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Preface

In practice, actuators may inevitably undergo failures and various nonsmooth
nonlinearities such as backlash, hysteresis, and dead-zone, which will influence its
effectiveness in executing the control commands. These actuator imperfections, often
uncertain in time, pattern and values, can cause deteriorated performance or even
instability of the system if they are not well handled. If the system parameters are
poorly known, the compensation problem will become more complicated. Though
adaptive control has been proved to be a promising tool to solve the problem, several
important issues, such as guaranteeing transient performance of adaptive failure
compensation control system and accommodating intermittent type of failures,
remain unexplored.

Due to the increasing complexity of large scale systems, subsystems are often
interconnected, whereas the interactions between any two subsystems are difficult
to be identified or measured. Decentralized adaptive control technique is an efficient
and practical strategy to be employed for many reasons such as ease of design and
familiarity. It is aimed to design a local controller for each subsystem using only local
information while guaranteeing the stability and performance of the overall system.
However, simplicity of the design makes the analysis of the overall system quite
a challenge, especially when adaptive control approaches are employed to handle
system uncertainties. On the other hand, advances in communication techniques
enable information exchanges among distinct subsystems so that certain collective
objectives, such as consensus and formation control, can be achieved via carefully
designed subsystem interactions.

In this book, a series of innovative technologies for designing and analyzing
adaptive backstepping control systems involving treatment on actuator failures,
subsystem interactions and nonsmooth nonlinearities are presented. Compared with
the existing literature, the novel solutions by adopting backstepping design tool to
a number of hotspot and challenging problems in the area of adaptive control are
provided.

In Section I, three different backstepping based adaptive actuator failure
compensation methods will be introduced for solving the problems of relaxing

ix
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relative degree condition with respect to redundant inputs (Chapter 3), guaranteeing
transient performance (Chapter 4) and tolerating intermittent failures (Chapter 5).

In Section II, some advances in decentralized adaptive backstepping control
of uncertain interconnected systems are presented. Issues including decentralized
adaptive stabilization despite the presence of dynamic interactions depending on
subsystem inputs and outputs (Chapter 6), decentralized adaptive stabilization with
backlash-like hysteresis (Chapter 7), decentralized adaptive output tracking (Chapter
8), decentralized adaptive output tracking with delay and dead-zone input (Chapter
9) are discussed in detail. Note that the subsystem interactions in these chapters
are uncertain in structure and strength. Their effects need to be handled with care,
otherwise the entire closed-loop system may be destabilized. In Chapter 10, our
recent result on backstepping based distributed adaptive coordinated control of
uncertain multi-agent systems is presented. Different from Chapters 6-9, this chapter
is aimed to achieve output consensus tracking of all the subsystems by carefully
designing the subsystem interactions.

Discussion remarks are provided in each chapter highlighting new approaches
and contributions to emphasize the novelty of the presented design and analysis
methods. Besides, simulation results are given in each chapter, sometimes in a
comparative manner, to show the effectiveness of these methods.

Some undergraduate-level mathematical background on calculus, linear algebra
and undergraduate-level knowledge on linear systems and feedback control are
needed in reading this book. This book enables readers to establish an overall
perspective and understanding of typical adaptive accommodation solutions to
different issues. It can be used as a reference book or a textbook on advanced
adaptive control theory and applications for students with some background
in feedback control systems. Researchers and engineers in the field of control
theory and applications to electrical engineering, mechanical engineering, aerospace
engineering and others will also benefit from this book.

We are grateful to Beihang University (China), Nanyang Technological
University (Singapore) and University of Agder (Norway) for providing plenty of
resources for our research work. Wei Wang appreciates and acknowledges National
Natural Science Foundation of China for their support with Grants 61673035 and
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greatly indebted to his wife, Xiu Zhou and his children Wen Wen, Wendy Wen,
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throughout these years. Jing Zhou is greatly indebted to her parents, Feng Zhou and
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Chapter 1

Introduction

To stabilize a system and achieve other objectives such as desired output tracking by
using adaptive control methodology, a controller is normally constructed to involve
adjustable parameters generated by a parameter estimator. Both the controller and
parameter estimator are designed on the basis of the mathematical representation
of the plant. Adaptive control is one of the most promising techniques to handle
uncertainties on system parameters, structures, external disturbances and so on.
Since the backstepping technique was proposed and utilized in designing adaptive
controllers, numerous results on adaptive control of linear systems had been extended
to certain classes of nonlinear systems not based solely on feedback linearization.
In contrast to conventional adaptive control design methods, adaptive backstepping
control can easily remove relative degree limitations and provide improved transient
performance by tuning the design parameters. Although there are a large number
of results developed in the area of adaptive backstepping control, some interesting
issues such as adaptive compensation for actuator failures, subsystem interactions
and nonsmooth nonlinearities still have not been extensively explored.

