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Chapter 1

Introduction

1.1 AIMS AND SCOPE

This book is dedicated to practising engineers working in rock engineering practice, as
well as for graduate students studying and doing research on rock mechanics and rock
engineering. The aim of this book is to make the engineers and the students under-
stand how to apply the theory of rock mechanics to engineering practice, in order to
achieve the rational design and construction of rock structures such as tunnels, under-
ground caverns, and slopes, and to assess not only the stability of them during/after
construction, but also to ensure the safety of the workers.

In order to verify the adequacy of the original design and assess the stability of
the rock structures during construction, observational methods are extremely useful.
In the method field measurements play a major role, but the measurement data are
only numbers unless they are properly interpreted. Back analyses can be used for
interpreting the data quantitatively, resulting in the rational design and construction
of the structures being achieved.

It is noted that back analysis is a highly non-linear problem, even in the simple case
of linear elastic materials. This non-linearity of back analyses may attract the interest
of mathematicians in back analysis problems, but only from the mathematical point of
view. However, this book is not for mathematicians, but for practising rock engineers
so that the back analyses should be used for engineering practice. The contents of
this book are mainly based on the original works carried out in the Rock Mechanics
Laboratory of Kobe University, Japan.

1.2 FIELD MEASUREMENTS AND BACK ANALYSES

Rock structures such as tunnels, underground caverns, vertical shafts, slopes, etc. are
constructed with natural rocks whose geological and mechanical characteristics are
extremely complex. This complexity causes difficulty in the evaluation of mechanical
characteristics of rock masses, even though various laboratory and in situ tests, such
as plate bearing tests and direct shear tests, have been developed for determining the
mechanical properties of rock masses, such as Young’s modulus, strength parameters,
underground water condition, permeability, etc. which are important data for design
analyses. In addition, the initial stresses of rock masses caused by gravitational and
tectonic forces are also important data for the analyses.
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It should be noted that the difficulty in the evaluation of the mechanical character-
istics and initial stresses of rock masses is a characteristic feature for the design of rock
structures, as the mechanical behaviours of the rock structures are extremely complex.
This is entirely different from other structures like bridges and buildings, which are
built with artificial materials, such as concrete and steel, whose mechanical parame-
ters can be easily determined in laboratory experiments. Moreover, the external forces
acting on the structures are also well documented.

In the mechanical behaviours of the rock structures, various uncertainties are
involved not only in the mechanical characteristics of rock masses, but also in the design
and construction procedures of rock structures. For instance, in tunnel engineering
practice the following uncertainties are involved; (1) geological and geomechanical
characteristics of rock masses are complex, (2) mechanical modelling of rock masses
is extremely difficult, (3) the initial stresses of rock masses are difficult to evaluate,
(4) interaction mechanism between tunnel support structures and surrounding rock
masses is complex, (5) the mechanical behaviour of tunnels seems to be different for
different excavation methods, (6) the mechanical behaviour is also influenced by the
skill of tunnel excavation workers, etc.

In rock engineering practice, it is well known that the real behaviour of the rock
structures quite often differs from that predicted by numerical analyses carried out
at the design stage, even though sophisticated computer programs are used. This dis-
crepancy may be simply because of the various uncertainties described above being
involved.

In order to fill in the gap between real and predicted behaviours of rock structures,
field measurements are carried out to verify the input data used in the original design,
as well as to assess the stability of the rock structures during construction. In addition,
it can verify the safety of the workers during the construction. Field measurements
are also performed for monitoring long-term stability, for instance the monitoring
of landslides. There are many different types of field measurements available, but
displacement measurements are most commonly used in rock engineering practice,
because they are reliable and easily handled in comparison to others such as stress and
strain measurements.

However, it should be noted that the field measurement data are only numbers
unless they are properly interpreted. Therefore, the most important aspect of field mea-
surements is the quantitative interpretation of measurement results. For this purpose,
back analyses must be a powerful tool.



Chapter 2

Back analysis and forward analysis

2.1 WHAT IS BACK ANALYSIS?

In back analyses, input data are measured values, such as displacements, strains,
stresses and pressures, while the output results are the mechanical parameters of rock
masses, such as Young’s modulus, Poisson’s ratio, strength parameters (cohesion and
internal friction angle), permeability, and even the initial state of stress. This analysis
procedure is entirely a reverse calculation of an ordinary analysis, so that it is called
“back analysis’’, while an ordinary analysis is called “forward analysis’’ all through
this book.

