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Preface

Second-order partial differential equations (PDEs) have played a crucial role
in mathematical modeling a wide range of processes in natural and life sci-
ences since the 18th century. Typically linear PDEs are used in order to de-
scribe various processes, while nonlinear partial differential equations have
been widely involved for such purposes only since the beginning of the 20th
century. Nowadays it is generally accepted that a huge number of real world
processes arising in physics, biology, chemistry, material sciences, engineering,
ecology, economics etc. can be adequately described only by nonlinear PDEs.

At the present time, there is no existing general theory for integration
of nonlinear PDEs, hence construction of particular exact solutions for these
equations remains an important mathematical problem. Finding exact solu-
tions that have a clear interpretation for the given process is of fundamental
importance. In contrast to linear PDEs, the well-known principle of linear su-
perposition cannot be applied to generate new exact solutions for nonlinear
PDEs. Thus, the classical methods for solving linear PDEs are not applicable
to nonlinear PDEs. Of course, a change of variables can sometimes be found
that transforms a nonlinear PDE into a linear equation (the classical exam-
ple is the Cole–Hopf substitution for the Burgers equation). It was stated
by W.F. Ames in 1965 that “transformations are perhaps the most power-
ful general analytic tool currently available in this area”. However, finding
exact solutions of a large majority of nonlinear PDEs requires new methods.
Nowadays, 50 years later, the most powerful methods for construction of exact
solutions to nonlinear PDEs are the symmetry-based methods, in particular
the Lie method and the method of nonclassical (i.e., non-Lie) symmetries.

The Lie method (the terminology “the Lie symmetry analysis” and “the
group analysis” are also used) is based on finding Lie’s symmetries of a given
PDE and using the symmetries obtained for the construction of exact solu-
tions. The method was created by the prominent Norwegian mathematician
Sophus Lie in the 1880s. It should be pointed out that Lie’s works on ap-
plication Lie groups for solving PDEs were almost forgotten during the first
half of the 20th century. In the end of the 1950s, L.V. Ovsiannikov inspired
by Birkhoff’s works devoted to application of Lie groups in hydrodynamics,
rewrote Lie’s theory using modern mathematical language and published a
monograph in 1962, which was the first book (after Lie’s works) devoted fully
to this subject. The Lie method was essentially developed by L.V. Ovsian-
nikov, W.F. Ames, G. Bluman, W.I. Fushchych, N. Ibragimov, P. Olver, and

ix
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other researchers in the 1960s–1980s. Several excellent textbooks devoted to
the Lie method were published during the last 30 years, therefore one may
claim that it is the well-established theory at the present time. Notwithstand-
ing the method still attracts the attention of many researchers and new results
are published on a regular basis. In particular, solving the so-called problem
of group classification (Lie symmetry classification) still remains a highly non-
trivial task and such problems are not solved for several classes of PDEs arising
in real world applications.

On the other hand, it is well-known that some nonlinear RDC equations
arising in applications have a “poor” Lie symmetry. For example, the Fisher
and Fitzhugh–Nagumo equations, which are widely used in mathematical biol-
ogy, are invariant only under the time and space translations. The Lie method
is not efficient for such equations since it enables one to construct only those
exact solutions, which can be obtained without using this cumbersome algo-
rithm. Taking into account this fact, one needs to apply other approaches
for solving such equations. The best known among them is the method of
nonclassical symmetries proposed by G. Bluman and J. Cole in 1969. Al-
though this approach was suggested almost 50 years ago its successful appli-
cations for solving nonlinear equations were accomplished only in the 1990s
owing to D.J. Arrigo, P. Broadbridge, P. Clarkson, J.M. Hill, E.L. Mansfield,
M.C. Nucci, P. Olver, E. Pucci, G. Saccomandi, E.M. Vorob’ev, P. Winternitz
and others. A prominent role in applications and further development of the
nonclassical symmetry method belongs to the Ukrainian school of symmetry
analysis, which was created in the early 1980s and led by W.I. Fushchych
(V.I. Fyshchich) until 1997 when he passed away. In particular, a concept
of conditional symmetry was worked out and its applications to a wide
range of nonlinear PDEs were realized by M. Serov, I. Tsyfra, R. Zhdanov,
R. Popovych, R. Cherniha and others. Notably, following Fushchysh’s proposal
dating back to 1988, we continuously use the terminology “Q-conditional sym-
metry” instead of “nonclassical symmetry”.

