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Preface

I wrote this book to serve as a handy desk-side reference for students, 
researchers, or any other kind of data analysts who have an intermediate to 
advanced grasp on fundamental statistical techniques, but who may not be 
familiar with the nuances introduced by complex survey data. As I embarked 
on this project, my intent was never to supplant or even compete with any of 
the established textbooks on the subject, such as Kish (1965), Cochran (1977), 
Lohr (2009), or Heeringa et al. (2010), for that would have surely been a futile 
endeavor. Rather, my aim was to demonstrate easy-to-follow applications of 
survey data analysis for researchers like myself who rely on SAS primarily, 
if not exclusively, for conducting statistical analyses.

All material in this book was developed using SAS Version 9.4 and 
SAS/STAT 13.1. It features the SURVEY family of SAS/STAT procedures, 
of which there are six at the time of this writing: PROC SURVEYSELECT, 
PROC SURVEYMEANS, PROC SURVEYFREQ, PROC SURVEYREG, PROC 
SURVEYLOGISTIC, and PROC SURVEYPHREG. The last five listed are com-
panions to PROC MEANS, PROC FREQ, PROC REG, PROC LOGISTIC, and 
PROC PHREG, respectively. As will be explained in great detail over the 
course of this book, you should use one of the SURVEY procedures when 
analyzing data from a complex survey design. Using one of the non-SURVEY 
procedures opens the door to making false inferences due to biased point 
estimates, biased measures of variability, or both.

The book is structured as follows. Chapter 1 is a brief introduction to the 
practice of applied survey research. Key terminology and notation associated 
with the process of estimating finite population parameters from a sample 
are defined, as are the four features of complex survey data. Chapter 2 covers 
PROC SURVEYSELECT, which boasts numerous useful routines to facilitate 
the task of selecting probability samples. Descriptive, univariate analyses of 
continuous variables are covered in Chapter 3. Categorical variable analy-
sis, both univariate and multivariate, is discussed in Chapter 4. Chapters 
5 and 6 deal with the analytic task of fitting a linear model to survey data 
using PROC SURVEYREG or PROC SURVEYLOGISTIC, respectively. Both 
chapters begin with a section reviewing the assumptions, interpretations, 
and key formulas within the milieu of data collected via a simple random 
sample and then segue into the conceptual and formulaic differences within 
the realm of complex survey data. Chapter 7 is a foray into survival analysis, 
highlighting in large part the newest addition to the SURVEY family of SAS 
procedures, PROC SURVEYPHREG, which was developed for fitting Cox 
proportional hazard regression models. Chapter 8 delves into the concept of 
domain estimation, referring to any analysis targeting a subset of the target 
population. We will see why the DOMAIN statement should be used instead 
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of subsetting a complex survey data set. Chapter 9 touches on the increas-
ingly popular class of variance estimators known as replication techniques, 
which offer analysts a flexible alternative to Taylor series linearization, the 
default variance estimation method used in all SURVEY procedures. Because 
missing data is a ubiquitous problem in applied survey research, in my hum-
ble opinion, any book would be remiss without some material discussing 
approaches used to compensate for it. To that end, Chapter 10 demonstrates 
methods to adjust the weights of responding cases to better reflect known 
characteristics of the sample (or population), and Chapter 11 considers meth-
ods to impute, or fill in, plausible values for the missing data.

Each chapter was designed to be read on its own and not necessarily in 
sequence. As each chapter progresses, the material tends to build on itself 
and become more complex. It is my belief that oscillating between numer-
ous survey data sets can only serve to detract from the reader’s ability to 
compare and contrast the current syntax example with those preceding it 
in the chapter. As such, examples in most chapters are motivated within the 
context of a single complex survey data set.

Many people contributed to this effort and are owed my sincere thanks. 
First and foremost, I am especially grateful for the encouragement I received 
from Shelley Sessoms at SAS, who believed in me and the vision I had for 
this book and on several occasions helped me overcome my self-doubt about 
whether I could complete this colossal task. I thank Rob Calver for resuscitat-
ing this project, and for the professionalism he and his entire team at CRC 
Press exhibited. I am also very grateful for the encouragement I received on 
both professional and personal levels from Frauke Kreuter, Partha Lahiri, 
Brady West, Roberto Valverde, Abera Wouhib, Sidney Fisher, Mircea Marcu, 
Karl Hess, Kimya Lee, Chris Daman, Glenn White, Eugene Pangalos, Graham 
Evans, Ryan Fulcher, Matt Fuller, and Doug Drewry. Richard Valliant and 
Richard Sigman were kind enough to endure several lengthy conversations 
during which I solicited their advice on certain content issues that surfaced 
as the book took shape. I also thank Richard Sigman for agreeing to serve as 
a reviewer. He, along with Patricia Berglund, Peter Timusk, Donna Brogan, 
and several anonymous reviewers at SAS Institute, provided valuable feed-
back that greatly improved the overall quality of the book. The same can 
be said for Casey Copen and Kimberly Daniels at the National Center for 
Health Statistics, who carefully reviewed all discussion and examples per-
taining to the National Survey of Family Growth. I claim full responsibility 
for any and all errors that remain. Lastly, and most importantly, I thank my 
wife, Katie, for being extraordinarily patient and understanding during this 
process, selflessly tolerating my extended absences from home without (too 
much) complaint. None of this would have been possible without her love 
and support.

