in Table 1.5 are presented in graphical form in Figure 1.14. The difference equation 
used to find PA(n), n = 0, 1, 2, …, 100 is used to predict the future population for the next 30 years. 
The projected populations for years 100, 120, and 130 are included in Table 1.5 and appear as data 
points in Figure 1.14.

The previous point relating to the accuracy of the approximate solution is worth reiterating. 
Extremely accurate discrete solutions of nonlinear differential equation models are generally not 
warranted unless the continuous models themselves are highly detailed with known accuracy.

Once we have an approximate solution of a continuous model response, how can we be certain 
if the two responses are in close agreement with each other? There is no simple answer; however, 
its worth remembering that

 1. the difference equations in the discrete-time model converge to the differential equations 
of the continuous-time model in the limiting case when the step size! approaches zero.

 2. the discrete-time solutions approach the exact solutions of the continuous-time model as 
the step size T is reduced to zero.

Systematically reducing the step size T until the changes in the discrete-time outputs are within 
some tolerance demonstrates this convergence and is an effective way of selecting the step size for 
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future runs. We touched on this in the previous section as a way of choosing an appropriate value 
for the step size T.

On a cautionary note, the step size may have to be readjusted as conditions change, in particular, 
the frequency components of the inputs. We will have more to say about this when we consider the 
frequency response characteristics of continuous and discrete systems in Chapter 4.

Further scrutiny of the logistic growth model, Equation 1.86, reveals several important and note-
worthy characteristics of the underlying population dynamics. Expressing the model in a slightly 
different form,

TABLE 1.5
Comparison of Observed, Discrete (T = 1 year) and Continuous 
Populations

t (years) Pobs(t), millions n PA(n), millions P(t), millions

0 3.0000 0 3.0000 3.0000

10 3.2276 10 3.9161 3.9276

20 4.5759 20 5.0493 5.0759

30 6.9570 30 6.4129 6.4570

40 8.7618 40 8.0003 8.0618

50 9.1536 50 9.7778 9.8536

60 11.2669 60 11.6834 11.7669

70 14.5153 70 13.6325 13.7153

80 16.5059 80 15.5321 15.6059

90 17.9563 90 17.2976 17.3563

100 19.5078 100 18.8671 18.9078

110 110 20.2076 20.2310

120 120 21.3139 21.3226

130 130 22.2012 22.1990

25

22.5

20

17.5

T = 1 year

P(t)

PA(n), n = 0, 10, 20, ..., 130

Pobs(t)

0 20 40 60 80
t (year number)

100 120 140

Population vs. time

15

12.5

10

Po
pu

la
tio

n 
(m

ill
io

ns
)

7.5

5

2.5

0

FIGURE 1.14 Observed, discrete (approximate) and continuous populations.
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g P

P

dP

dt
c P Pm( ) ( )= = −

1

 
(1.92)

where g(P), the rate of change in population dP/dt divided by the population P, is called the popula-
tion growth rate. Different population models are normally characterized by the terms appearing on 
the right hand side of Equation 1.92.

The growth rate for a logistic growth population model is shown in Figure 1.15.
We expect the population to be increasing whenever the growth rate is positive, since a positive 

growth rate implies the instantaneous rate of change in the population, that is, the first derivative 
is also positive. The logistic population growth rate declines linearly with increasing population, 
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FIGURE 1.16 Logistic growth with different initial populations.
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eventually reaching zero when the population reaches Pm. In logistic growth models, Pm is called the 
carrying capacity, which equals 25 million in this example.

Observe from Figure 1.14 that the discrete and continuous model outputs for 130 years ranged 
from the initial population of 3 million people to somewhere around 22 million people. Looking 
at the line segment in Figure 1.15, corresponding to this range of populations, we notice that 
the growth rate is positive. Hence the population should be monotonically increasing, as indeed 
it was.

Is it possible for a population P(t) governed by a logistic growth model to ever assume values on 
both sides of its carrying capacity Pm? For example, is the population growth shown in Figure 1.14 
capable of exceeding Pm = 25 million if we wait long enough? Figure 1.16 shows population time 
histories for the logistic growth model considered previously (c = 1.25 × 10−9, Pm = 25 × 106) with 
different starting populations.

It is clear that the population approaches its carrying capacity from below or above in 
asymptotic  fashion. We should not be surprised if we consider what happens to the population 
growth rate g(P) as the population approaches its carrying capacity from either direction (see 
Figure 1.15).

EXERCISES

 1.11 Assume the logistic growth population model accurately predicts future populations.
 a. Some time in the future, the population will reach 98% of its carrying capacity. Find how 

many more years will it take for this to occur by using the difference equation given in 
Equation 1.89. Does it make a difference whether you start from PA(0) = 3 million or 
PA(130) = 22.2012 million from Table 1.5?

 b. Compare the answer obtained in Part (a) with the analytical solution for P(t).
 c. The population growth rate g(P) vs P in Figure 1.15 does not explicitly involve time. Label 

the points on the growth rate curve corresponding to {ti, P(ti)} where t0 = 0, t1 = 25, t2 = 50, 
t3 = 75, t4 = 100.

 d. The carrying capacity Pm in a logistic growth model is an equilibrium population, mean-
ing that if the population at some point in time were equal to Pm it would remain there 
forever. Investigate whether its stable or not by supposing the population were slightly less 
or slightly more than Pm and determine if the population returns to the carrying capacity. 
Obtain several approximate solutions corresponding to different initial populations reason-
ably close to Pm.

 e. Find the other equilibrium population of the logistic growth model and determine if its stable.
 1.12 A simpler model for population growth of a species is one in which the growth rate is assumed 

constant, that is independent of the population. Mathematically, this is represented by

 
Growth ate  R = = =g P

P

dP

dt
k( )

1

 

   Suppose a culture of bacteria is increasing in size according to the constant growth rate 
model above. The initial bacteria population is P0.

 a. Develop the difference equation for the discrete system approximation of the continuous 
model. Denote the discrete population as PA(n).

 b. Find the general solution for PA(n), n = 0, 1, 2, 3, …. Leave your answer in terms of k and P0.
 The constant growth rate k = 0.01 bacteria/min per bacteria and the initial number of 

bacteria is 10,000.
 c. Solve the difference equation recursively using a step size T = 1 min for PA(n), 

n = 1, 2, 3, 4, 5. Compare the result for PA(5) to the value obtained from the general solu-
tion found in Part (b).
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 d. The analytical solution to the continuous model is P(t) = P0ekt, t ≥ 0. How long does it take 
for the population to reach 1 million?

 e. On the same graph, plot the continuous model output P(t), 0 ≤ t ≤ 500 and the discrete 
model output PA(n), n = 0, 50, 100, 150, …, 1000 when T = 0.5 min.

 f. Explain what would happen to a population with constant growth rate k, if k were negative.
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2 Continuous-Time Systems

2.1 INTRODUCTION

Before we start our exploration of simulation, it is important for us to have some basic knowledge of 
how linear time-invariant (LTI) dynamic systems behave. The analysis of linear systems and how 
they respond to elementary types of inputs is straightforward. Linear systems appear as building 
blocks in more complex systems. Our intuitive understanding of the entire system is enhanced by 
recognizing the fundamental behavior of its linear components. Control systems, for example, are 
oftentimes composed of linear continuous-time components interconnected to produce a desirable 
response to commanded as well as uncontrollable or disturbance inputs.

Speaking of control systems, the mathematical model of the process being controlled is often 
 nonlinear; however, a properly designed regulatory control system will limit excursions of the process 
variables. In fact, the design of the controller may be based on a linearized model of the  nonlinear 
process owing to the wealth of tools available in the field of linear control theory. Simulation can 
play a valuable role here by shedding light on the validity of using a linearized mathematical model 
to approximate a nonlinear system model.

Modern simulation software contains user interfaces employing graphical icons that serve as build-
ing blocks for representing the linear continuous- and discrete-time components within a system. In 
order to exploit this feature, the simulation builder must understand the meaning and differences 
between the assortment of linear system blocks (integrators, first-order lags, second-order systems, 
transfer functions, and state space models) at his or her disposal. The material on first- and second-
order system response, and state variables covered in this chapter and Chapter 4, is intended as an 
introduction (or possibly a review) to the topic of linear continuous-time systems. There are literally 
dozens of excellent books on the subject of linear systems theory and linear control systems. Several 
are included in the references and the reader is encouraged to consult one or more as necessary.