We also note that several other approaches for solving nonlinear PDEs (in
particular, evolution equations) were independently suggested in the 1990s–
2000s. Not pretending to completeness and precise statement, the following
of them should be mentioned: the method of linear invariant subspaces, the
method of generalized conditional symmetries, the method of heir-equations,
the method of linear determining equations, the method of additional gener-
ating conditions etc. Notwithstanding some of these methods formally do not
use any symmetries, a deep analysis shows that they are related to symmetry-
based methods.

The main mathematical object of this book is the class of nonlinear
reaction-diffusion-convection equations (RDC). In our opinion, nonlinear RDC
equations possess the most important role among other nonlinear equations.
One cannot imagine a correct mathematical model describing heat and mass
transfer, filtration of liquid, solute transport in tissue, diffusion in chemical re-
actions, tumor growth and many other processes without RDC equations. The
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importance of RDC equations in real world applications follows from the fact
that they model three main transport mechanisms: diffusion (heat transfer),
reaction (source/sink), and convection (advection). Thus, they have been ex-
tensively studied by means of different mathematical methods and techniques,
including symmetry-based methods.

This book is devoted to (i) search Lie and Q-conditional (non-classical)
symmetries of nonlinear RDC equations; (ii) constructing exact solutions us-
ing the symmetries obtained and using the method of additional generating
conditions; (iii) applications of the solutions derived for solving some biologi-
cally and physically motivated problems.

The monograph summarizes in a unique way the results derived by the
authors during the last 20 years. Notably, the first joint paper was written
by R. Cherniha and M. Serov about 20 years ago during our stay at the
Mathematisches Forschungsinstitut Oberwolfach (Germany), while the last
joint paper of M. Serov and O. Pliukhin was published in 2015. It should
be pointed out that a number of misprints, inexactness and even mistakes
arising in our papers were corrected during the book preparation, and new
unpublished results were included in Chapters 3, 4 and 5. Moreover, our results
are supplemented by those obtained by other authors. As a result, the reader
will realize a huge progress, which has been done in study of nonlinear RDC
equations by means of symmetry-based methods since the 1990s.

The book presents a most complete (at the present time) description of Lie
and conditional symmetries for nonlinear RDC equations, which are very com-
mon in real world applications. The most interesting subclasses from this class
(like equations with power-law and exponential nonlinearities) are extensively
studied. In particular, an essential stress is made on finding symmetries and ex-
act solutions for the widely used equations in bio-medical applications, includ-
ing Fisher, Murray, Fitzhugh-Nagumo and Kolmogorov-Petrovskii-Piskunov
type equations. Concerning the equations listed above and their generaliza-
tion, a number of examples are presented, in which the relevant real world
models are analytically solved, and a biological/physical interpretation of the
solutions obtained is provided.

In Introduction (Chapter 1), some mathematical models based on nonlin-
ear RDC equations are discussed, methods for constructing exact solutions of
nonlinear PDEs are briefly presented together with a short historical review.
The remaining part of this chapter is devoted to the main notions, definitions,
and theorems, which form theoretical background of the Lie method and other
symmetry-based methods.

Chapter 2 is partly devoted to the linear and nonlinear diffusion (heat)
equations, including the multi-dimensional case. Here we present the well-
known results of the Lie symmetry classification (the group classification)
together with some applications for constructing exact solutions. The main
part of Chapter 2 is devoted to the complete Lie symmetry classifications
(LSC) of the general class of RDC equations

ut = [A(u)ux]x +B(u)ux + C(u),
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where u = u(t, x) is an unknown function, A(u), B(u), C(u) are arbitrary
smooth functions and the subscripts t and x denote differentiation with respect
to these variables. First, LSC is derived using the well-known Lie-Ovsiannikov
approach based on the equivalence transformations. Afterwards the second
LSC is obtained via so-called form-preserving transformations. An extensive
discussion including nontrivial examples is presented to show advantages of
application of the form-preserving transformations in order to solve the LSC
problem.

Chapter 3 is devoted non-Lie symmetries of nonlinear PDEs. First, we
present a historical review concerning conditional symmetry of PDEs, intro-
duce notion of Q-conditional symmetry (nonclassical symmetry) and repeat
some well-known results about non-Lie symmetry of nonlinear diffusion equa-
tions. The main part of Chapter 3 is devoted to the Q-conditional symmetry
classifications of the general class of RDC equations. In contrast to the LSC
problem, the result is incomplete, however, a complete classification is de-
rived for several important (from applicability point of view) subclasses of the
general class. Probably the most important among them is the Burgers type
equations of the form

ut = uxx + λuux + C(u), λ ∈ R.