Taylor Lewis
Arlington, Virginia
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1

1
Features and Examples of Complex Surveys

1.1 Introduction

In the era of Big Data, the variety of statistics that can be generated is 
ostensibly limitless. Given the copious and ever-expanding types of data 
being collected, there are many questions that can be answered from 
analyzing a data set already in existence or perhaps one even updated in 
real time. For instance, a credit card issuer seeking to determine the total 
amount of charges made by its customers on gasoline during a particu-
lar year may have this information readily retrievable from one or more 
databases. If so, a straightforward query can produce the answer. On the 
other hand, determining the average amount the typical U.S. household 
spends on gasoline presents a much more complicated estimation prob-
lem. Collecting data from all households in the United States would obvi-
ously be exceedingly costly, if not an outright logistical impossibility. One 
could probably make some progress pooling the comprehensive set of 
credit card issuers’ databases and trying to group data into distinct house-
holds via the primary account holder’s address, but not all households 
own and use a credit card, and so this would exclude any non-credit-card 
payment such as one made by cash or check. A survey of the general U.S. 
population is needed to acquire this kind of information. One such survey 
is the Consumer Expenditure Survey, sponsored by the Bureau of Labor 
Statistics, which reported in September 2015 that the average household 
spent approximately $2500 on gasoline during calendar year 2014 (http://
www.bls.gov/news.release/cesan.htm).

It is truly a marvel to consider the breadth of statistics such as these avail-
able to answer a myriad of questions posed by researchers, policymakers, 
and the general public. The legitimacy of these statistics is attributable to 
the fields of survey sampling and survey research methodology, which 
together have engendered a wide variety of techniques and approaches to 
practical data collection problems. Hansen (1987) and Converse (1987) pres-
ent nice summaries of the two fields’ overlapping histories. The practice of 
modern survey sampling began with the argument that a sample should 
be representative (Kiaer, 1895) and drawn using techniques of randomization 

http://www.bls.gov/news.release/cesan.htm
http://www.bls.gov/news.release/cesan.htm
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(Bowley, 1906). The seminal paper by Neyman (1934) provided much needed 
theoretical foundations for the concept. Nowadays, there are textbooks 
entirely devoted to considerations for designing an efficient sample (Hansen 
et al., 1953; Kish, 1965; Cochran, 1977; Lohr, 2009; Valliant et al., 2013). Best 
practices in the art of fielding a survey have emerged more recently, and they 
continue to evolve in response to changes in information technology, com-
munication patterns of the general public, and other societal norms. There 
are certainly a number of excellent volumes summarizing the literature on 
survey methods (Couper, 2008; Dillman et al., 2009; Groves et al., 2009), but 
they tend to have a shorter shelf life—or at least warrant a new edition more 
frequently—than those on sampling.

Survey research is the quintessence of an interdisciplinary field. While the 
opening example was motivated by expenditure data that might be of inter-
est to an economist, there are analogous survey efforts aimed at producing 
statistics related to agriculture and crop yields, scholastic achievement, and 
crime, just to name a few. Of course, collecting data comes at a cost. In the 
United States, for-profit businesses do not generally conduct surveys and 
release raw data files to the public free of charge. More commonly, surveys 
are funded by one or more government agencies. These agencies are ide-
ally apolitical and charged solely with the task of impartially collecting and 
disseminating data. The set of Principal Statistical Agencies listed at http://
fedstats.sites.usa.gov/agencies/ more or less fits this description. Aside from 
preformatted tables and reports, data dissemination often takes the form of 
a raw or microdata file posted on the survey website for open access. Indeed, 
many of the examples in this book are drawn from three real-world survey 
data sets sponsored by two of these agencies, the National Center for Health 
Statistics (NCHS) and the Energy Information Administration. Namely, 
the National Ambulatory Medical Care Survey (NAMCS), the National 
Survey of Family Growth (NSFG), and the Commercial Buildings Energy 
Consumption Survey (CBECS) will be formally introduced in Section 1.5.

As authoritative or official as these statistics seem, it is important to bear in 
mind they are estimates. The term estimate can sometimes be confused with 
the very similar term estimator, but the two terms have different meanings. 
An estimate is the value computed from a sample, whereas an estimator is 
the method or technique used to produce the estimate (see Program 3.7 for 
a comparison of two unbiased estimators of a total). If the entire survey pro-
cess were conducted anew, there are a variety of reasons one would expect 
an estimate to differ somewhat, but this book focuses primarily on quanti-
fying the portion of this variability attributable to sampling error or the vari-
ability owing to the fact that we have collected data for only a portion of 
the population. Using formal statistical theory and a single sample data set 
in hand, however, there are established ways to calculate an unbiased esti-
mate of the sampling error, which can be reported alongside the estimate or 
used to form a confidence interval or to conduct a hypothesis test. A distinc-
tive aspect of complex survey data, the features of which will be detailed in 

http://fedstats.sites.usa.gov/agencies/
http://fedstats.sites.usa.gov/agencies/
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Section 1.4 and which are all too often overlooked by applied researchers, is 
that the techniques and formulas for estimating sampling error one learns 
in general statistics courses or from general statistics textbooks frequently 
do not carry over intact. The reason is that complex surveys often employ 
alternative sample designs, either for the purpose of statistical efficiency or 
out of necessity to control data collection costs. The implied data-generating 
mechanism in general statistics courses is simple random sampling with 
replacement (SRSWR) of the ultimate units for which data are measured. In 
applied survey research, that particular data-generating mechanism is the 
exception rather than the rule.