In the design of rock structures, forward analyses (ordinary analyses) are carried
out for calculating stresses, strains and displacements of rock masses. The analyses
require the input data which are external forces (initial stresses), the mechanical param-
eters of rock masses, such as Young’s modulus, Poisson’s ratio, strength parameters
(cohesion and internal friction angle), permeability, etc. On the other hand, in the
back analyses, the input data are measurement results, such as displacements, strains,
stresses, etc., while the output results are the mechanical parameters of rock masses,
initial stresses, permeability, etc. It is obvious that the output results of the back analy-
ses correspond to input data of the forward analyses, while the input data for the back
analyses are the measurement data. Therefore, the back analyses seem to be entirely a
reverse calculation of the forward analyses, as shown in Figure 2.1.

In forward analyses, it is obvious that any sophisticated computer program can
be used, no matter how many input data are needed, as long as all the data can
be determined by laboratory and in situ tests, while in back analyses only a lim-
ited number of measurement data (input data for back analyses) are available. This
means that all the input data necessary for the forward analyses are hardly identified
by back analyses. To overcome this difficulty, a constitutive equation of rock masses
used in back analyses should be simple enough to be able to back-calculate all the
mechanical parameters of the equation from a limited number of field measurement
data.

It should be emphasised that one of the important purposes of field measurements
is to monitor whether the present situation of rock structures is stable, or whether
an unexpected mechanical behaviour seems to start occurring. To accomplish this
purpose, the field measurement results must be properly interpreted during the con-
structions without delay. To meet this requirement, the back analyses should be capable
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Figure 2.1 Definition of back analysis.

not only of assessing the adequacy of the original design, but also of predicting the
catastrophic failure of the structures during the constructions.

2.2 DIFFERENCE BETWEEN BACK ANALYSIS AND FORWARD
ANALYSIS

In forward analyses, firstly the mechanical model of rock masses is assumed as to
be such as elastic, elasto-plastic, rigid-plastic, visco-elastic, etc., and the mechanical
parameters of the model are determined by laboratory and in situ tests. Once all the
mechanical parameters are determined, we can calculate displacements, strains and
stresses of rocks as the outcomes of the forward analyses. This computation procedure
provides a one-to-one relationship between the input data and the output results,
because modelling (assumption) is done before the determination of input data, as
shown in Figure 2.2. This implies that it is extremely important for the forward analyses
to assume the most suitable mechanical model for rock masses.

On the other hand, in back analyses we first obtain field measurement data (dis-
placements, strains, stresses, etc.) during constructions. These data are used as input
data for back analyses, as seen in Figure 2.2. In order to perform back analyses
for determining the mechanical parameters, we must assume a mechanical model.
It is obvious that the mechanical parameters determined by the back analysis depend
entirely on what mechanical model we assume in the back analyses. For example, if
we assume an elastic model, then Young’s modulus can be determined, but if a rigid-
plastic model is assumed, then Young’s modulus cannot be determined. Instead plastic
parameters such as cohesion and internal friction angle can be obtained, though the
identical input data (measurement results) are used for the both cases. This means
that in the back analyses, a one-to-one relationship between the input data and output
results cannot be guaranteed, because that mechanical modelling of rock masses is
located in-between the input data and output results, as shown in Figure 2.2. In other
words, in back analyses a one-to-one relationship between the input data and output
results cannot be substantiated.
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Figure 2.2 Difference between forward analysis and back analysis (Sakurai, 1997a).

We can now conclude that back analysis is not simply a reverse calculation of
the forward analysis. Its concept should be different from forward analysis in such a
way that back analysis should identify the mechanical model, as well as determine its
mechanical parameters from field measurement results.

The mechanical model of rock masses is assumed in the design of structures, and
usually only its mechanical parameters are determined by back analyses. In addition,
it is noted that the back analyses determining mechanical parameters are a non-linear
problem, even for the case of simple linear elastic problems, resulting in that back
analyses may attract the interest of mathematicians to solve the non-linear problems.
Since the mathematicians are interested in obtaining a stable solution in back analyses
only from a mathematical point of view, it does not matter which mechanical model
is used in back analyses.