In addition to the focus on linear systems in this chapter, one section includes several examples of 
nonlinear systems as well. A graphical illustration of how to linearize a nonlinear system model is 
presented as a preview of what is to come in Chapter 7 where the subject is revisited in more detail.

Simulation of continuous-time systems is not discussed in detail until Chapter 3 where the sub-
ject of numerical integration is introduced. However, a simulation model based on numerical dif-
ferentiation, similar to what was done in Chapter 1, is presented. At the conclusion of this chapter, 
the reader will be capable of representing simple continuous-time systems in state variable form and 
generate discrete-time model approximations of them, which can be solved in a recursive fashion.

2.2 FIRST-ORDER SYSTEMS

Continuous-time dynamic systems are said to be first order if the highest derivative of the dependent 
variable appearing in the mathematical model is first order. Systems in which a quantity of material 
or energy changes at a rate dependent on the amount of material or energy present are typically first 
order in nature. The general representation of a scalar first-order system is

 

d
d
y

t
f t y u= ( , , )

 
(2.1)

where
t is the continuous-time variable
u = u(t) is the system input
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y = y(t) is the system output
f(t, y, u) is the derivative function, which relates the rate of change in y to all three arguments

Not all three arguments will be present in every first-order model. Furthermore, it is possible for 
multiple inputs u1(t), u2(t), …, ur(t) to be present.

We begin our discussion of first-order systems with a special case, namely, where the derivative 
function is an explicit linear function of the input and output given by

 f t y u b u t a y t( , , ) ( ) ( )= −0 0  (2.2)

where a0 and b0 are constants. Combining Equations 2.1 and 2.2 gives

 

d
dt
y t a y t b u t( ) ( ) ( )+ =0 0

 
(2.3)

Equation 2.3 is a LTI, ordinary differential equation. In the time-varying case, one or both of 
the linear system parameters a0 and b0 are functions of the independent variable t. Equation 2.3 is 
commonly expressed as

 
τ

d
dt
y t y t Ku t( ) ( ) ( )+ =

 
(2.4)

where τ and K are easily related to a0 and b0 by

 
τ = =

1

0

0

0a
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a
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(2.5)

Many simple real-world dynamic systems are modeled by the first-order differential equation 
(Equation 2.4). More complex systems often behave similarly to first-order systems under cer-
tain conditions. Furthermore, higher-order system models can be reduced to a system of coupled 
first-order models. Familiarity with first-order system response will prove useful later on when we 
undertake the task of simulating higher-order linear and nonlinear systems. For this reason, we 
explore some basic properties of first-order systems modeled by Equation 2.4.

2.2.1 step response of fIrst-order systems

When the input u(t) is constant, that is, u(t) = A, t ≥ 0, the solution to Equation 2.4 for y(t) is obtained 
using Laplace transform or classical time-domain methods. It is given below:

 y t y e KA e tt t( ) ( ) ( ),/ /= + − ≥− −0 1 0τ τ

 (2.6)

where y(0) is the initial value of the output y(t). Several graphs of y(t) are shown in Figure 2.1 for the 
cases where y(0) = 0, K = 5, A = 2, and τ = 0.5, 2, 5, and 10.

The graphs of y(t) shown in Figure 2.1 are called the step response because the input resem-
bles a step (changing from 0 to A at t = 0). Note that the initial condition is zero in all the step 
responses.

The constant A measures the amplitude of the input and is not an inherent system parameter. 
The system parameters are K and τ (or a0 and b0 from which they are computed). The first parameter 
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K is called the system DC or steady-state gain. It is so named because the final value of the output, 
y(∞), is easily computed from

 y K u K A( ) ( )∞ = ⋅ ∞ = ⋅  (2.7)

which in this case is y(∞) = 5 ⋅ 2 = 10 (see Figure 2.1). The final value y(∞) is unaffected by the 
initial condition y(0). However, the graph of y(t) in Equation 2.6 certainly depends on y(0), since that 
is where it starts. A first-order system like the one in Equation 2.4 is called a first-order lag because 
of the way the step response in Figure 2.1 lags the step input.

There are situations when the input to a first-order system is not a step; however, the input remains 
constant for a period of time that is largely relative to the parameter τ. Equation 2.7 enables us to 
readily compute the final output value prior to a change in the input. In essence, we are tracking 
the first-order system from one steady-state level to another, and the transient response (portion 
of the overall step response that decays to zero) is ignored. Even without knowledge of the tran-
sient response, it is possible to predict the amount of time necessary for the new steady state to be 
established.

In the first-order system modeled by Equation 2.4, the first derivative vanishes when the sys-
tem is at steady state, leaving yss = K u , where yss is the output at steady state in response to 
the constant input u . A similar result is obtained from Equation 2.6 with A replaced by u  and t 
approaching ∞.

The first-order system step responses shown in Figure 2.1 correspond to four distinct values 
for the parameter τ. It is apparent that while all approach the limiting value y(∞) = 10, there is 
a noticeable difference in the amount of time required for each to get there. The individual step 
responses are correlated with the system parameter τ. This parameter is called the time constant of 
the first-order system. It is a measure of the speed of the step response as well as an indicator of the 
overall speed of the first-order system’s dynamics. A “rule of thumb” for first-order systems is that 
the transient response vanishes after four or five time constants. The transient response component 
of the step response in Equation 2.6 with y(0) = 0 is

 y t KAe ttr
t( ) ,/= − ≥− τ 0  (2.8)
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FIGURE 2.1 Step response of first-order system with different values of τ.
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when t = 5τ,

 y KAe KAtr ( ) ( . )5 0 00675τ = − = −−

 (2.9)

and the step response

 y KA e KA( ) ( ) .5 1 0 99335τ = − =−

 (2.10)

is more than 99% complete. After four time constants have elapsed, the step response is slightly over 
98% of its final value (see Figure 2.1).

First-order system models are commonplace in science, engineering, economics, business, etc. 
The liquid storage tank model in Section 1.2 and the population models considered in Section 1.5 
are examples of first-order system models. Another example of a physical system described in terms 
of a first-order model is the simple electric circuit shown in Figure 2.2 along with the tank.

The circuit components are a capacitor C, a resistor R, and a voltage source e0(t). There is also 
a switch that connects the source to the rest of the circuit when it is in the closed position. Like 
the tank that stores its energy as a column of liquid, the circuit’s capacitor stores energy in the 
form of electric charge. The potential energy of the fluid varies as the tank level changes and 
the electrical energy stored in the circuit varies with the amount of electrical charge stored in the 
capacitor. Both systems have a mechanism for dissipating energy. The tank does so whenever 
the level of fluid is dropping and the circuit dissipates energy in the resistor whenever there is 
current flowing.

The fluid resistance of the tank tells us the amount of effort, that is, height of liquid, required to 
produce a unit of flow from the tank. A typical unit for fluid resistance is ft per ft3/min. The electri-
cal counterpart is the electrical resistor that also measures the driving force, in this case, the voltage 
applied to the resistor, necessary to produce a unit of current flow, measured in amperes. The unit 
of electric resistance is volts/ampere, commonly called ohms.

Choosing the voltage across the capacitor vc(t) as the output, the circuit model is easily derived 
using basic principles of electrical circuits. The result is

 
RC

t
v t v t e tc c

d
d

+( ) ( ) ( )= 0
 

(2.11)

Comparison of Equation 2.11 with the standard form introduced in Equation 2.4 reveals the 
time constant of the circuit τ = RC and the steady-state gain K = 1(V/V). Hence, the transient 
response lasts for a period of time equal to approximately 5RC. For a constant voltage applied to 
the circuit, that is, e0(t) = E0, t ≥ 0, the steady-state voltage vc(∞) is numerically equal to E0 since 
vc(∞) = KE0 = 1 ⋅ E0.

FIGURE 2.2 Examples of systems with first-order system models: (a) storage tank and (b) RC circuit.
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The step response is obtained from Equation 2.6 with y(0) = vc(0) = 0, τ = RC, K = 1, and A = E0. 
The result is

 v t E e tc
t RC( ) ( ),/= − ≥−

0 1 0  (2.12)

The step response consists of the steady-state component

 v Ec( )∞ = 0  (2.13)

and the transient component

 v t E e tc
t RC( ) ,/= − ≥−

0 0  (2.14)

The transient response involves the exponential e–t/RC, which is called the natural mode of the 
system. To understand this, consider the circuit response with zero applied voltage (E0 = 0) and a 
nonzero initial voltage across the capacitor vc(0). From Equation 2.6, the solution for vc(t) is

 v t v e tc c
t RC( ) ( ) ,/= ≥−0 0  (2.15)

a constant times the natural mode. Natural modes of linear systems are exponential functions of 
time involving the parameters of the system, in this case, R and C. The natural modes do not depend 
on the system inputs. The unforced response of higher-order system models is referred to as the 
natural response of the system. It contains a linear combination of the natural modes (only one for 
the first-order system model). In general, the natural modes of linear system models appear in the 
transient response independent of whether the system is being forced (excited by inputs) or simply 
responding to initial conditions as in the case of an autonomous system.