Section 1.2 establishes some of the terminology pertaining to applied sur-
vey research that will be used throughout this book. Section 1.3 previews the 
SAS/STAT procedures that have been developed to facilitate complex sur-
vey data analysis. These are all prefixed with the word SURVEY (e.g., PROC 
SURVEYMEANS is the companion procedure to PROC MEANS). Section 1.4 
introduces the four features that may be present in a survey data set to justify 
the qualifier complex: (1) finite population corrections (FPCs), (2) stratification, 
(3) clustering, and (4) unequal weights. This chapter concludes with a dis-
cussion of the three real-world complex survey data sets from which many 
of the book’s examples are drawn. There is some brief commentary on the 
motivation behind each survey effort, the type of sample design employed, 
the complex survey features present in the data set, and specific examples of 
estimates produced.

1.2 Definitions and Terminology

Groves et al. (2009, p. 2) define a survey as a “systematic method for gath-
ering information from (a sample of) entities for constructing quantitative 
descriptors of the attributes of the larger population for which the entities 
are members.” They use the term “entities” to stress the fact that, although 
the word “survey” often has the connotation of an opinion poll or a battery 
of questions directed at humans, this is not always the case. Other example 
entities are farms, businesses, or even events. Parenthetically including the 
phrase “a sample of” serves to remind us that not all surveys involve sam-
pling. A census is the term describing a survey that aims to collect data on or 
enumerate an entire population.

One of the first stages of any survey sampling effort is defining the target 
population, the “larger population” alluded to in the Groves et al. definition 
about which inferences are desired. The target population often carries an 
ambitious, all-encompassing label, such as “the general U.S. population.” 
The next step is to construct a list, or sampling frame, from which a ran-
dom sample of sampling units can be drawn. The totality of entities covered 
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by this list is called the survey population, which does not always coincide 
perfectly with the target population. For example, there is no population 
registry in the United States as there is in many European countries to 
serve as a sampling frame. There is an important distinction to be made 
between the sampling units and the population elements, or the ultimate 
analytic units for which measurements are taken and inferences drawn. 
The two are not always one and the same. Sometimes, the sampling frame 
consists of clusters of the population elements. Considering the goal of 
making inferences on the general U.S. population, even if a population 
registry existed, it might be oriented by household or address instead of 
by individual. This would present a cluster sampling situation, which is 
permissible but introduces changes to the more familiar formulas used for 
estimation. We will discuss cluster sampling more in Section 1.4.4 with the 
help of a simple example.

A sampling frame’s makeup is often influenced by the survey’s mode or 
method of data collection (e.g., in-person interview or self-administered 
paper questionnaire by mail). For example, a popular method for adminis-
tering surveys by telephone is random-digit dialing (RDD), in which the sam-
pling frame consists of a list of landline telephone numbers. A survey opting 
for this mode may still consider the target population “the general U.S. pop-
ulation,” but the survey population is actually the subset of U.S. households 
with a landline telephone.

Figure 1.1 illustrates how the target population and survey population 
may not always be one and the same. The area within the target population 
that does not fall within the survey population area is of most concern. That 
represents undercoverage, meaning population elements that have no chance 
of being selected into the sample. Continuing with the RDD example, house-
holds without a landline telephone fall within this domain. Sometimes, 
it is possible to supplement one sampling frame with another to capture 
this group (e.g., by incorporating a sampling frame consisting of cellular 
telephone numbers), but that can introduce duplicated sampling units (i.e., 
households with landline and cellular numbers, therefore present in both 
frames), which can be a nuisance to deal with in its own right (Lohr and 
Rao, 2000). Another remedy often pursued is to conduct weighting adjust-
ment techniques such as post-stratification or raking. These techniques will 
be discussed in Chapter 10.

There is also an area in Figure 1.1 delineating a portion of the survey popu-
lation falling outside the bounds of the target population. This represents 
extraneous, or ineligible, sampling units on the sampling frame that may be 
selected as part of the sample. With respect to an RDD survey of U.S. house-
holds, a few examples are inoperable, unassigned, or business telephone 
numbers. These are represented by the area to the right of the vertical line in 
the oval labeled “Sample.” An appreciable rate of ineligibility can cause inef-
ficiencies in the sense that these units must be screened out where identified, 
but it is generally easier to handle than undercoverage.
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It is not unusual for those unfamiliar with survey sampling theory to be 
skeptical at how valid statistical inferences can be made using a moderate 
sample of size n from a comparatively large population of size N. This is a 
testament to the central limit theorem, which states that the distribution of 
a sequence of means computed from independent, and random samples 
of size n is always normally distributed as long as n is sufficiently large. 
Despite the vague descriptor sufficiently large fostering a certain amount of 
debate amongst statisticians—some might say 25, others 50, and still oth-
ers 100—the pervading virtue of the theorem is that it is true regardless 
of the underlying variable’s distribution. In other words, you do not need 
normally distributed data for this theorem to hold. This assertion is best 
illustrated by simulation.