2.3 BACK ANALYSIS PROCEDURES

2.3.1 Introduction

Back analysis problems can be solved by various approaches. Among them, inverse and
direct approaches are commonly used in geotechnical engineering practice (Cividini
et al., 1981). In the inverse approach the formulation is just the reverse of that in the
forward stress analysis, even though the governing equations are identical. On the
other hand, the direct approach is based on an iterative optimisation procedure which
corrects the trial values of unknown quantities in such a way that the discrepancy
between the measured and the computed quantities is minimised. In both inverse and
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direct methods, the number of measured values should be greater than the number of
unknown quantities, otherwise the results cannot be determined uniquely.

However, it is often difficult to determine these values precisely because of the
various uncertainties which are usually involved in rock engineering problems. To
overcome this difficulty, a probabilistic approach is preferable as it is capable of taking
these uncertainties into account. The most advantageous feature of this approach is
that the final results are expressed in statistical terms, such as mean and variance.

2.3.2 Inverse approach

The inverse approach requires a mathematical formulation in a reverse way to the
ordinary stress analysis so that it is only available for the linear elastic materials,
whose stress-strain relationship is expressed in a linear form.

A simple example for the inverse approach in rock engineering practice is in situ
rock tests, such as a plate bearing test, where a displacement δ is measured under a given
external force P, as shown in Figure 2.3. Young’s modulus E can then be determined
by Equation (2.2), which is derived in a reverse formulation of the conventional stress
analyses. If the number of the data (measured displacements) is greater than that of
back-analysed quantities (Young’s modulus, initial stresses, etc.), the least squares
method can be used (Sakurai & Takeuchi, 1983).

As another example in the rock engineering field, Kovari and his colleagues (1977)
developed an inverse approach called the “integrated measuring technique’’ for deter-
mining the rock pressure acting on tunnel linings from the strain measured on the inner
surface of the lining. In this back analysis approach, mathematical equations relating
the rock pressure to the axial force and bending moment of the tunnel lining were
derived by imposing the equilibrium conditions between the rock pressure and the
normal force and bending moment of the lining, which used a fundamental equations
to determine the rock pressure acting on the lining.

For more complex engineering problems, an inverse approach can be used on the
basis of a Finite Element Method (FEM), which was originally developed for structural
engineering problems (Kavanagh & Clough, 1971). In the field of rock mechanics
Gioda (1980) modified Kavanagh’s algorithm to back-calculate both the bulk and
shear moduli by applying static condensation and the least squares method.

(2.1)

(2.2)

δ =
(1 – ν2)

2aE
P

E =
δ

(1 – ν2)

2a

P

δ

P
a

Figure 2.3 In situ plate bearing test for determining Young’s modulus from measure displacements
due to applied external force.
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The method is defined as “inverse’’, with respect to the corresponding stress anal-
ysis, since it requires the inversion of the equations governing the linear elastic stress
analysis problem. If the inversion of the governing equations is possible, this technique
is easily applied to engineering practice, because iteration is not necessary in compu-
tation, resulting in computation time becoming less compared with the other back
analysis approaches.

2.3.3 Direct approach

The direct approach is based on the minimisation of the discrepancy between the
field measurement data and the corresponding numerically evaluated quantities, in
such a way that an error function δ shown in Equation (2.3) is adopted to define the
discrepancy between the measured displacements and those derived from a numerical
analysis.

δ =

N∑
i=1

(um
i − uc

i )
2

N∑
i=1

um
i

→ min (2.3)

where um
i and uc

i are measured and computed displacements, respectively. N is number
of measuring points.

The direct approach has a great advantage in avoiding the inversion of the math-
ematical equations of stress analyses, resulting in that it can be easily applied to any
non-linear problems.

The error function defined by Equation (2.3) is in general a complicated non-
linear function of the unknown quantities, and in most cases the analytical expression
of its gradient cannot be determined. This is particularly evident for non-linear or
elasto-plastic problems. Therefore, the function minimisation algorithm adopted for
the problem solution must handle non-linear functions and it should not require the
analytical evaluation of the function gradient. The algorithms meeting with these
requirements, known in mathematical programming as direct search methods, are
based on iterative procedures which perform the minimisation process only by succes-
sive evaluations of the error function given in Equation (2.3). Each evaluation requires
a stress analysis of the geotechnical problems on the basis of the trial value chosen for
the iteration.