EXAMPLE 2.1

A 12 V battery is used to charge the capacitor in the circuit shown in Figure 2.2. When the switch 
is closed at t = 0, the capacitor voltage is zero. Numerical values of the circuit parameters are 
R = 5000 Ω and C = 0.125 × 10−6 F (1 F = 1 A per V/s).

 a. Find the time constant τ, steady-state gain K, and natural mode of the circuit.
 b. Find the steady-state voltage vc(∞) across the capacitor.
 c. Determine how long it takes for the capacitor to charge up to 50% of vc(∞).
 d. Find and graph the transient component, steady-state component, and the complete 

response for the case where the capacitor is initially charged to 3 V.

 a. τ = RC = (5000 Ω) × 0.125 × 10−6 F = 0.000625 s (625 × 10−6 s)
  K = 1 V/V
  Natural mode: e−t/RC = e−t/0.000625, t ≥ 0
 b. vc(∞) = KE0 = (1 V/V) × 12 V = 12 V
 c. v t Ec

t RC t( ) ( ) ( )/ /= − ⇒ = −− − × −

0
625 101 6 121

6
e e , which can be solved using natural loga-

rithms to give t = 0.0004332 s
 d. From Equation 2.6 with initial condition vc(0) = 3 V, the complete response is

 

v t v KE tc c
t RC t RC

t

( ) ( ) e ( e ),

( )( )(

/ /

/

= + −

= +

− −

− ×

≥
−

0 1

3 1 12

0

625 10

0
6

e 11 625 10 6
− − × −

e )/t

 

 The transient component is

 

V t v KE e t

e

e

c tr c
t RC

t

( ) [ ] ,

[ ( )( )]

( ) /

/

= − ≥

= −

= −

−

− ×

−

−

0 0

3 1 12
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0

625 10 6

tt /625 10 6× −
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 and the steady-state component is

 
v KEc( ) ( )∞ = = =1 12

V
V

V 12 V
 

Graphs of the steady-state, transient, and complete responses are shown in Figure 2.3.
Note that the transient response has decayed to essentially zero after five time constants 

(5 × 625 × 10−6 = 3.125 × 10−3) have elapsed.

EXERCISES

 2.1 The tank shown in Figure 2.2 has a constant cross-sectional area A and fluid resistance R.
 a. Find expressions for the time constant τ and steady-state gain K of the tank in terms of the 

physical parameters A and R.
 b. The empty tank is subject to a constant flow in of F  ft3/min. Obtain an expression for the 

liquid level step response of the tank.
 c. The cross-sectional area of the tank is 20 ft2, and the fluid resistance is 0.5 ft per ft3/

min. How high must the tank be if the inflow is constant at F  = 15 ft3/min for it not to 
overflow.

 d. How long will it take for the tank level to reach 50% of its final height?
 e. What size tank is needed if the time required to fill up is increased by 10%?
 2.2 Consider the first-order system: (d/dt)y(t) + a0y(t) = b0u(t)
 a. Under what conditions does this system reduce to a pure integrator?
 b. For the continuous-time integrator in part (a), express the output y(t) in terms of the input 

u(t). Assume the initial condition is y(0) = y0.
 c. When is a liquid storage tank a pure integrator?
 2.3 The amount of salt Q in a well-stirred tank shown in the Figure E2.3 depends on cl, the 

concentration of salt in the brine solution entering the tank, as well as the flow rates F1 and 
F0 into and out of the tank. The continuous-time model is based on conservation of salt. 
It equates dQ/dt, the instantaneous rate of change in the amount of salt in the tank to the 
difference in the rate of salt entering the tank, c1F1, and the rate of salt flowing out of the 
tank, cF0.
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vc(t) = vc(∞) + vc(t)tr
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 (V
)
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FIGURE 2.3 Steady-state, transient, and total response of an RC circuit.
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  The tank initially contains 100 lb of salt-free water. The concentration of salt in the brine solu-
tion flowing in is 0.25 lb/ft3. Both the flow into and the flow out of the tank are both 1 ft3/min. 
Note that 1 ft3 of water weighs approximately 62.4 lb.

 a. Find Q(t), the amount of salt in the tank as a function of time.
 b. Find the amount of salt in the tank at steady state.

 

d
d
Q

t
c F cF= −1 1 0

 

 2.4 A temperature-controlled chamber is shown in Figure E2.4.

   The air temperature inside the chamber is assumed to be the same everywhere, namely, 
T(t). The chamber walls are insulated to reduce heat loss or gain with its surroundings. 
Temperature control is achieved by circulating hot or cold water through pipes located inside 
the chamber. Heat exchange occurs between the air inside the chamber and the circulating 
water in the pipes. The heat flow from the circulating hot water is Qh(t), and Qc(t) is the heat 
flow to the cold water. Heat exchange Q0(t) also occurs between the air inside and outside the 
chamber. Ambient temperature outside the chamber is denoted T0(t).

  A suitable model for this thermal system is based on the conservation of energy.

 
c V

T

t
Q Q QA h c

d
d

= − − 0
 

  V is the volume (ft3) of air in the chamber, and cA is the thermal capacitance of air 
(0.01375 Btu/°F/ft3). The heat flow terms on the right-hand side are given by

 

Q m c T T

Q m c T T

Q
R
T T

h h p h

c c p c

= −
= −

= −




( )

( )

( )0
1

0
 

FIGURE E2.3

FIGURE E2.4
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 where
  mh and mc are the mass flow rates (lb/min) of the hot and cold water
  cp is the specific heat of water (1 Btu/lb/°F)
  R is the thermal resistance (°F/Btu/min) of the chamber walls

  The expressions for Qh and Qc assume that the flow rates of the circulating fluids are great 
enough that both fluids exit at the same temperature at which they entered the chamber.

 a. Express the mathematical model in the form of a differential equation relating the output T 
and its derivative to the inputs Th, Tc, and T0.

 b. Find the time constant and the three steady-state gains of the system. Check the units to ver-
ify that the time constant is in minutes and the steady-state gains are dimensionless (°F/°F).

 c. Show that the air temperatures inside and outside the chamber eventually equalize after 
both the hot and cold circulating water flows are turned off.

 d. Suppose the chamber air temperature is required to be higher than the outside ambient air 
temperature, which remains constant, that is, T0(t) = T0, t ≥ 0. The hot water temperature 
entering the chamber is three times greater than the ambient temperature. The  initial air 
temperature inside the chamber is the same as the outside  ambient temperature. Find the 
analytical solution for T(t), t ≥ 0, the air temperature inside the chamber.

 e. Graph the solution for T(t), t ≥ 0 in part (d) using the following values:

 V R m and Th= = ° = = °5000 0 025 50 603
0ft F/Btu/min lb/min   F, . , ,

 

2.3 SECOND-ORDER SYSTEMS

Input–output models of continuous-time dynamic systems where the highest derivative of the 
dependent variable is second order are classified as second-order systems. Second-order systems 
result when there are two energy storage elements present. Our interest for now is in linear second-
order systems, which can be manipulated into the form shown in Equation 2.16 relating an output 
y(t) to an input u(t) involving generic system parameters, ζ, ωn, and K.

 

d
d

d
d

2

2
2 22

t
y t

t
y t y t K u tn n n( ) ( ) ( ) ( )+ + =ζω ω ω

 
(2.16)

For an actual second-order system (mechanical, electrical, biological, etc.), the generic param-
eters can be expressed in terms of the system’s physical parameters. The importance of each will 
be explained shortly.

The unit step response of the second-order system is the solution for y(t) in Equation 2.16 when 
y(0) = 0 and the input u(t) = 1, t ≥ 0, hereafter denoted by û(t). It can be found in any text related 
to linear systems or controls (Palm 1983; Franklin et al. 2002; Dorf and Bishop 2005). The unit 
step response assumes one of three forms depending on the location of the roots of the algebraic 
equation

 s sn n
2 22 0+ + =ζω ω  (2.17)

known as the characteristic equation of the system. The characteristic roots are the solution to 
Equation 2.17 and are given by

 
s s n n1 2

2 1, = − ± −ζω ζ ω
 

(2.18)
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The natural modes of the second-order system are e  and e1 2s t s t . The step response depends on the 
value of the parameter ζ. There are three cases to consider.