In fact, the above class of equations contains as particular cases the Fisher,
Murray, and Fitzhugh–Nagumo equations and their natural generalizations
used widely in modeling of biomedical and ecological processes.

Chapter 4 is fully devoted to construction of exact solutions. A wide range
of RDC equations are examined in order to search for both Lie and non-
Lie solutions. Several examples are presented, which show how nontrivial ex-
act solutions can be constructed for some well-known nonlinear equations. In
particular, our attention is addressed to the nonlinear RDC equations with
constant and power-law diffusivities, arising in bio-medical and ecological ap-
plications. For such equations, we construct exact solutions, examine their
properties and (in some cases) provide their biological interpretation. The
RDC equations with exponential nonlinearities are also under study in this
section.

Chapter 5 is devoted to the method of additional generating conditions
and its application for solving some nonlinear RDC equations. This method
can be treated as a particular case of the method of differential constraints.
Basic ideas of the method of differential constraints have roots in Darboux’s
works. In the 1960s, N.N. Yanenko formalized the method using the mod-
ern mathematical language. However, he has not provided any constructive
algorithm for finding the compatible differential constraints for a PDE in ques-
tion. The method of additional generating conditions solves this problem for
PDEs, which can be reduced to those with quadratic nonlinearities. The chap-
ter contains a detailed description of the method, examples demonstrating its
efficiency in the case of the nonlinear RDC equations with power-law and ex-
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ponential nonlinearities. An extensive comparison of the solutions obtained
with those derived via other techniques is also presented.

Chapters 2, 3 and 4, which form the main part of this monograph and are
essentially connected each with another, were written by all the authors and
they contributed equally to these chapters.

Chapters 1 and 5 were written by R. Cherniha.
The book is a monograph. Its academic level suits graduate students and

higher. Some parts of the book may be used in “Mathematical Biology” and
“Nonlinear Partial Differential Equations” courses for master students and in
the final year of undergraduate studies. Nowadays such courses are common
in all leading universities over the world.

The book was typeset in LaTeX using the CRC Press templates, the figures
were drawn using the computer algebra package Maple and some calculations
were done using Mathematica.

Last but not the least, we are grateful to our colleagues and our teacher
Wilhelm Fushchych (1936–1997), who was the supervisor for R. Cherniha
and M. Serov in the 1980s. This book could not have been written without
his innovative scientific ideas and many years of his support. The authors
thank their Ukrainian colleagues for fruitful discussions, valuable critique, and
helpful suggestions, which helped us to write this modest work. Especially,
we are grateful to Vasyl’ Davydovych, Sergii Kovalenko, Inna Rassokha, and
Valentyn Tychynin.

R. Cherniha is indebted to John R. King for valuable discussions in
2013–2015, when he was Marie Curie Fellow at the University of Not-
tingham. R. Cherniha is also grateful to Malte Henkel, Phil Broadbridge,
Changzheng Qu, and Jacek Waniewski for fruitful discussions and valuable
comments, which inspired us for further research and generated new ideas.

Finally, we would like to thank our families for their incredible patience
and support for this book project. Especially, each of us wants very much to
reaffirm his love and thankfulness to his wife Nataliya, Mariya, and Antonina,
respectively.

Kyiv, Ukraine Roman Cherniha
Poltava, Ukraine Mykola Serov, Oleksii Pliukhin
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Chapter 1

Introduction

1.1 Nonlinear reaction-diffusion-convection equations in
mathematical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main methods for exact solving nonlinear
reaction-diffusion-convection equations . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Lie symmetry of differential equations: historical review,
definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Nonlinear reaction-diffusion-convection equations in

mathematical modeling

Since the 17th century when G. Leibnitz and I. Newton discovered differ-
ential and integral calculus, differential equations are the most powerful tools
for mathematical modeling various processes in physics, chemistry, biology,
medicine, ecology, economics etc. Of course, pioneering models were created
in order to express some classical laws (like the second Newton law) in physics
and astronomy, later differential equations came to be used for describing a
wide range of processes not only in physics but also in other natural and life
sciences. It can be noted that almost all mathematical models created be-
fore the end of the 19th century were based on ordinary differential equations
(ODEs) and linear partial differential equations (PDEs). Nonlinear PDEs are
widely used in mathematical modeling real world processes since the begin-
ning of the 20th century only. Probably, one of the first attempts in applying
and solving a nonlinear PDE of the parabolic type was made by J. Boussi-
nesq who studied the porous diffusion equation describing the water filtration
in soil [32]. One of the first applications of nonlinear reaction-diffusion (RD)
equations in biology was proposed by R.A. Fisher [98, 99].