1.1 Adaptive Control
Adaptive control is a design idea of self-tuning the control parameters based on the
performance error related information to better fit the environment. Thus a variety of
objectives such as system stability, desired output tracking with guaranteed steady-
state accuracy and transient performance can be achieved. Since it was conceived
in the early 1950s, it has been a research area of great theoretical and practical
significance. The design of autopilots for high performance aircraft was one of the
primary motivations for active research in adaptive control [67]. During nearly six
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decades of its development, a good number of adaptive control design approaches
have been proposed for different classes of systems to solve various problems.
Model reference adaptive control (MRAC) [110, 123, 187], system and parameter
identification based schemes [8, 124], adaptive pole placement control [44, 45]
are some commonly used conventional adaptive control methods. In the 1980s,
several modification techniques such as normalization [120,129], dead-zone [51,88],
switching σ−modification [66] and parameter projection [113, 180, 196] were
developed to improve the robustness of the adaptive controllers against unmodeled
dynamics, disturbances or other modeling errors. In the early 1990s, adaptive
backstepping control [90] was presented to control certain classes of nonlinear plants
with unknown parameters. The tuning functions concept provides improved transient
performance of the adaptive control system. The results listed above are only a part
of remarkable breakthroughs in the development of adaptive control, more detailed
literature reviews of conventional adaptive control can be found in [9,52,67,114,157]
and other related textbooks or survey papers.

The prominent feature of adaptive control in handling systems with unknown
parameters constitutes one of the reasons for the rapid development of this technique.
An adaptive controller is normally designed by combining parameter update law
and control law. The former one is also known as parameter estimator providing the
adaptation law for the adjustable parameters of the controller at each time instant
[157].

Adaptive control techniques used to be classified into direct and indirect ones
according to the procedure of obtaining the controller parameters. The methods of
computing the controller parameters based on the estimated system parameters are
referred to as indirect adaptive control, while the controller parameters are estimated
(directly) without intermediate calculation in direct adaptive control. The common
principle of conventional adaptive control techniques, no matter direct or indirect, is
certainty equivalence principle. This means the controller structure is designed as if
all estimated parameters were true, to achieve desired performances.

1.2 Adaptive Backstepping Control
Adaptive control approaches can also be classified into Lyapunov-based and
estimation-based ones according to the type of parameter update law and the
corresponding stability analysis. In the former design procedure, the adaptive law and
the synthesis of the control law are carried out simultaneously based on Lyapunov
stability theory. However, in estimation-based design, the construction of adaptive
law and control law are treated as separate modules. The adaptive law can be chosen
by following gradient, least-squares or other optimization algorithms.

To deal with linear systems, traditional Lyapunov-based adaptive control is only
applicable to the plants with relative degree no more than two. Such relative degree
limitation is translated to another structure obstacle on the “level of uncertainty”
in the nonlinear parametric state-feedback case, where the “level of uncertainty”
refers to the number of integrators between the control input and the unknown
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parameter [81]. The structure restrictions in linear and nonlinear cases can be
removed by a recursive design procedure known as backstepping. The technique
is comprehensively addressed in [90], where a brief review of its development
can also be found. Tuning functions and modular design are the two main design
approaches presented in the book. The former approach is proposed to solve an over-
parameterization problem existed in previous results on Lyapunov-based adaptive
backstepping control. It can keep the number of parameter estimates equal to the
number of unknown parameters and help simplify the implementation. In the latter
design approach, the estimation-based type adaptive laws can be selected to update
controller parameters by synthesizing a controller with the aid of nonlinear damping
terms to achieve input-to-state stability properties of the error system. Such an
approach is known as modular design since a significant level of modularity of the
controller-estimator pair is achieved.

Both tuning functions and modular design approaches can provide a systematic
procedure to design the stabilizing controllers and parameter estimators. Moreover,
the adaptive backstepping control technique has other advantages such as avoiding
cancelation of useful nonlinearities, and improving transient performance of the
system by tuning the design parameters.

1.3 Motivation
In this book, a series of novel adaptive control methods based on backstepping
technique are presented to handle the issues of actuator failures, subsystem
interactions and nonsmooth nonlinearities. The state-of-art of related research areas
and motivation of our work are elaborated from the following three aspects.

1.3.1 Adaptive Actuator Failure Compensation
In a control system, an actuator is a mechanism representing the link between the
controller and the controlled plant. It performs the control command generated from
the controller on the plant, for the purposes of stabilizing the closed-loop system
and achieving other desired objectives. In practice, an actuator is not guaranteed
to work normally all the time. Instead, it may undergo certain failures which will
influence its effectiveness in executing the control law. These failures may cause
deteriorated performance or even instability of the system. Accommodating such
failures is important to ensure the safety of the systems, especially for life-critical
systems such as aircrafts, spacecrafts, nuclear power plants and so on. Recently,
increasing demands for safety and reliability in modern industrial systems with
large complexity have motivated more and more researchers to concentrate on the
investigation of proposing control design methods to tolerant actuator failures and
related areas.