In the minimisation algorithm for the error function, any standard algorithms
of mathematical programming, such as the Simplex method (Nelder & Mead, 1965),
Rosenbrock algorithm (Rosenbrock, 1960), Powell method (Powell, 1964), Conjugate
Gradient method (Fletcher & Reeves, 1964), etc. can be used. However, these methods
require rather time-consuming computations since a large amount of iteration is usually
needed.

Gioda & Maier (1980) demonstrated the applicability of the direct method to
back-calculate the non-linear material parameters and the load conditions, using a
numerical example of a pressure tunnel test.
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2.3.4 Probabilistic approach

Both the inverse and direct methods are based on a deterministic concept, and provide
precise values for material constants and load parameters. However, it is often difficult
to determine these values quantitatively because of the various uncertainties being
included in rock engineering problems. To overcome this difficulty, a probabilistic
approach is preferable as it is capable of taking these uncertainties into account. The
most advantageous feature of this approach is that the final results are expressed in
statistical terms, such as mean and variance.

The field measurement data are in general affected by various errors that depend
on the nature of measured quantities, the characteristics of measuring devices, field
conditions, etc. In order to evaluate the influence of these errors on the back-calculated
mechanical parameters, various methods have been proposed. Among them a simula-
tion technique, such as the Monte Carlo simulation, can be easily applied to engineering
practice (Cividini & Gioda, 2003). This simulation technique is an extremely simple
implementation, but requires a computational effort which rapidly increases with the
increase in number of unknown parameters. In order to overcome this drawback, a
probabilistic Bayesian approach is recommended (Cividini et al., 1983).

A typical feature of the Bayesian approach is that a priori information on the
unknown parameters can be introduced in the back analysis, together with the data
deriving from in situ measurements. In most cases, the a priori information consists
of an estimation of the unknown parameters based on the engineer’s judgement or on
available general information. This leads to a numerical calibration procedure that
combines the knowledge deriving from previous similar problems with the results of
the in situ investigation.

2.3.5 Fuzzy systems, Artificial Intelligence (AI),
Neural network, etc.

In a probabilistic approach, the determination of a probability density function for
the mechanical parameters of rock masses is extremely difficult. In other words, there
is no reliable way to determine the input data for the probabilistic approach. This is
entirely different from the case of materials such as steel and concrete, resulting in
that the probabilistic approach may be less applicable to rock engineering problems.
To overcome this problem, the Fuzzy Set Theory can be used, which can easily pro-
vide with all the input data necessary for the back analyses on the basis of engineers’
subjective judgements (Zadeh, 1965). This means that the Fuzzy Set Theory goes well
with the probabilistic approach of back analyses. It should be noted that the Fuzzy Set
Theory must be a potential tool for solving rock mechanics problems in probabilistic
approaches (Fairhurst & Lin, 1985; Nguyen & Ashworth, 1985; Sakurai & Shimizu,
1987).

It is obvious that rock masses are extremely complex non-linear systems that
include many parameters. In order to solve these complex systems, Feng et al. (2000)
proposed a new displacement back analysis approach which is based on a combina-
tion of a neural network, an evolutionary technique and numerical analysis methods
to identify the mechanical parameters. The method has been successfully applied to
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the Three Gorges Project permanent shiplock to estimate the mechanical parameters
of rock masses.

Feng et al. (2004) also proposed another displacement back analysis method to
identify the mechanical parameters based on hybrid intelligent methodology, such as
the integration of evolutionary Support Vector Machines (SVMs), numerical analysis
and a genetic algorithm.

Considering various uncertainties and complexities involved in rock masses,
Khamesi et al. (2015) proposed a novel, intelligent back analysis method for deter-
mining the complex and non-linear relation between the displacements and the
geomechanical parameters by using a fuzzy system designed by three different methods,
i.e. nearest neighbourhood clustering and gradient descent training, particle swarm
optimisation, and imperialistic algorithm.

2.4 BRIEF REVIEW OF BACK ANALYSIS

In the early 1970s, identification theories were developed in the field of system engi-
neering (Astrom & Eykhoff, 1971), and applied to various field problems such as
structural dynamics (Hart & Yao, 1977). In geomechanics, in earlier times various
terms such as identification, characterisation, inverse analysis, etc., were used for
identification problems. At that time it was thought that these identifications were
mathematical problems, because they are highly non-linear problems, even though a
simple elastic model is assumed. Therefore, the main interest of researchers has been
on how to solve such non-linear problems so as to obtain a mathematically stable
solution with high accuracy. Before the term “back analysis’’ was being used in rock
mechanics field, Sakurai (1974) assumed the ground medium consisting of a visco-
elastic material, and proposed a back analysis method to determine the initial stress
and mechanical properties of visco-elastic underground media.