Figure 1.2 shows the distribution of three variables from a fabricated finite 
population of N = 100,000. The first variable is normally distributed with 
a population mean of y1 5= . The second is right-skewed with a mean of 
y2 2= , whereas the third variable has a bimodal distribution with a mean of 
y3 3 75= . . Figure 1.3 immediately following displays the result of a simula-
tion that involved drawing 5000 samples of size n = 15, n = 30, and n = 100 from 
this population and computing the sample mean for each of y1, y2, and y3. 
That is, the figure is comprised of histograms summarizing the distribution 
of the three variables’ sample means with respect to each of the three sample 
sizes. As in Figure 1.2, the row factor distinguishes the three variables, while 

Survey population

Sample Ineligible units drawn into sample

Ineligible sampling units

Undercoverage

Target population

FIGURE 1.1
Visualization of a sample relative to the target population and survey population.
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the column factor (moving left to right) distinguishes the increasing sample 
sizes. There are a few key takeaways from examining Figure 1.3:

• All sample mean distributions closely resemble a normal distribu-
tion, which has been superimposed on the histograms. Again, this 
is true regardless of the underlying distribution.

• The average or expected value of the 5000 sample mean values is the 
population mean, which is to say the sample mean is an unbiased 
estimate for the mean of the entire population.
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FIGURE 1.2
Distribution of three variables from a finite population of N = 100,000.
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• The distributions get “skinnier” as the sample size increases. This 
reflects increased precision or less deviation amongst the means 
from one sample to the next.

Knowing the sampling distribution of statistics such as the mean is what 
justifies our ability to make inferences about the larger population (e.g., to 
form confidence intervals, conduct significance tests, and calculate p val-
ues). In practice, we do not have a set of 5000 independent samples, but usu-
ally a single sample to work with. From this sample, a statistic is produced, 
which we typically top with a hat to distinguish it from the true population 
parameter it is estimating. Using general theta notation, we can denote q̂ as 
the sample-based estimate or point estimate of θ. For example, ŷ refers to the 
point estimate of y from a particular sample. We acknowledge, however, that 
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Sample mean distributions of 5000 samples of size 15, 30, and 100 drawn from the finite popu-
lation in Figure 1.2.
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this estimate likely does not match the population parameter exactly. A fun-
damental quantification of the anticipated deviation is the variance, which 
can be expressed as Var( ) [( ) ]q q qˆ ˆ= -E 2 . The variance represents the average 
squared deviation of the sample-based estimates from the true population 
value over all possible samples. This quantity is rarely known, except per-
haps in simulated settings such as the one discussed earlier. But drawing 
from formal statistical theory, there are established computational methods 
to formulate an unbiased estimate of it using only the single sample at hand. 
The sample-based estimate is referred to as the estimated variance or approxi-
mated variance and denoted var( )q̂  (with a lowercase “v”). Over the course of 
the book, we will see expressions of variance estimates for a whole host of 
statistics, along with program examples demonstrating SURVEY procedure 
syntax to have SAS carry out the computational legwork for us.

Numerous related measures of uncertainty can be derived from the esti-
mated variance. Since variability in squared units can be difficult to interpret, 
a common transformation is to take the square root of this quantity, which 
returns the standard error of the statistic denoted se( ) var( )q qˆ ˆ= . Along with 
the estimate itself, the standard error can be used to form a confidence inter-
val ˆ (ˆ ), /q qa± tdf 2se , where tdf,α/2 represents the 100(1 − α/2)th percentile of a t 
distribution with df degrees of freedom. Another popular measure is the rel-
ative standard error of the estimate, also known as the coefficient of variation, 
which is defined as CV se /( ) ( )q q qˆ ˆ ˆ= . This has an appealing interpretation. 
A value of 0.1, for example, indicates the standard error of the statistic repre-
sents 10% of the magnitude of the statistic itself. A target CV can be used as 
a sample design criterion before the survey is administered or as a threshold 
for whether a survey estimate is deemed precise enough to be published. 
Unlike the variance and standard error, the CV is unitless, thereby permit-
ting precision comparisons regardless of scale (e.g., dollars versus percent-
ages) or type of estimate (e.g., means versus totals).

It should be emphasized that these assertions only apply if the sample 
is selected randomly. An impressive-sounding sample size of, say, 10,000 
means little if it were drawn using a nonrandom process such as convenience 
sampling, quota sampling, or judgment sampling (see Lohr, 2009, p. 5). The 
essential requirement is that every sampling unit on the sampling frame has 
a known, nonzero chance of being selected as part of the sample. The selec-
tion probabilities need not be equal, but they should be fixed and nonzero.

1.3  Overview of SAS/STAT Procedures 
Available to Analyze Survey Data

Table 1.1 previews the SURVEY procedures to be covered in the coming chap-
ters. PROC SURVEYSELECT was developed to facilitate the task of sample 
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selection, so it is generally more useful at the survey design stage rather than 
the analysis stage. Once the data have been collected, there are five additional 
SURVEY procedures available to produce descriptive statistics and conduct 
more sophisticated analytic tasks such as multivariate modeling. Each proce-
dure is typically covered in a chapter of its own, but later chapters covering 
cross-cutting topics such as domain estimation (Chapter 8) and replication 
(Chapter 9) demonstrate more than one specific SURVEY procedure. We will 
explore alternative (non-SURVEY) SAS/STAT procedures and user-defined 
macros in the final two chapters, which deal with techniques for handling 
missing data.