Case 1: ζ > 1

If we let s n n1
2 1= − − −ζω ζ ω  and s n n2

2 1= − − −ζω ζ ω , then both roots are negative ( assuming 
ωn > 0) and s1 < s2 < 0. Introducing time constants τ1 and τ2 as the reciprocals of the characteristic 
roots s1 and s2, respectively,

 
τ τ1

1
2

2

1 1
= − = −

s s
,

 
(2.19)

The unit step response is

 

y t K t
t t

( )
e e

0
1 2

= +
−
−











 ≥

− −

1 2 2
2 1τ τ

τ τ

τ τ

,

 
(2.20)

Case 2: 0 < ζ < 1

The characteristic roots are complex conjugates and can be expressed as

 
s s jn n1 2

2, = − ± −ζω ζ ω1
 

(2.21)

It is convenient to define a new quantity ωd in terms of ζ and ωd according to

 
ω ζ ωd n= −1 2

 
(2.22)

The unit step response is

 

y t K t t tnt
d

n

d
d( ) cos sin ,= − +





















 ≥−1 0e ζ ζω ω ω

ω
ω

 
(2.23)

An alternate form of Equation 2.23 is

 
y t K t tn

d

t
d

n( ) sin( ) ,= − +












≥−1 0
ω
ω

ω ϕζωe
 

(2.24)

where the phase angle term ϕ is given by

 

ϕ
ω
ζω

ζ
ζ

= =
−










− −tan 1 1

21d

n

tan

 

(2.25)

Case 3: ζ = 1

From Equation 2.18, the characteristic roots are repeated, s1 = s2 = –ωn 
The unit step response is

 y t K e t tnt
n( ) [ ],( )= − + ≥−1 1 0ω ω  (2.26)
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A graph of the unit step responses given in Equations 2.20, 2.23, and 2.26 with K = 1 is shown in 
Figure 2.4. The abscissa is ωnt, a dimensionless variable, which allows us to visualize the effect of the 
parameter on the step response independent of ωn. Note that all three step responses start from zero. 
Furthermore, the initial slope given by dy(0)/dt is also zero for all three cases (see Exercise 2.6).

There are no oscillations in Case 1 (ζ > 1), that is, the response is monotonically increasing 
 without overshooting the final value y(∞) = Kū = 1 for a unit step input. The transient period 
increases with increasing ζ. The system is said to be overdamped.

An oscillatory step response occurs in Case 2 (0 < ζ < 1), and the system is referred to as under-
damped. As the value of ζ decreases, the oscillations become more pronounced, and the settling 
time for the transient component to die out becomes larger.

The case when ζ = 1 represents the transition from Case 1 to Case 2 (or vice versa). The second-
order system is called critically damped in this situation.

The graph in Figure 2.4d is the unit step response for the case when ζ = 0. From Equation 2.23 
with ζ = 0,

 y t K t tn( ) ( cos ),= − ≥1 0ω  (2.27)

resulting in sustained oscillations from 0 to 2 when K = 1. The differential equation of the unforced 
system is

 

d
d

2

2
2 0

t
y t y tn( ) ( )+ =ω

 
(2.28)

and the natural response resulting from the presence of initial conditions is that of harmonic motion, 
that is, sustained oscillations about zero at a frequency of ωn rad/s.
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FIGURE 2.4 Unit step response of second-order system in Equation 2.16. (a) Overdamped, ζ = 1.5, 2, 3. 
(b) Underdamped, ζ = 0.1, 0.3, …, 0.9. (c) Critically damped, ζ = 1. (d) Zero damping, = 0.
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Except for the case when ζ = 0, the unit step response approaches the limiting or steady-state 
value y(∞) = K, which means that K is the DC or steady-state gain of the second-order system in 
Equation 2.16. The parameter ζ, which determines the existence and extent of the oscillations as 
well as the duration of the transient response, is called the damping ratio of the system. The last two 
parameters ωn and ωd are the natural frequency and damped natural frequency of the second-order 
system, respectively. The first, ωn, is the frequency of the sustained oscillations (ζ = 0) in Equation 
2.27, and the second, ωd, is the frequency of the decaying oscillations (0 < ζ < 1) in Equation 2.24. 
It follows from Equation 2.22 that ωd < ωn The natural frequency ωn is an indication of the speed of 
the step response (and the system in general) since the oscillatory natural modes are damped by the 
exponential term with time constant 1/ζωn in Equation 2.23.

EXAMPLE 2.2

Figure 2.5 shows a delicate instrument placed on a table that moves as a result of a vertical 
force acting on it. Springs and dampers connect the table to the ground to limit the table’s 
movement.

The combined mass of the table and instrument is m. The total stiffness of the springs is k and 
the total damping is c. The mechanical system is modeled by

 
m

t
x t c

t
x t kx t f t

d
d

d
d

( ) =
2

2 ( ) ( ) ( )+ +
 

(2.29)

where
x(t) is the displacement of the table (from its static equilibrium position)
f(t) is the force acting on the platform resulting in the motion x(t)

 a. Find expressions for the steady-state gain K, the damping ratio ζ, and the natural fre-
quency ωn in terms of the physical parameters m, c, and k.

 b. Numerical values of the physical parameters are m = 40 lbm, k = 45 lbf/ft, and c = 4 lbf 
s/ft. Find the response of the table when the platform is subjected to a sudden deflection 
due to a force of 12 lbf.

 c. Graph the solution and estimate the duration of the transient.
 d. The instrument is not usable if it is moving faster than 0.04 ft/s. How long a period of 

time must pass after the force is applied before the instrument will function properly?

 a. Dividing Equation 2.29 by m for comparison with the standard form of a second-order 
system in Equation 2.16 gives

 

d
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f t( ) ( ) ( )+ + =

 
(2.30)

FIGURE 2.5 Mechanical system for Example 2.2.
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⇒ = =2

12 2ζω ω ωn n n
c
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k
m

K
m

, ,
 

(2.31)

 Solving for the parameters K, ωn, and ζ yields

 
ω ζn

k
m

c
km

K
k

= =, ,=
2

1

 
(2.32)

 b. Substituting the given values for m (in slugs), k, and c,
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ζ
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K
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= = =

= =

m /
rad/s
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2
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2 45 40 32 2
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  The damping ratio ζ = 0.2675 indicates the system is underdamped. From Equation 
2.22, the damped natural frequency is

 
ω ζ ωd n= − = −( ) =1 1 0 2675 6 0187 5 79942 2. . . rad/s

 

 and the response to a step input f(t) = F  = 12 lbf, t ≥ 0 is

 
x t KF t t tnt
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 ≥−


1 0ζω ω
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(2.33)

  Substituting the numerical values for K, F , ζ, ωn, and ωd results in

 
x t e t t tt( ) . cos . . sin . ,[ .= − + ≥( ]−0 2667 1 5 7994 0 2776 5 7994 01 6100

 
(2.34)

 c. A graph of the step response is generated in the script file “Chap2_Ex3_1.m” and shown 
in Figure 2.6.

   The transient period can be approximated from the graph as roughly 3 s, or it can be 
computed from the time constant of the exponential envelope as

 
Transient period s≈ × = × =5

1
5

1
0 2675 6 0187

3 1056
ζωn . ( . )

.
 

 d. The first derivative is obtained by differentiation of the underdamped step response in 
Equation 2.24. The result is
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1 2

 
(2.35)

  Substituting the numerical values for the system parameters K, ζ, ωn, and ωd gives

 

d
d

sin 0
t

y t t tt( ) . . ,.= ≥−0 1388 5 79941 6100e
 

(2.36)
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  The first derivative is graphed in the lower half of Figure 2.6. From the graph, it 
appears that approximately 0.77 s must elapse for the instrument to be usable, that is, 
the instrument is moving at less than 0.04 ft/s in either direction after that period of time. 
(A closeup of the response in the neighborhood of dx/dt = −0.04 ft/s reveals that the 
instrument’s velocity actually falls a bit short of −0.04 ft/s.)