The term of “back analysis’’ appeared for the first time in the rock mechanics
field in a paper entitled “Determination of rock mass elastic moduli by back analysis
of deformation measurements’’ (Kirsten, 1976). Ever since that time, various names
have been used by different authors. Nevertheless, the term “back analysis’’ gradually
became popular, and it is now commonly used in the rock engineering community.
In the rock engineering field, various back analysis procedures have been extensively
developed, ranging from simple elastic problems to far more complex non-linear prob-
lems, and many papers related to back analysis have been published with particular
reference to the interpretation of field measurement results (Gioda & Sakurai, 1987).
In rock engineering practice, back analyses are nowadays often used for determining
the mechanical properties of rock masses from the data of field measurements carried
out during the construction.

Deterministic back analysis procedures are roughly classified into two categories:
the inverse approach and the direct approach (Cividini et al., 1981). In the inverse
approach, the mathematical formulation is just the reverse of that in an ordinary
analysis (forward analysis in this book), although the governing equations are identical.

In the case of a ground represented by a simple mechanical model with simple
geomechanical configurations, the closed-form solutions in the theory of elasticity and
plasticity may be used. However, for the ground with an arbitrary shape under a more
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complex geological and geomechanical environment, numerical methods such as FEM,
Boundary Element Method (BEM), Discrete Element Method (DEM), etc., seem to be
more promising. For example, Kavanagh (1973) proposed a back analysis formulation
based on FEM which may make it possible to obtain the material constants not only
for isotropic materials, but also for inhomogeneous and anisotropic materials, from
both measured displacements and strains.

Gioda (1980) modified Kavanagh’s algorithm to back-calculate both the bulk and
shear moduli by applying static condensation and the least squares method. In order
to obtain the material constants, the displacements alone are sufficient. However, to
identify the load conditions in addition to the material constants, the measurements of
not only the displacements, but also the values for the loads and pressures are necessary.
For this, a numerical procedure of back analysis was proposed for determining the
earth pressure acting on tunnel lining on the basis of measured displacements and
measured earth pressure at some locations. The optimal earth pressure distribution
can be determined by minimising a suitably defined error function (Gioda & Jurina,
1981).

Sakurai & Takeuchi (1983) proposed an inverse method of determining both the
initial stress and Young’s modulus from measured displacements around a tunnel,
assuming homogeneous and isotropic linear elastic media. According to the method,
the strain distribution around a tunnel can be determined by the data of a limited
number of measured displacements. Since the method is formulated in the stiffness
matrix method, the large simultaneous equations have to be solved, resulting in time-
consuming numerical computation. To overcome this shortcoming, Sakurai & Shinji
(1984) used the flexibility matrix method for solving the identical problem, resulting
in drastically reduced computation time. Shimizu & Sakurai (1983) extended the back
analysis procedure proposed by Sakurai & Takeuchi (1983) to the three-dimensional
case by using BEM to determine both Young’s modulus and the in situ stress from
measured displacements. If the back analyses are carried out with the displacements
measured during the excavation of pilot tunnels for underground powerhouse caverns,
the back-calculated values are those for the three-dimensional large extent of rock
masses, so that they are used for assessing the adequacy of the original design of
powerhouse caverns.

Gioda & Maier (1980) demonstrated the applicability of the direct method to
back-calculate the non-linear material parameters together with the load conditions
by introducing a numerical example of a pressure tunnel test. Cividini et al. (1985) also
stated that the direct approach could be employed to determine the time-dependent
material constants by applying convergence displacement measurement data taken at
various stages of the tunnel construction.

Since various uncertainties are involved in rock engineering problems, it is difficult
to determine the mechanical parameters of rock masses quantitatively. To overcome
this difficulty, a probabilistic approach is preferable as it is capable of taking these
uncertainties into account.

Among various probabilistic procedures, the Monte Carlo simulation can be easily
applied to engineering practice (Cividini & Gioda, 2003). This simulation technique is
an extremely simple implementation, but requires a computational effort which rapidly
increases with the increase in number of unknown parameters. In order to overcome
this drawback, the Bayesian approach is promising for back analyses. Cividini et al.