Nowadays, i.e., 100 years later, it is generally accepted that a huge num-
ber of real processes arising in physics, biology, chemistry, material sciences,
engineering, ecology, economics etc. can be adequately described only by non-
linear PDEs (or systems of such equations). The most widely used type of
equations for modeling such processes are the nonlinear reaction-diffusion-
convection (RDC) (advection) equations. Since 1952 when A.C. Turing pub-
lished the remarkable paper [240], in which he proposed a revolutionary idea
about mechanism of morphogenesis (the development of structures in an or-

1
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ganism during the life), nonlinear RD equations (including those with con-
vective terms) play a crucial role in real world applications and have been
extensively studied by means of different mathematical methods/techniques.
As a result, in the 1970s several monographs were published, which are de-
voted to study and application of the nonlinear reaction-diffusion-convection
(RDC) equations in physics [5, 6, 158], biology [97, 179] and chemistry
[10, 11]. In our opinion, these books had a great impact attracting many
scholars to study the nonlinear RDC equations and use them for modeling
real world processes. Since that time many other excellent monographs and
textbooks appeared, especially for models related to life sciences (see, e.g.,
[35, 96, 160, 181, 182, 194, 231, 245]). We concentrate ourselves mostly on
biologically motivated models in what follows.

Typically the RDC equation describing a process in the 1D space approx-
imation has the form

ut = [A(u)ux]x +B(u)ux + C(u),

where A,B and C are some given functions, while u(t, x) is an unknown
function (hereafter the lower indices t and x denote differentiation with re-
spect to (w.r.t.) these variables). In the models related to biomedical applica-
tions, the function u(t, x) means the concentration of cells (population, drugs,
molecules). The functions A,B and C are related to the three most common
types of transport mechanisms occurring in real world processes. The diffusiv-
ity A > 0 (typically it is a constant) is the main characteristic of the diffusion
process, the term B(u)ux (B typically means velocity, which can be positive
and/or negative) describes the convective transport (in contrast to diffusion,
one is not random) and the reaction term C(u) describes the process kinetics
(for example, this function presents interaction of the population u with the
environment). A natural multidimensional analog of the above equation reads
as

ut = ∇ · (A(u)∇u) + V (u) · ∇u+ C(u). (1.1)

Here u is the function of t and x1, . . . , xn, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)

, the velocity

B(u) is replaced by the velocity vector V (u) and · means the scalar product.
In (1.1) the variable diffusivity D(u) (typically it is a power-law function

but can be the function with a more complicated structure [40, 160]) arises in
more and more modeling situations of biomedical importance from diffusion of
genetically engineered organisms in heterogeneous environments to the effect
of white and grey matter in the growth and spread of brain tumors [160, 182].
For example, the power-law diffusivity occurs as an extension of the classi-
cal diffusion model, when there is an increase in diffusion due to population
pressure (see Section 11.3 in [182] and references therein).

The velocity vector V can be a vector function depending on the concen-
tration u (if V = const then the term V · ∇u is removable from (1.1) by the
Galilei transformations) and the simplest case when V is linear w.r.t. u was
firstly studied in [179]. Notably, the velocity vector typically has the structure
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V = (B(u), 0 . . . , 0) in real world models (for example, the evolution of fish
population in a river can be adequately described if one takes into account
the stream velocity only in the direction x1 and neglects in other directions).

Although the reaction term C can possess a great variety of forms depend-
ing on the model in question (see examples in the books cited above), the most
typical form of the reaction term is C(u) = λ1u

p − λ2u
q with the positive ex-

ponents p and q (see Sections 11.3 and 13.4 in [182]). Depending on values of
p and q several well-known equations arising in biomedical applications can
be identified. For example, setting p = 1, q = 2, A(u) = d = const and V = 0,
the famous Fisher equation

ut = d∆u+ u(1− u),

(here ∆ is the Laplace operator) is obtained describing the spread in space
of a favored gene in a population. Setting p = 2 and q = 3, the Huxley
equation [43, 88]

ut = d∆u+ u2(1− u)

is derived, which can be thought as a limiting case of the famous Fitzhugh–
Nagumo (FN) equation [100, 185]

ut = d∆u+ u(u− δ)(1− u), 0 < δ < 1.