1.4 Four Features of Complex Surveys

1.4.1 A Hypothetical Expenditure Survey

To motivate exposition of the four features of complex survey data, sup-
pose a market research firm has been hired to assess the spending habits 
of N = 2000 adults living in a small town. Two example estimates of inter-
est are the average amount of money an adult spent in the previous year 
on over-the-counter (OTC) medications and the average amount spent 
on travel outside the town. The ensuing discussion centers around a few 

TABLE 1.1

Summary of SURVEY Procedures Currently Available and Primary Chapter(s) in 
Which They Are Covered

Procedure Analytic Tools Chapter(s) 

 PROC 
SURVEYSELECT

Variety of built-in routines for selecting random 
samples; also contains a few methods for 
allocating a fixed sample size amongst strata and 
determining a necessary sample size given 
certain constraints

Chapter 2

PROC 
SURVEYMEANS

Descriptive statistics such as means, totals, ratios, 
quantiles, as well as their corresponding 
measures of uncertainty

Chapter 3

PROC 
SURVEYFREQ

Tabulations, tests of association, odds ratios, and 
risk statistics

Chapter 4

PROC 
SURVEYREG

Regression models where the outcome is a 
continuous variable

Chapter 5

PROC 
SURVEYLOGISTIC

Regression models where the outcome is a 
categorical variable

Chapters 6 and 7

PROC 
SURVEYPHREG

Cox proportional hazards models for time-to-
event data (survival analyses)

Chapter 7
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(hypothetically carried out) sample designs to collect this expenditure 
data for a sample of n = 400 adults and the particular complex survey fea-
tures introduced.

1.4.2 Finite Population Corrections

Suppose the first sample design involved compiling the names and contact 
information for all N = 2000 people in the town onto a sampling frame and 
drawing a simple random sample (SRS) of n = 400 of them to follow up with 
to collect the expenditure information. From this sample, the estimated aver-

age for a given expenditure y would be calculated as ŷ y ni
i

n
=

=

=å /
1

400
. The 

research firm might then reference an introductory statistics textbook and 

calculate an estimated element variance of y as s y y ni
i

n
2 2

1

400
1= - -

=

=å ( ) ( )ˆ , 
an unbiased, sample-based estimate of the population element variance, or 

S y y Ni
i

N
2 2

1

2000
1= - -

=

=å ( ) ( ), and use this quantity to estimate the variance 

of the sample mean by var( )y s nˆ = 2 . They might then construct a 95% confi-

dence interval as ˆ . var( ˆ )y y± 1 96 , where var( ) ( )y yˆ ˆ= se  is the standard error 

of ŷ. Note how the standard error differs conceptually and computationally 

from the standard deviation of y, which is S S= 2  for the full population and 
estimated by s s= 2  from the sample.

It turns out the market research firm’s calculations would overestimate the 
variance of the sample mean because whenever the sampling fraction n/N 
is nonnegligible (as is the case with 400/2000), there is an additional term 
that enters into variance estimate calculations called the FPC. A more accu-
rate estimate of the variance of the sample mean is var( ) ( ) ( )y s n n Nˆ = -( )2 1 , 
where the term (1 − (n/N)) is the FPC. Notice how the FPC tends to 0 as n 
approaches N. Since the purpose of the estimated variance is to quantify 
the sample-to-sample variability of the estimate, an intuitive result is that 
it decreases as the portion of the population in each respective sample 
increases. In the extreme case when n = N, or when a census is undertaken, 
the variance accounting for the FPC would be 0. And despite the discus-
sion in this section pertaining strictly to estimating the variance of a sample 
mean, a comparable variance formula modification occurs for other statistics 
such as totals and regression coefficients.

The difference between the two variance perspectives is that the tra-
ditional formula implicitly assumes data were collected under a SRSWR 
design, meaning each unit in the population could have been selected into 
the sample more than one time. Equivalently, the tacit assumption could be 
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that data were collected using simple random sampling without replace-
ment (SRSWOR) from an effectively infinite population, a corollary of which 
is that the sampling fraction is negligible and can be ignored. Sampling 
products from an assembly line or trees in a large forest might fit reason-
ably well within this paradigm. But in contrast, survey research frequently 
involves sampling from a finite population, such as employees of a com-
pany or residents of a municipality, in which case adopting the SRSWOR 
design formulas is more appropriate.

There are two options available within the SURVEY procedures to account 
for the FPC. The first is to specify the population total N in the TOTAL = option 
of the PROC statement. The second is to specify the sampling fraction n/N in 
the RATE = option of the PROC statement. With respect to the sample design 
presently considered, specifying TOTAL = 2000 or RATE = 0.20 has the same 
effect. The syntax to account for the FPC is identical across all SURVEY pro-
cedures, and the same is true for the other three features of complex survey 
data as well.

Suppose the SAS data set SAMPLE_SRSWOR contains the results of this 
survey of n = 400 adults in the town. Program 1.1 consists of two PROC 
SURVEYMEANS runs on this data set. We will explore the features and 
capabilities of PROC SURVEYMEANS in more detail in Chapter 3, but 
for the moment note that we are requesting the sample mean and its esti-
mated variance for the OTC expenditures variable (EXP_OTCMEDS). The 
first run assumes the sample was selected with replacement. Since there 
are no complex survey features specified, it produces the same figures 
that would be generated from PROC MEANS. The second requests the 
same statistics but specifies TOTAL=2000 in the PROC statement, in effect 
alerting SAS that sampling was done without replacement and so an FPC 
should be incorporated. (The SURVEY procedure determines n from the 
input data set.)