2.3.1 conversIon of two fIrst-order equatIons to a second-order model

A linear second-order system is sometimes represented as a system of two first-order differential 
equations like those in Equations 2.37 and 2.38:

 

d
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t
ax by f t= + + ( )

 
(2.37)
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t
cx dy g t= + + ( )

 
(2.38)

Suppose a single equation relating the dependent variable x = x(t) and the inputs f = f(t) and 
g = g(t) is required. The first step is to solve for y = y(t) in Equation 2.37,
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Differentiating Equation 2.39,
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FIGURE 2.6 (a) Position and (b) velocity response of table and instrument (F  = 12 lbf).
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Replacing y in Equation 2.40 with Equation 2.39 gives
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(2.41)

and simplifying leads to the second-order differential equation,
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(2.42)

A similar procedure is used to eliminate x from Equations 2.37 and 2.38 to give a second-order 
differential equation in y.

EXAMPLE 2.3

The well-mixed tanks shown in Figure 2.7 contain uniform salt concentrations of c1 = c1(t) and 
c2 = c2(t), respectively. Concentration of salt in the input to the first tank is c = c(t). The flow rates 
between the tanks are Q1 and Q2, where Q1 > Q2 > 0. The liquid volumes in both tanks remain 
constant at V1 and V2.

 a. Write the differential equations for the conservation of salt in each tank.
 b. Find the differential equation relating c2(t) and the input c(t).
 c. Find expressions for the damping ratio, natural frequency, and steady-state gain.
 d. Find and plot the step response for c2 under the following conditions:

 Q1 = 10 gal/min, Q2 = 5 gal/min, V1 = 15 gal, and V2 = 15 gal
 c1(0) = c2(0) = 0 lb of salt/gal, c(t) = c  = 0.25 lb salt/gal, t ≥ 0

 a. Equating the accumulation of salt in each tank to the difference between the rates of salt 
in and out of the tanks,

 

d
d

Q
t
cV c Q c Qcin( )1 1 2 2 1 1= + −

 
(2.43)

 

d
dt

c V Qc Q c Q cout( )2 2 1 1 2 2 2= − −
 

(2.44)

 Since the holdup of liquid in both tanks is constant, the flows Qin and Qout are equal,

 Q Q Q Qin out= = 1 2–  (2.45)

 And, therefore, Equations 2.43 and 2.44 become

FIGURE 2.7 Two-tank mixing system.
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 b. Rearranging Equations 2.46 and 2.47 into the form of Equations 2.37 and 2.38,
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 Thinking of c2 as x and c1 as y, and comparing Equations 2.48 and 2.49 with Equations 
2.37 and 2.38 implies
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 From Equation 2.42, the second-order differential equation relating c2 and c is
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 c. Comparing the left-hand side of Equation 2.51 with the standard form in Equation 2.16 
gives
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 For c(t) = c , the steady-state value of c2 is obtained from Equation 2.51 by setting the 
derivatives equal to zero resulting in
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 ⇒ =( )c css2  (2.55)

  Hence, the steady-state gain K = 1 lb salt/lb salt as expected.
 d. For the given conditions, that is, Q2 = Q = 5, Q1 = 2Q = 10, and V1 = V2 = V = 15
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 From Equation 2.18, the characteristic roots of the overdamped system are

 s s n n1 2
2 1 1 1381 0 1953, . min, . min= = rad rad− ± − − −ζω ζ ω  

(2.58)

  The time constants in Equation 2.19 are τ1 = −1/s1 = 0.8787 min and τ2 = −1/
s2 = 5.1213 min, and from the unit step response in Equation 2.20, the response to a step 
of magnitude c  is
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  The second-order differential equation in Equation 2.51 is in standard form; however, 
the second-order differential equation for c1(t) contains the first derivative dc/dt on the 
right-hand side of the equation (see Exercise 2.6). The implication of input derivatives 
in the system model will be  discussed in a later section. A graph of the step response is 
shown in Figure 2.8.

EXERCISES

 2.5 Starting with Equations 2.37 and 2.38, obtain the second-order differential  equation relating 
the output y = y(t) and its derivatives to the inputs f = f(t) and g = g(t).

 2.6 In Example 2.3,
 a. Find the differential equation relating c1(t) and the input c(t).
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Step response of salt concentration in first tank
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FIGURE 2.8 Response of salt concentration in second tank to step input c(t) = 0.25, t ≥ 0.
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 b. Find the step response in c1(t) for the same initial conditions, system parameters, and input 
c(t). Graph the step response for c1(t) and c2(t).

 c. Show that the first derivative dc1/dt is discontinuous at t = 0 while the first derivative dc2/dt 
is continuous at t = 0.

 2.7 The two-tank system in Exercise 1.2 is second order.
 a. Convert the model of the system from two first-order differential equations to one second-

order differential equation with input F1(t) and output H2(t).
 b. Find expressions for the damping ratio, natural frequency, and steady-state gain in terms of 

the physical parameters A1, A2, R1, and R2.
 c. Use the results from part (b) to express the damping ratio in terms of the tank time con-

stants τ1 = A1R1 and τ2 = A2R2.
 d. Show that the system can never be underdamped.

 For parts (e) and (f), assume the following values for the system parameters:

 A1 = 100 ft2, R1 = 0.25 ft per ft3/min, A2 = 50 ft2, and R2 = 0.1 ft per ft3/min

 e. Find and graph the response H2(t) of the unforced system, that is, F1(t) = 0, t ≥ 0 starting 
from H1(0) = 40 ft and H2(0) = 0 ft.

 f. Find and graph the step response of H2(t) when F1(t) = 75 ft3/min. Both tanks are initially 
empty. Does the first tank achieve steady state in roughly 5τ1? Does the second tank achieve 
steady state in roughly 5τ2? Explain.

 2.8 A fundamental difference between the step response of first- and second-order linear systems 
in standard form is the initial rate of change, that is, the first derivative at t = 0.

 a. Show that the first-order system step response undergoes the maximum rate of change at 
t = 0.

 b. Show that the initial derivative of the second-order system step response is zero regardless 
of whether the system is underdamped, critically damped, or overdamped.

2.4 SIMULATION DIAGRAMS

In many cases, dynamic systems are composed of individual components and subsystems. The rela-
tionship of a system’s components to each other and the role they serve in the overall system design 
are oftentimes easier to comprehend when presented in visual form rather than by inspection of the 
mathematical models. Control systems for ground vehicles, aircraft, robotic devices, building envi-
ronments, and so forth are typically presented in graphical form as block diagrams. The blocks are 
both static and dynamic depending on the component it represents. Modern continuous-time system 
simulation languages include extensive libraries of special purpose blocks to represent the dynamics 
of commonly occurring components.

It is useful to reduce the blocks in a block diagram of a continuous-time dynamic system to a level 
that exposes the pure integrators. The simulationist is then given the flexibility of approximating 
individual integrators using different numerical algorithms. This is especially useful in applications 
where simulation code is developed manually instead of relying on a general purpose simulation 
language. This point will be revisited in Chapter 3 following a discussion of numerical integration.

A block diagram of a continuous-time dynamic system comprising algebraic blocks and integra-
tors is referred to as a simulation diagram. We begin with the first-order system of Equation 2.61:
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(2.61)

Equation 2.61 is a more general form than the first-order models introduced in Section 2.2 due to 
the presence of the first derivative term on the right-hand side.
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If we introduce a new variable z = z(t) where

 

d
dt
z t a z t u t( ) ( ) ( )+ =0

 
(2.62)

the output y is related to z by
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It is left as an exercise to show that Equations 2.62 and 2.63 are equivalent to Equation 2.61. In 
addition to the blocks required to implement Equations 2.62 and 2.63, an integrator block is needed 
to integrate the first derivative dz/dt to generate z(t), that is,
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The simulation diagram in Figure 2.9 is constructed by first drawing an integrator block and 
labeling the input dz/dt and output z corresponding to Equation 2.64. Next, we solve for the deriva-
tive term dz/dt in Equation 2.62 and draw a portion of the diagram to implement the result. Finally, 
the output y is generated from Equation 2.63 using the b0 and b1 gain blocks and a summing block.

The simulation diagram representation of the first-order system’s dynamics involves a single 
dynamic block, namely, the integrator. The remaining blocks are sum blocks and gains that are 
algebraic in nature.

A block diagram for the same first-order system is shown in Figure 2.10. The block diagram is a 
direct implementation of Equation 2.61 after solving for the first derivative dy/dt. An additional vari-
able z is not required in this case. The diagram in Figure 2.10 is not a simulation diagram because 
of the presence of the differentiator. In digital simulation, the differentiator (like the integrator) 
must be implemented using a numerical approximation. Numerical methods for approximating the 

FIGURE 2.10 Block diagram of first-order system: (d/dt)y(t) + a0y(t) = b1(d/dt)u(t) + b0u(t).