The latter is a simplification of the celebrated Hodgkin–Huxley model [133]
describing the ionic current flows for axonal membranes. The FN equation
reduces the Hodgkin–Huxley model, which has a very complex structure, and
describes the nerve impulse propagation. The function u(t, x) means the elec-
tric potential across the cell membrane.

In conclusion, we note that there are real world processes, which are de-
scribed by the RDC equations involving coefficients A,B and C depending
on derivatives of the function u (see, e.g., the recent paper [69] and works
cited therein). Examination of such equations lies beyond the scope of this
monograph.

1.2 Main methods for exact solving nonlinear reaction-

diffusion-convection equations

As it was already pointed out, it is a generally accepted fact at the present
time that a huge number of real processes arising in physics, biology, chem-
istry etc. can be adequately described by nonlinear partial differential equa-
tions (PDEs) only. On the other hand, the well-known principle of linear
superposition cannot be applied to generate new exact solutions to nonlinear
PDEs. Thus, the classical methods (the Fourier method, the Green function



4 Introduction

method, the method of the Laplace transformations, and so forth) are not
applicable for solving nonlinear equations.

At the present time, there are many methods/techniques, which allow us to
construct particular solutions of some nonlinear PDEs, however those are ap-
plicable to correctly-specified classes of PDEs only and any general integration
theory is unknown. While there is no existing general theory for integrating
nonlinear PDEs, construction of particular exact solutions for these equations
is a nontrivial and important problem. Finding exact solutions that have a
physical, chemical or biological interpretation is of fundamental importance.

One may say that the oldest technique for solving nonlinear differential
equation is finding an appropriate transformation for a given PDE. In fact, a
change of variables can sometimes be found that transforms the given nonlin-
ear PDE into a linear equation. Transformation of the Burgers equation into
the linear heat equations via the Cole–Hopf substitution is the classical exam-
ple in this direction. However, finding exact solutions of most nonlinear PDEs
generally requires other methods/thechniques than those for linear equations.

Nowadays the most powerful methods for construction of exact solutions
for a wide range of classes of nonlinear PDEs are symmetry-based methods.
All these methods have the common idea stating that exact solutions (at least
particular ones) can be found for a given PDE provided its symmetry (a set
of symmetries) is known. These methods originated from the Lie method,
which was created by the prominent Norwegian mathematician Sophus Lie
in the end of 19th century [166, 167] (see also the reprints in [168, 169]).
The method was essentially developed using modern mathematical language
by L.V. Ovsiannikov, G. Bluman, N. Ibragimov, W.F. Ames and some other
researchers in the 1960s–1970s. Although the technique of the Lie method is
well-known, the method still attracts attention of researchers and new results
are published on a regular basis. In the next section a short historical review,
basic notions, examples and theorems of the Lie method are presented.

In 1969, G. Bluman and J. Cole introduced an essential generalization of
the Lie symmetry notion [26], which later was called nonclassical symmetry
(in order to distinguish the new kind of symmetry from the classical Lie sym-
metry). Although nonclassical symmetries were not used for examination of
nonlinear PDEs almost for 20 years (until the late 1980s), nowadays it is a
powerful tool for constructing exact solutions of nonlinear equations. In par-
ticular, many important results for evolution PDEs were obtained during the
last two decades. In the first section of Chapter 3, a short historical review, ba-
sic notions and theorems of the nonclassical method are presented. Notably,
the terminology “nonclassical symmetry” is not generally accepted because
notions “Q-conditional symmetry” and “reduction operator” are widely used
too (see discussion on this matter in Section 3.1).

In the 1980s–1990s, a few new types of symmetries were introduced, which
also allow us to construct exact solutions of nonlinear PDEs. The notion of
conditional symmetry was suggested by Fushchych and his collaborators [112],
[114, Section 5.7]. Note that the notion of nonclassical symmetry can be
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derived as a particular case from conditional symmetry but not vice versa
(see highly nontrivial examples in Section 3.1 and in paper [63, 64]). Weak
symmetry was suggested in [198, 199], potential symmetry was introduced
in [29, 30, 159], while generalized conditional symmetry was independently
formulated in [101, 173] and [251] (the terminology “conditional Lie–Bäcklund
symmetry” was used in the latter).