Program 1.1: Illustration of the Effect of an FPC on Measures of Variability

title1 ‘Simple Random Sampling without Replacement’;
title2 ‘Estimating a Sample Mean and its Variance Ignoring the 
FPC’;
proc surveymeans data=sample_SRSWOR mean var;
var exp_OTCmeds;

run;

title2 ‘Estimating a Sample Mean and its Variance Accounting 
for the FPC’;
proc surveymeans data=sample_SRSWOR total=2000 mean var;
var exp_OTCmeds;

run;
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Simple Random Sampling without Replacement

Estimating a Sample Mean and Its Variance Ignoring the FPC

SURVEYMEANS Procedure
Data Summary

Number of observations 400

Statistics
Variable Mean Std Error of Mean Var of Mean 
exp_OTCmeds 17.645854 0.683045 0.466550

Simple Random Sampling without Replacement

Estimating a Sample Mean and Its Variance Accounting for the FPC

SURVEYMEANS Procedure
Data Summary

Number of observations 400

Statistics
Variable Mean Std Error of Mean Var of Mean
exp_OTCmeds 17.645854 0.610934 0.373240

The sample mean is equivalent ($17.65) in both PROC SURVEYMEANS 
runs, but measures of variability are smaller with the FPC incorporated. 
Specifically, the estimated variance of the mean has been reduced by a factor 
of 20% as we can observe that 0.3732 = 0.4666 ∗ (1−(400/2000)). Since the stan-
dard error of the mean is just the square root of the variance, by comparison 
it has been reduced to 0.6109=0.6830* 1 400 2000- ( ).

Where applicable, the FPC is beneficial to incorporate into measures of 
variability because doing so results in increased precision and, therefore, 
more statistical power. There are occasions, however, when the FPC is known 
to exist but intentionally ignored. This is often done when assuming a with-
replacement sample design dramatically simplifies the variance estimation 
task (see discussion regarding the ultimate cluster assumption in Section 
1.4.4), especially when there is only a marginal precision gain to be realized 
from adopting the without-replacement variance formula. Providing a few 
numbers to consider, with a sampling fraction of 10%, we would anticipate 
about a 5% reduction in the standard error; if the sampling fraction were 5%, 
the reduction would be around 3%. While the with-replacement assumption 
typically imposes an overestimation of variability, the rationale behind this 
practice is that the computational efficiencies outweigh the minor sacrifice 
in precision.
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1.4.3 Stratification

The second feature of complex survey data is stratification, which involves 
partitioning the sampling frame into H mutually exclusive and exhaustive 
strata (singular: stratum), and then independently drawing a sample within 
each. There are numerous reasons the technique is used in practice, but a few 
examples are as follows:

• Ensure representation of less prevalent subgroups in the population. If 
there is a rare subgroup in the population that can be identified on 
the sampling frame, it can be sequestered into its own stratum to 
provide greater control over the number of units sampled. In prac-
tice, sometimes the given subgroup’s stratum is so small that it 
makes more sense to simply conduct a census of those units rather 
than select a sample of them.

• Administer multiple modes of data collection. To increase representa-
tion of the target population, some survey sponsors utilize more 
than one mode of data collection (de Leeuw, 2005). When the sepa-
rate modes are pursued via separate sampling frames, these frames 
can sometimes be treated as strata of a more comprehensive sam-
pling frame.

• Increase precision of overall estimates. When strata are constructed 
homogeneously with respect to the key outcome variable(s), there 
can be substantial precision gains.

To illustrate how precision can be increased if the stratification scheme is 
carried out prudently, let us return to the expenditure survey example and 
consider an alternative sample design. Suppose there is a river evenly divid-
ing the hypothetical town’s population into an east and a west side, each 
with 1000 adults, and that adults living on the west side of the river tend 
to be more affluent. It is foreseeable that certain spending behaviors could 
differ markedly between adults on either side of the river. Since the two key 
outcome variables deal with expenditures, this would be a good candidate 
stratification variable.

For sake of an example, let us assume that the firm is able to stratify their 
sampling frame accordingly, allocating the overall sample size of n = 400 
adults into n1 = 200 adults sampled without replacement from the west 
side and n2 = 200 from the east, and that the results have been stored in 
a data set called SAMPLE_STR_SRSWOR. To account for stratification in 
the sample design, we specify the stratum identifier variable(s) on the sur-
vey data set in the STRATA statement of the SURVEY procedure. For the 
present example, the variable CITYSIDE defines which of the H = 2 strata 
the observation belongs to, a character variable with two possible values: 
“West” or “East.”
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Like Program 1.1, Program 1.2 consists of two PROC SURVEYMEANS 
runs on the survey data set, except this time we are analyzing a measure 
of travel expenditures (EXP_TRAVEL) instead of OTC medications (EXP_
OTCMEDS). The first run ignores the stratification and assumes a sample of 
size 400 was selected without replacement from the population of 2000. The 
second run properly accounts for the stratification by placing CITYSIDE in 
the STRATA statement. Observe how the FPC is supplied by way of a sec-
ondary data set called TOTALS in the second run. This is because the FPC 
is a stratum-specific quantity. When there is no stratification or the stratifi-
cation is ignored (as in the first run), one number is sufficient, but you can 
specify stratum-specific population totals, or Nhs, via a supplementary data 
set containing a like-named and like-formatted stratum variable(s) and the 
key variable _TOTAL_ (or _RATE_, if you are opting to provide sampling 
fractions instead).