FIGURE 2.9 Simulation diagram of first-order system: (d/dt)y(t) + a0y(t) = b1(d/dt)u(t) + b0u(t).
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derivative of a continuous-time function are available. However, they are rarely implemented in 
simulation applications due to their sensitivity to high-frequency noise components often present in 
continuous-time signals.

A final observation relates to the special case when b1 in Equation 2.61 is zero. The input deriva-
tive is absent, and the first-order system assumes the simpler form of Equation 2.3 or 2.4. Recall 
that this form was sufficient to model the dynamics of the linear tank in Chapter 1 and the simple 
RC circuit of Example 2.1.

EXAMPLE 2.4

Draw a simulation diagram of the linear tank modeled by
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The diagram is shown in Figure 2.11.
Dividing Equation 2.65 by the parameter A and comparing the result to Equation 2.61 show
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leading to the simulation diagram shown in Figure 2.11.
The simulation diagram in Figure 2.11 is not unique. The “1/A” block can be moved from the 

location where z is its input to the left of the summer where F1 becomes its input. In that case, 
z and H are identical. The alternate simulation diagram can be obtained directly by solving the 
 differential equation of the tank for the first derivative,
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and implementing Equation 2.66 directly. Integrating the derivative dH/dt to get H completes the 
diagram.

EXAMPLE 2.5

Suppose the current i(t) in the RC circuit of Figure 2.2 is considered the output. The differential 
equation for the circuit becomes
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Draw the simulation diagram for the circuit described by Equation 2.67.
From Equation 2.61, a0, b0, and b1 are
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and the simulation diagram is drawn in Figure 2.12.

FIGURE 2.11 Simulation diagram of linear tank: A(d/dt)H(t) + (1/R)H(t) = Fl(t).



48 Simulation of Dynamic Systems with MATLAB® and Simulink®

When the differential equation model of a first-order system contains a term involving the first 
derivative of the input, a direct link or coupling exists from the input directly to the  output. In other 
words, when b1 ≠ 0 in Equation 2.61, sudden changes in the input are immediately reflected in 
the output. Notice the path of heavy solid lines in Figure 2.12 illustrating the direct connection of 
algebraic components between the voltage input e0(t) and the output current i(t).

In contrast, there is no direct connection from input to output in the simulation diagram shown 
in Figure 2.11 for the linear tank model. This is expected since changes in the inflow F1(t) must 
work their way through the tank dynamics, that is, the integrator, prior to affecting the output level 
H(t). Hence, the tank prevents abrupt changes like a step or other inputs with high-frequency 
 components from immediately causing any significant changes in the output H(t). The  tank 
behaves like a low-pass filter (see Exercise 1.10).

Obtaining a simulation diagram for a second-order system in the standard form

 

d
d

d
d

2

2
2 22

t
y t

t
y t y t K u tn n n( ) ( ) ( ) ( )+ + =ζω ω ω

 
(2.68)

is straightforward. We begin by drawing two consecutive integrators, labeling the input and output 
of the first with d2y/dt2 and dy/dt, respectively. The second integrator integrates the first derivative 
dy/dt producing y and is labeled accordingly. The next step is to solve for the second derivative 
term in Equation 2.68 resulting in
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Algebraic blocks (gains and summers) are used to implement Equation 2.69 leading to the 
simulation diagram shown in Figure 2.13.

The simulation diagram for a second-order system with first- or second-order derivatives of the 
input appearing in the differential equation model is not as straightforward. Starting with Equation 2.70
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FIGURE 2.13 Simulation diagram of a second-order system in standard form.

FIGURE 2.12 Simulation diagram for an RC circuit: (d/dt)i(t) + (1/R)C)i(t) = (1/R)(d/dt)e0(t).
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an approach similar to the method used for first-order systems with an input derivative term 
 present is employed. An artificial variable z(t) is introduced, and the output y(t) is expressed as a 
linear combination of z(t) and its two derivatives. The result is
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The simulation diagram of the second-order system in Equation 2.70 is shown in Figure 2.14. 
Note the use of the dot notation, short for differentiation with respect to time. It is clear that a 
direct connection from the input u(t) to the output y(t) exists only when b2, the coefficient of the 
input second derivative in Equation 2.70, is nonzero.

Looking at the simulation diagrams in Figures 2.9 and 2.14 for the first- and second-order sys-
tems in Equations 2.61 and 2.70, a general pattern emerges for creating the simulation diagram of 
an nth-order system modeled by
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The two equations equivalent to Equation 2.73 are
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The simulation diagram follows directly from Equations 2.74 and 2.75.

EXAMPLE 2.6

A unicycle is traveling over an uneven road as shown in Figure 2.15.
The input is the road elevation xr(t) above some reference. The output is the vertical movement x(t) 

of the rider and seat combination (with respect to its equilibrium position). Ignoring the compliance 

FIGURE 2.14 Simulation diagram for a second-order system with input derivatives present.
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of the tire makes the wheel deflection xw(t) = xr(t). Assume that the wheel remains in contact with the 
road surface. The mass of the rider and seat is m, and c and k are suspension parameters.

 a. Find the differential equation relating the output x(t) and input xr(t).
 b. Draw a simulation diagram of the system.
 c. Is there a direct coupling between the input and output? Explain.

 a. The differential equation is obtained by equating the sum of the suspension forces acting 
on the rider and seat to the product of its mass and acceleration.
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 Replacing xw(t) with xr(t) gives
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 b. Rearranging terms in Equation 2.77 gives
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 Comparing Equations 2.78 and 2.70 leads to expressions for a0, al, b0, b1, and b2 in terms 
of the system parameters,
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 and eventually the simulation diagram shown in Figure 2.16.

FIGURE 2.15 Unicycle traveling along an uneven road surface.

FIGURE 2.16 Simulation diagram for a unicycle suspension.
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 c. Since both paths from xr to x contain an integrator, there is no direct coupling between input 
and output. Consequently, an abrupt change in xr such as a vertical jump in the road surface 
height does not result in a similar type of displacement of the rider and seat combination.

2.4.1 systems of equatIons

System models can assume the form of coupled differential and algebraic equations. The simulation 
diagram representation is straightforward.

EXAMPLE 2.7

A two-room building with temperatures T1(t) and T2(t) is shown in Figure 2.17.
The simplified model relating the uniform room temperatures T1(t) and T2(t) to the heat supplied 

from the furnace Qf(t) and outside temperature T0(t) is based on conservation of energy. It consists 
of the following differential and algebraic equations:
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where C1, C2, R1, R2, and R12 are thermal parameters of the system. The simulation diagram shown 
in Figure 2.18 follows directly from Equations 2.80 through 2.84.

Combining Equations 2.80 through 2.84 and solving for the first derivatives give
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FIGURE 2.17 Heat flows and temperatures in a two-room building.
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Equations 2.86 and 2.88 are of the form
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where x1 = T1, x2 = T2, u1 = T0, and u2 = Qf and the coefficients aij and bij (j = 1, 2) depend on the 
system parameters according to
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Suppose we need to draw a simulation diagram for the system in Equation 2.89 with only x1 
or x2 present. Using an approach similar to the one presented in Section 2.2 for converting two 
coupled first-order differential equations into a second-order differential equation, the second-
order system in Equation 2.89 is equivalent to

    x x x u u u u1 1 1 0 1 11 1 10 1 21 2 20 2+ + = + + +α α β β β β  (2.92)

where

 α α1 11 22 0 11 22 12 21= − + = −( ),a a a a a a  (2.93)

 β β β β11 11 10 12 21 22 11 21 12 20 12 22 22 12= = − = = −b a b a b b a b a b, , ,  (2.94)

FIGURE 2.18 Simulation diagram for building room temperature model.
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The simulation diagram for Equation 2.92 is constructed in two steps. From superposition, 
the output x1 can be viewed as the sum of x11 and x12 where

   x x x u u11 1 11 0 11 11 1 10 1+ + = +α α β β  (2.95)

   x x x u u12 1 12 0 12 21 2 20 2+ + = +α α β β  (2.96)

Simulation diagrams for Equations 2.95 and 2.96 are drawn separately, and outputs x11 and x12 
are added to yield the complete output x1. The result is shown in Figure 2.19.

Do not be misled into thinking that the simulation diagram shown in Figure 2.19 corresponds 
to a fourth-order system due to the presence of four integrators. There are two decoupled sec-
ond-order systems, one with input u1 and output x11 and the other with input u2 and output x12. 
In  reality, they are the same system, that is, the second-order system governed by the second-
order model in Equation 2.92.