The crucial idea used for introducing new types of symmetries can be
formulated as follows. Let us consider an arbitrary PDE. For simplicity we
restrict ourselves to the second-order two-dimensional equation

L (t, x, u, ut, ux, utt, utx, uxx) = 0. (1.2)

Hereafter u = u(t, x) is an unknown smooth function1, while L is a given
smooth function. Almost all known in literature symmetries of Eq. (1.2) can
be written as the differential operator

X = ξ0∂t + ξ1∂x + η∂u, (1.3)

where the coefficients ξ0, ξ1 and η should be found according to the definition
(criteria) of symmetry in question. In the case of the Lie, nonclassical and
conditional symmetries, the coefficients depend on dependent and independent
variables at maximum (those can be simply constants) and the corresponding
criteria for their finding are presented in Sections 1.3 and 3.1.

However, the operator X has a more complicated structure if one is look-
ing for other types of symmetries. For example, the coefficient η depends on
derivatives of the function u in the case of generalized conditional symme-
tries [101, 173, 220].

In the case of potential symmetries, the coefficients depend on integrals of
u, so that nonlocal operators are obtained. Thus, the terminology “nonlocal
symmetry” is also used (see, e.g., [241] and references therein). A substan-
tial number of examples involving potential symmetries for examination of
nonlinear PDEs is presented in [25] (see also references therein).

A vast literature (see, e.g., [196] and citations therein) is devoted to higher-
order symmetries (the terminology “generalized” and “Lie–Bäcklund” symme-
try is also used) of the form

Z = X + ς0∂ut
+ ς1∂ux

+ ς11∂uxx
+ ς01∂utx

+ . . . , (1.4)

where coefficients depend on derivatives of the function u. Such symmetries
were introduced by Noether in her remarkable work [190]. Here we want only
to stress that integrability of nonlinear PDEs via the method of inverse scatter-
ing problem [1, 93] is related with higher-order symmetries and conservation
laws [177].

1Throughout the book the notion “smooth function” means that one is differen-
tiable with respect to (w.r.t.) its variables up to the equation order, i.e., in the case
of Eq. (1.2), u is the twice differentiable function w.r.t. t and x (at least in an open
domain)
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At the present time, it is a widely accepted hypothesis that each known
exact solution of a given nonlinear PDE can be derived using an appropriate
symmetry. On the other hand, there are some efficient methods/techniques
allowing to construct exact solutions without knowledge of any symmetry.
Here we are not going to present all of them because nowadays there are too
many techniques proposed by a huge number of authors and it is very diffi-
cult to classify them (notably some new methods are particular cases of those
proposed in the 1990s and earlier). In our opinion, the most general approach
called the method of differential constraints was formulated in the 1960s [249]
and was further developed in monograph [232]. Actually, basic ideas of the
method of differential constraints have roots in Darbouxs works [103](see also
excellent historical reviews on this matter in [214] and [119]). The main idea
of the method of differential constraints is very simple: to define suitable
constraint(s) for a given PDE in such a way that the overdetermined sys-
tem obtained will be compatible and can be (partly) solved using the existing
methods. Methods for solving overdetermined systems of differential equations
were known since the first half of the 20th century [42, 139] and can be suc-
cessfully applied in many cases (for instance, see examples in [232]). However,
the main problem of the method is how to define the suitable constraint(s).
At the present time, the corresponding algorithm does not exist in general
case and one may claim that the method of differential constraints is rather
a fruitful idea without a constructive algorithm. Interestingly, the symmetry-
based methods implicitly use this idea in a constructive way. In fact, in order
to find exact solutions, one solves the given nonlinear PDE (system of PDEs)
together with the differential constraint(s) generated by a symmetry operator.

There are several techniques, which propose to use the correctly-specified
differential constraints in order to find exact solutions for some correctly-
specified classes of PDEs. In particular, the method of additional generating
conditions [45, 46, 48] and the method of determining equations [143, 144]
were independently worked out in the 1990s. Both methods are very similar
and Chapter 5 is devoted to the first of them.

Several approaches based on substitutions of the special form, which are
often called ansatz2, should be mentioned. Such substitution reduces the given
PDE to a simpler equation (e.g., ODE) or a system of simpler equations,
which can be integrated (at least partly). In order to construct the relevant
ansatz, either some physical (biological, chemical etc.) motivation or an ad
hoc approach are used. The most typical is the plane wave ansatz

u = φ(ω), ω = x− vt, v ∈ R, (1.5)

which reduces Eq. (1.2) to an ODE provided the function L does not depend
on t and x. Although solving the nonlinear ODE obtained can be also a non-
trivial problem, the solution (at least partial) can be usually found by using
the classical methods or handbooks like [142, 212]. Notably, there exist some

2Ansatz (pl. ansätze) is a German word