Program 1.2: Illustration of the Effect of Stratification on Measures 
of Variability

title1 ‘Stratified Simple Random Sampling without 
Replacement’;
title2 ‘Estimating a Sample Mean and its Variance Ignoring the 
Stratification’;
proc surveymeans data=sample_str_SRSWOR total=2000 mean var;
var exp_travel;

run;

data totals;
length cityside $4;
input cityside _TOTAL_;

datalines;
East 1000
West 1000
;
run;

title2 ‘Estimating a Sample Mean and its Variance Accounting 
for the Stratification’;
proc surveymeans data=sample_str_SRSWOR total=totals mean var;
strata cityside;
var exp_travel;

run;

Stratified Simple Random Sampling without Replacement

Estimating a Sample Mean and Its Variance Ignoring the Stratification

SURVEYMEANS Procedure
Data Summary

Number of observations 400
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Statistics
Variable Mean Std Error of Mean Var of Mean 
exp_travel 1363.179844 92.594306 8573.705490

Stratified Simple Random Sampling without Replacement

Estimating a Sample Mean and Its Variance Accounting for the Stratification

SURVEYMEANS Procedure
Data Summary

Number of strata 2
Number of observations 400

Statistics
Variable Mean Std Error of Mean Var of Mean 
exp_travel 1363.179844 77.564901 6016.313916

The sample mean reported by PROC SURVEYMEANS is the same ($1363.18) 
in either case, but accounting for the stratification reduced the variance 
by almost one-third. Aside from a few rare circumstances, stratification 
increases the precision of overall estimates. It should be acknowledged, how-
ever, that any gains achievable are variable-specific and less pronounced 
for dichotomous variables (Kish, 1965). For instance, expenditures on OTC 
medications are likely much less disparate across CITYSIDE as expendi-
tures of this sort seem less influenced by personal wealth than those related 
to travel.

Because sampling is performed independently within each stratum, we are 
able to essentially eliminate the between-stratum variability and focus only 
on the within-stratum variability. To see this, consider how the estimated 
variance of the overall sample mean under this sample design is given by
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where
Nh is the stratum-specific population size
nh is the stratum-specific sample size
sh

2 is the stratum-specific element variance

We can conceptualize this as the variance of a weighted sum of stratum-
specific, SRSWOR sample means, where weights are determined by the 
proportion of the population covered by the given stratum, or Nh/N, where 
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Figure 1.4 is provided to help visualize what is happening in 
Equation 1.1 when the SAMPLE_STR_SRSWOR data set is analyzed by 
PROC SURVEYMEANS with CITYSIDE specified in the STRATA state-
ment. The vertical reference line represents the boundary between the two 
strata. For the west side (h = 1), the variance is a function of the sum of 
the squared distances between the points plotted and the horizontal refer-
ence line around $2500, the stratum-specific sample mean. For the east side 
(h = 2), the same can be said for the horizontal reference line around $250. 
When the stratification is ignored, the vertical boundary disappears and 
a single horizontal reference line would replace the two stratum-specific 
lines around $1400, the mean expenditure for data pooled from both strata. 
The point is that the sum of the squared distances to this new reference 
line would be much greater, overall, which helps explains why measures of 
variability are larger in the second PROC SURVEYMEANS run when the 
stratification is ignored.

1.4.4 Clustering

The third feature of complex survey data is clustering. This occurs whenever 
there is not a one-to-one correspondence between sampling units and pop-
ulation elements; instead, the sampling unit is actually a cluster of two or 
more population elements. A few examples include sampling households in 
a survey measuring attitudes of individuals, sampling doctor’s offices in a 
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FIGURE 1.4
Visual depiction of the effect of stratification on variance computations.
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survey measuring characteristics of patient visits to doctors’ offices, or sam-
pling classrooms in an education survey measuring the scholastic aptitude 
of students. Clustering is rarely ideal as it generally decreases precision, but 
it is often a logistical necessity or used to control data collection costs. For 
instance, most nationally representative, face-to-face surveys in the United 
States sample geographically clustered units to limit interviewer travel 
expenses.

Whereas homogeneity within strata leads to precision gains, homogeneity 
within clusters has the opposite effect. Let us illustrate this phenomenon 
by considering the following alternative sample design for the expenditure 
survey example. Suppose the 2000 residents are evenly distributed across the 
town’s C = 100 blocks—that is, exactly Nc = 20 adults reside on each unique 
block—and that the market research firm decides data collection would be 
easier to orchestrate if the sampling units were blocks themselves. Perhaps, 
they use a town map to enumerate all blocks and select an SRS of c = 20 of 
them, collecting expenditure data on all adults living therein. Note that this 
alternative design still maintains a sample size of 400. Suppose the survey 
is administered and the results are stored in the data set called SAMPLE_
CLUS. To isolate the effect of clustering, we will assume there was no strati-
fication and, for simplicity, we will ignore the FPC.

Whenever the underlying sample design of the complex survey data set 
involves clustering, we should place the cluster identifier variable(s) in the 
CLUSTER statement of the given SURVEY procedure. In the present exam-
ple, this identifier is the variable BLOCKID. Program 1.3 is comprised of two 
PROC SURVEYMEANS runs, one assuming simple random sampling and 
another properly accounting for the clustering. As before, we are requesting 
the sample mean and its estimated variance, only this time for both expendi-
ture variables, EXP_OTCMEDS and EXP_TRAVEL.