On the other hand, if the feedback coefficients in the two systems are not identical, that is, α0 
and α1 in both cases, the result is indeed a fourth-order system (see Exercise 2.13).

EXERCISES

 2.9 Show that the system of equations
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  used to construct the simulation diagram for the first-order system
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  is equivalent to the first-order differential equation above.
  Hint: The variable z(t) must be eliminated from the two equations.
 2.10 An alternate simulation diagram for the second-order system
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FIGURE 2.19 Simulation diagram for second-order system in Equation 2.92.
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  when it is critically damped or overdamped is shown in Figure E2.10 below:

  Find expressions for K1, α, and β in terms of the parameters ζ, ωn, and K.
 2.11 The circuit shown in Figure E2.11 is governed by the differential equation:
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  Draw a simulation diagram for the circuit.
 2.12 Consider the building temperature example with room temperatures described by Equations 

2.86 and 2.88.
 a. Find the second-order differential equation relating T2(t) and the system inputs T0(t) and 

Qf(t).
 b. Draw a simulation diagram like the one shown in Figure 2.19.
 2.13 Simulation diagrams are shown in Figure E2.13a through E2.13c below.
 a. Find the differential equation relating x and inputs u1 and u2 in Figure E2.13a.
 b. Find the differential equation relating x and input u in Figure E2.13b.
 c. Find the differential equation relating x and inputs u1 and u2 in Figure E2.13c.
 d. Comment on the differences between the systems represented by each diagram.

2.5 HIGHER-ORDER SYSTEMS

To this point, we have looked at linear continuous-time systems with first- and second-order 
dynamics only. Linear systems and linear controls texts include extensive coverage of lower-order 

FIGURE E2.10

FIGURE E2.11

FIGURE E2.13
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system response. In particular, the response of first- and second-order systems to impulse, step, and 
 sinusoidal inputs is fully developed.

The dynamics of complex systems with linear differential equation models are invariably higher 
than second order. One may question why so much attention is devoted to first- and second-order 
systems. The explanation is simple.

High-order linear systems are oftentimes a collection of components or subsystems that are 
intrinsically first or second order. An electrical circuit with several capacitors and inductors is a 
good example. The circuit dynamics will depend on the number of these energy storage elements 
and their location in the circuit. In general, its order will be equal to the number of energy storage 
elements since each element is itself modeled as a first-order component. With n nonredundant 
energy storage elements, an nth-order differential equation involving an output (a voltage or current 
in the circuit) and an input (if an independent source is present) governs the behavior of the circuit. 
The same principle applies to fluid, thermal, mechanical, chemical, and so forth, systems made up 
of components analogous to the resistor, capacitor, and inductor of the electrical circuit.

The block diagram of a simple feedback control system is shown in Figure 2.20. The controller, 
process, and sensor are the subsystem components, which are individually modeled as either first 
or second order.

The control system model comprises the three coupled differential equations
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and the summer equation

 e x xc s= –  (2.100)

The command input xc = xc(t) is the control system input, and the output of the process x = x(t) 
is the control system output. Dependent variables e(t), the error signal, u(t), the output from the 
controller and input to the process, and xs(t), the sensor output are internal to the control system. 
Eliminating these variables produces a single fourth-order (1 + 2 + 1) differential equation model 
of the control system in the form
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Sensor

FIGURE 2.20 A control system consisting of first- and second-order components.
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where several of the coefficients ai, i = 0, 1, 2, 3 and bi, i = 0, 1, 2, 3, 4 may be zero.
A simulation diagram of the control system can be obtained from Equation 2.101 using the pro-

cedure from the previous section. Alternatively, simulation diagrams can be developed for the indi-
vidual components in Figure 2.20 and properly connected to produce a simulation diagram for the 
control system. Simulation of the system based on a simulation diagram using the second approach 
is preferable since the internal variables are readily identifiable. We can check the simulation results 
to verify that inputs and outputs of the controller and sensor remain within proper operating ranges.

EXAMPLE 2.8

The control system for the pitch of an aircraft is shown in Figure 2.21.
Draw a simulation diagram for the aircraft pitch control system block diagram.
Simulation diagrams of each component are connected to produce the simulation diagram of 

the entire control system shown in Figure 2.22.

EXERCISES

 2.14 For the control system shown in Figure 2.20.
 a. Find the coefficients ai, i = 0, 1, 2, 3 and bi, i = 0, 1, 2, 3, 4 in Equation 2.101 in terms of 

the system parameters τ1, τ2, Kc, ωn, Kp, τs and Ks.

FIGURE 2.21 Control system for an aircraft pitch.

FIGURE 2.22 Simulation diagram for an aircraft pitch control system.
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  Hint: The use of Laplace transforms (see Chapter 4) significantly reduces the amount of work 
necessary to eliminate the variables e, u, and xs.

 b. Draw a simulation diagram based on the fourth-order differential equation model.
 2.15 Find the differential equation for the control system in Figure 2.21 relating the output θ and 

its derivatives to the input θcom and its derivatives. Draw the simulation diagram based on the 
resulting differential equation.

  Hint: The use of Laplace transforms (see Chapter 4) significantly reduces the amount of work 
necessary to eliminate the variables e, uc, and ua.

 2.16 For the railroad cars shown in Figure E2.16,

 a. Write the differential equation expressing Σk i k i iF m x i, , , ,= = 1 2 3 for each car where Fi,k is the 
kth force acting on the ith car.

 b. Draw a simulation diagram of the system with integrators for xi, xi, i = 1, 2, 3.
 c. Find the differential equation relating the input F(t) and output x1(t).
  Hint: The use of Laplace transforms (see Chapter 4) significantly reduces the amount of work 

necessary to eliminate the variables x2 and x3.

2.6 STATE VARIABLES

In everyday terms, one’s state of mind on a given day is determined by the history of numerous psycho-
logical factors that influence our mental well-being. The state of the national economy (weak, moder-
ate, strong) depends on numerous factors such as energy prices, inflation, trade balances, employment, 
productivity, housing, tax policies, corporate earnings, transportation, agriculture, and so forth. 
Imagine that all the economic factors (inputs) affecting the national economy were measurable and 
the complex interrelationships among those variables that determine the state of the economy were 
fully understood. If the state of the economy were known at some point in time and the complete set of 
aforementioned economic factors were observed from that time forward, knowledgeable economists 
would (in principle) be able to predict the state of the national economy at future times.

The essential point is that if we know the state of a system at some point in time and wish to 
predict its future, then knowledge of the system inputs only from that time onward is required. The 
current state of a system reflects the effect of prior inputs that are responsible for the system’s transi-
tion from some previous state to the current state.

Consider a simple spring-mass-damper system subject to an applied force acting on the mass like 
the one shown in Figure 2.23. The spring and mass are both capable of storing energy. At any time, 

FIGURE E2.16

FIGURE 2.23 A spring-mass-damper system with applied force f(t).
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the instantaneous energy E(t) stored in the system is given in Equation 2.102 where x is the position 
of the mass (relative to its equilibrium position) and dx/dt is the velocity of the mass.
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A possible choice of state variables for the mechanical system is x and dx/dt. Given both state 
variables at time t0 determines the energy E(t0). The applied force f(t) for t ≥ t0 must be known to 
solve the initial value problem
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and determine both state variables x and dx/dt as well as E(t) for t ≥ t0. The same cannot be said if 
only the position or the velocity of the mass were known at t0. In that case, the initial energy in the 
system E(t0) would be unknown, and it would be impossible to predict future values of x and dx/dt 
even if the force f(t) were known for t ≥ t0. Consequently, x or dx/dt alone is not a suitable choice for 
the state of the system.

The situation is illustrated for the general case of a system with two state variables x1(t) and x2(t) 
and single input u(t) in Figure 2.24. Given x1(t0), x2(t0), and u(t), t ≥ t0, both states can be determined 
from t0 on.

The choice of state variables for a dynamic system model is not unique; however, the number 
of state variables is limited to the minimum number of variables, which satisfy the requirement 
of  predicting future states given the current state and future inputs. This number of state vari-
ables is equal to the number of independent energy storage components present in the system. It is 
advantageous to choose physical (measurable) quantities as in the case of the mechanical system in 
Figure 2.23 whenever possible.

A simulation diagram is a valuable tool when it comes to choosing the state variables of a system. 
The outputs of each integrator in a simulation diagram representation of a system is a valid choice 
for the state variables. The choice of which integrator output is x1, x2, and so forth is arbitrary.