Program 1.3: Illustration of the Effect of Clustering on Measures 
of Variability

title1 ‘Cluster Sampling’;
title2 ‘Estimating a Sample Mean and its Variance Ignoring the 
Clustering’;
proc surveymeans data=sample_clus mean var;
var exp_OTCmeds exp_travel;

run;

title2 ‘Estimating a Sample Mean and its Variance Accounting 
for the Clustering’;
proc surveymeans data=sample_clus mean var;
cluster blockID;
var exp_OTCmeds exp_travel;

run;
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Cluster Sampling

Estimating a Sample Mean and Its Variance Ignoring the Clustering

SURVEYMEANS Procedure
Data Summary

Number of observations 400

Statistics
Variable Mean Std Error of Mean Var of Mean 
exp_OTCmeds 18.430203 0.709202 0.502968
exp_travel 1271.310549 101.074843 10,216

Cluster Sampling

Estimating a Sample Mean and Its Variance Accounting for the Clustering

SURVEYMEANS Procedure
Data Summary

Number of clusters 20

 Number of observations 400

Statistics
Variable Mean Std Error of Mean Var of Mean 
exp_OTCmeds 18.430203 0.814593 0.663563
exp_travel 1271.310549 320.315188 102,602

This is yet another instance where ignoring a feature of the complex survey 
data set does not affect the point estimate since the sample means are iden-
tical in both PROC SURVEYMEANS runs, but the clustering does impact 
measures of variability. Failing to account for clustering is especially risky 
because clustering can prompt a significant increase in the estimated vari-
ances. One might notice the increase is far more dramatic for EXP_TRAVEL 
than EXP_OTCMEDS. The explanation has to do with the degree of homoge-
neity or how correlated adults’ responses are within clusters with respect to 
the given outcome variable.

The reader might find a visualization of homogeneity useful prior to 
the presentation of an equation commonly used to quantify it. To this end, 
Figure 1.5 plots the distribution of the two expense variables within the 
sampled clusters. The cluster-specific means are represented by a dot and 
flanked by 95% confidence interval end points (not accounting for the any 
design features, only to illustrate the within-cluster variability). The idea is 
that the further away the dots are from one another or the more dissimilar 
the confidence intervals appear, the larger the expected increase in variance 
when factoring in the clustering in the sample design. Contrasting the right 
panel to the left helps explain why the variance increase for travel expendi-
tures trumps that for OTC medications.
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For the special case of equally sized clusters, an alternative method to calcu-
late the variance of a sample mean further elucidates this concept. Specifically, 
one can provide a summarized data set containing only the cluster-specific 
means to PROC SURVEYMEANS and treat as if it were an SRS. Program 
1.4 demonstrates this method. It begins with a PROC MEANS step storing 
the cluster means of expenditure variables in a data set named CLUSTER_
MEANS. The resulting data set of 20 observations is then analyzed by PROC 
SURVEYMEANS without any statements identifying complex survey features.

Program 1.4: Illustration of the Reduced Effective Sample Size 
Attributable to Clustering

proc means data=sample_clus noprint nway;
class blockID;
var exp_OTCmeds exp_travel;

output out=cluster_means mean=;
run;

proc surveymeans data=cluster_means mean var;
var exp_OTCmeds exp_travel;

run;
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Expenditure distributions within blocks selected as part of a clustered sample design for the 
hypothetical expenditure survey.
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SURVEYMEANS Procedure
Data Summary

Number of observations 20

Statistics
Variable Mean Std Error of Mean Var of Mean 

 exp_OTCmeds 18.430203 0.814593 0.665363
exp_travel 1271.310549 320.315188 102,602

Indeed, we can confirm the measures of variability output match those from 
the second run of Program 1.3 in which we provided a data set of the full 
sample (400 observations) to PROC SURVEYMEANS but specified BLOCKID 
in the CLUSTER statement. The point of this exercise is to illustrate how clus-
tering reduces the effective sample size. Kish (1965) coined the phrase design 
effect to describe this phenomenon.

The design effect of an estimate q̂ is defined as the ratio of the variance 
accounting for the complex survey features to the variance of an SRS of the 
same size or
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A Deff of 2 implies the complex survey variance is twice as large as that of 
a comparable SRS. Equivalently, this is to say that the effective sample size 
is one-half of the actual sample size. While it is possible for certain complex 
survey designs to render design effects less than 1, meaning designs that 
are more efficient than an SRS, clustering typically causes this ratio to be 
greater than 1.

In the special case of an SRS of equally sized clusters, an alternative expres-
sion for Equation 1.2 is

 Deff Nc= + -1 1( )r  (1.3)

where
Nc is the number of population elements in each cluster
ρ is the intraclass correlation coefficient (ICC), a measure of the clusters’ 

degree of homogeneity

The ICC is bounded by −1/(Nc − 1) and 1. The extreme value on the lower 
end corresponds to all clusters sharing a common mean. At the other 
extreme, a value of 1 implies perfect homogeneity within clusters or all ele-
ments therein sharing a common value. In practice, negative values of ρ are 
rare. Most common are slightly positive values. Despite a seemingly small 