Consider a second-order system governed by
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(2.104)

FIGURE 2.24 Dynamic system with state variables x1(t) and x2(t).
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A simulation diagram like the one shown in Figure 2.25 is easily constructed. State variables x1 
and x2 are chosen as the output y and first derivative dy/dt, respectively.

The second-order system is critically damped or overdamped if a1
2  – 4a0 ≥ 0. In this case, it is 

equivalent to two cascaded first-order systems as shown in Figure 2.26.
The parameters K, α, and β are related to a0, a1, and b0 according to
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State variable x1 is again the system output y; however, the second state variable x2 is no longer 
the output derivative dy/dt.

For an nth-order linear system model with constant coefficients, the state derivatives are express-
ible as a linear combination of the state variables and input(s). For example, from Figure 2.25, the 
state derivatives are equal to
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whereas in Figure 2.26, the appropriate expressions are
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In the general linear case with n states x1, x2, …, xn and r inputs,
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FIGURE 2.25 Simulation diagram of second-order system with state x1 = y and x2 = dy/dt.

FIGURE 2.26 Simulation diagram for critically damped or overdamped second-order system using two 
first-order systems in a series.
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where
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and fi(x, u), i = 1, 2, 3, …, n is the state derivative function of the ith state variable.
Equations 2.108 through 2.110 can be written in the compact form
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The n × n matrix A is called the system matrix, and the n × r matrix B is the input matrix.
Multivariable, LTI systems involve multiple inputs u1, u2, …, ur and outputs y1, y2, …, yp. 

The  outputs are linearly related to the states and the inputs according to
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The p × n constant matrix C is called the output matrix, and the p × r matrix D is the direct 
transmission matrix.

Equations 2.111 and 2.112 taken together are the state equations of the system. Note that the 
states x1, x2, …, xn, are internal to the system as shown in Figure 2.27. Multivariable systems are 
easier to analyze in terms of state variables compared to the input–output model description of the 
system, that is, dyi/dt = fi( , )y u , i = 1, 2, …, n.

EXAMPLE 2.9

Interacting tanks with inflows into both tanks are shown in Figure 2.28. Choose the states to be the 
levels H1 = H1(t) and H2 = H2(t) and the single output as the volume of liquid in both tanks. Write 
the state equations for the system.

The continuous-time model of the linear tanks consists of the following equations:
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Eliminating F0,1 and F0,2 from Equations 2.113 and 2.115 yields
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FIGURE 2.27 Dynamic system with input u, output y, and state x.

FIGURE 2.28 A system of interacting tanks.
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Solving for the state derivatives in Equations 2.117 and 2.118
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Writing Equations 2.119 and 2.120 in matrix form gives the first part of the state equations,
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The single output VT, which represents the volume of liquid in both tanks, is
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The transmission matrix D is a 1 × 2 matrix of zeros due to the absence of a direct coupling 
from either input F1 or F2 to the output VT.

2.6.1  conversIon from lInear state varIable form 
to sIngle Input–sIngle output form

In Section 2.3, an example was presented illustrating the conversion of a second-order state vari-
able model into a second-order differential equation by eliminating one of the state variables (see 
Equations 2.37, 2.38, and 2.42). The procedure involved manipulation and substitution of terms 
in the time domain, an approach that quickly becomes unwieldy as the number of state variables 
increases. Simpler methods are described in Chapter 4.

For a linear, third-order system with a single input, the starting point is the state variable model 
consisting of three coupled first-order differential equations expressing the state derivatives as a 
linear function of the states and input
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where the output y is x1, x2, or x3.
A third order, input–output differential equation model equivalent to Equation 2.123 is

 
    y y y y u u u+ + + = + +0α α α β β β2 1 2 1 0  (2.124)

Expressions for the system coefficients α2, α1, and α0 and input coefficients β2, β1, and β0 are sum-
marized in Equations 2.125 through 2.127 and Table 2.1.

 α2 11 22 33= + +–( )a a a  (2.125)
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 α1 11 22 33 12 21 13 31 22 33 23 32= + − − + −a a a a a a a a a a a( )  (2.126)

 α0 11 23 32 22 33 12 21 33 23 31 13 22 31 21 32= − + − + −a a a a a a a a a a a a a a a( ) ( ) ( ))  (2.127)

2.6.2 general solutIon of the state equatIons

A solution to the state equation, Equation 2.111 can be found in any one of the texts on linear control 
theory listed in References. The solution is expressed in terms of an n × n matrix Φ(t), called the 
transition matrix of the system.
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The transition matrix depends solely on the system matrix A. One method for finding Φ(t) uses a 
definition based on an infinite series,
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As an illustration of how the transition matrix is used to solve the linear state equations, suppose 
the system matrix for an autonomous system (u = 0) is
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Using the infinite series expansion in Equation 2.129 or some other method (see Chapter 4) for 
finding Φ(t) the result is
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and from Equation 2.128, the state x(t), t ≥ 0 is

 

x t

x t

e e e e

e e e e

t t t t

t t t t

1

2

2 2

2 2

2

2

( )

( )











 =

− −
− + − +

 − − − −

− − − −2 2




















x

x
1

2

0

0

( )

( )
 

(2.131)

TABLE 2.1
Input Coefficients on Right-Hand Side of Equation 2.125 for y = x1, x2, x3

y β2 β1 β0

x1 b1 – (a22 + a33)b1 + (a12b2 + a13b3) (a22a33 – a23a32)b1 + (a13a32 – a12a33)b2 + (a12a23 – a13a22)b3

x2 b2 a21b1 – (a11 + a33)b2 + a23b3 (a23a31 – a21a33)b1 + (a11a33 – a13a31)b2 + (a13a21 – a11a23)b3

x3 b3 a31b1 + a32b2 – (a11 + a22)b3 (a21a32 – a22a31)b1 + (a12a31 – a11a32)b2 + (a1la22 – a12a21)b3
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The state trajectory or state portrait is a plot showing the path of the state vector in state space. 
In the general case, there is a separate coordinate axis for each of the state variables. The time 
variable “t” does not appear explicitly; however, each point along the state trajectory corresponds 
to a specific point in time. Figure 2.29 shows four different state trajectories starting from different 
initial states. Note that the four state trajectories all terminate at the origin, the equilibrium point 
of the system.

EXERCISES

 2.17 For the system of interacting tanks in Example 2.9.
 a. Draw the simulation diagram of the system.
 b. Choose a new set of state variables as

 z H H z H H1 1 2 2 1 2= + = −,  

  and find the new system and input matrices A and B where
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   Hint: Find H1 and H2 in terms of z1 and z2.
 c. Find the new output matrix C where
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FIGURE 2.29 State trajectory in Equation 2.131 for different initial states.
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 2.18 Write the state equations for the system of three railroad cars in Exercise 2.16. Choose the out-
puts to be the positions of each car.

 2.19 An ecosystem consists of three species whose populations are denoted by F, S, and G. The 
growth rates of each specie are given by

 

Growth rate of
d
d

Growth rate of
d
d

F
F

F

t
a cS u

S
S

S

t
k F m

F

G

= = − −

= = − + − −

1

1
λ uu

G
G

G

t
e S u

S

GGrowth rate of
d
d

= = − + +
1

σ
 

   Write the system in state variable form x = f(x, u) y = g(x, u) with the state x = [F S G]T, 
input u = [uF us uG]T, and output chosen as y = F + S + G.

 2.20 Limestone is reduced to calcium oxide (CaO), magnesium oxide (MgO), and carbon dioxide 
(CO2) by heating it in a reaction vessel maintained at a constant high temperature (McClamroch 
1980). The limestone is made up of a fixed fraction β of calcium carbonate(CaCO3), and the 
rest is magnesium carbonate (MgCO3). The process is described by the first-order irreversible 
chemical reactions
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  where k1 and k2 are the rate constants for the two reactions.
   Limestone is added to the reaction vessel at a rate of u mol/h. The mass (in moles) of 

CaCO3, MgCO3, CaO, and MgO in the vessel are denoted by x1, x2, x3, and x4, respectively 
(see Figure E2.20).

   Since each mole of reactant that decomposes yields one mole of product (plus one mole of 
carbon dioxide), the state equations are
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 a. Draw a simulation diagram of the system. What is the order of the system?
 b. Find the matrices A, B, C, and D in the state equation model if the outputs are y1 = x3 and 

y2 = x4.
 c. Find the differential equation relating yl and u. Comment on the result.

FIGURE E2.20