Several effective control design approaches have been developed to address the
actuator failure accommodation problem for both linear [20, 21, 32, 75, 95, 100, 158,
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160, 169, 191, 212] and nonlinear systems [14, 18, 40, 74, 86, 105, 126, 153, 154,
156, 202, 204]. They can be roughly classified into two categories, i.e., passive and
active approaches. Typical passive approaches aim at achieving insensitivity of the
system to certain presumed failures by adopting robust control techniques, see for
instance in [14, 95, 117, 169, 191, 212]. Since fixed controllers are used throughout
failure/failure-free cases and failure detection/diagnostic (FDD) is not required in
these results, the design methods are computationally attractive. However, they have
the drawback that the designed controllers are often conservative for large failure
pattern changes. This is because the achieved system performance based on worst-
case failures may not be satisfactory for each failure scenario. In contrast to the
passive methods, the structures and/or the parameters of the controllers are adjustable
in real time when active design approaches are utilized. Furthermore, FDD is often
required in active approaches and provide the estimated failure information to the
controller design. Therefore, the adverse effects brought by the actuator failures,
even if large failure pattern changes are involved, can be compensated for and the
system stability is maintained. A number of active schemes have been presented, such
as pseudo-inverse method [49], eigenstructure assignment [7, 75], multiple model
[18, 20, 21, 103], model predictive control [80], neural networks/fuzzy logic based
scheme [40, 126, 202, 204] and sliding mode control based scheme [32]. Different
from the ideas of redesigning the nominal controllers for the post-failure plants in
these schemes, virtual actuator method [136, 137] hides the effects of the failures
from the nominal controller to preserve the nominal controller in the loop.

Apart from these, adaptive control is also an active method well suited for
actuator failure compensation [3, 17, 86, 100] because of its prominent adapting
ability to the structural, parametric uncertainties and variations in the systems. As
opposed to most of the active approaches, many adaptive control design schemes can
be applied with neither control restructuring nor FDD processing. Moreover, not only
are the uncertainties caused by the failures, but also the unknown system parameters
are estimated online for updating the controller parameters adaptively. In [158, 160],
Tao et al. proposed a class of adaptive control methods for linear systems with
total loss of effectiveness (TLOE) type of actuator failures. It is known that the
backstepping technique [90] has been widely used to design adaptive controllers
for uncertain nonlinear systems due to its prominent advantages on relaxing relative
degree limitation and improving transient performance. The results in [158,160] have
been successfully extended to nonlinear systems in [153, 154, 156, 208] by adopting
the backstepping technique. In [209], a robust adaptive output feedback controller
was designed based on the backstepping technique to stabilize nonlinear systems
with uncertain TLOE failures involving parameterizable and unparameterizable time
varying terms. In fact, adaptive control also serves as an assisting tool for other
methods as in [18, 20, 21, 40, 100, 126, 192, 202, 204]. For example, a reconfigurable
controller is designed by combining neural networks and adaptive backstepping
technique to accommodate the incipient actuator failures for a class of single-
input single-output (SISO) nonlinear systems in [202]. In [192], the actuator failure
tolerance for linear systems with known system parameters is achieved by proposing
a control scheme combining linear matrix inequality (LMI) and adaptive control.
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In addition to the actuators, unexpected failures may occur on other components
such as the sensors in control systems. The research area of accommodating these
failures to improve the system reliability is also referred to as fault tolerant control
(FTC). More complete survey of the concepts and methods in fault tolerant control
could be found in [15, 16, 82, 127, 147, 207].

Although fruitful results have been reported on adaptive actuator failure
compensation control, some challenging problems still exist that deserve further
investigation. For example, there is a common structural condition assumed in most
representative results, such as [153,154,156,158,160]. That is, only two actuators, to
which the corresponding relative degrees with respect to the inputs are the same, can
be redundant for each other. The condition is restrictive in many practical situations
such as to control a system with two rolling carts connected by a spring and a
damper for regulating one of the carts at a specified position; see Section 3.1.1 for
details. Suppose that there are two motors generating external forces for distinct
carts, respectively. One of them can be considered to be redundant for the other
in case that it is blocked with the output stuck at an unknown value. The relative
degrees corresponding to the two actuators are different. Moreover, an elevator and a
stabilizer may compensate for each other in an aircraft control system, of which the
relative degree condition is also hard to be satisfied.

It is well known that the backstepping technique [90] can provide a promising
way to improve the transient performance of adaptive systems in terms of L2 and
L∞ norms of the tracking error in failure-free case if certain trajectory initialization
can be performed. Some adaptive backstepping based failure compensation methods
have been developed [153,154,156,208,209]. Nevertheless, there are limited results
available on characterizing and improving the transient performance of the systems
in the presence of uncertain actuator failures. This is mainly because the trajectory
initialization is difficult to perform when the failures are uncertain in time, pattern
and value.

In most of the existing results on adaptive control of systems with actuator
failures, only the cases with finite number of failures are considered. It is assumed
that one actuator may only fail once and the failure mode does not change afterwards.
This implies that there exists a finite time Tr such that no further failure occurs
on the system after Tr. However, it is possible that some actuator failures occur
intermittently in practice. Thus the actuators may unawarely change from a failure
mode to a normally working mode or another different failure mode infinitely many
times. For example, poor electrical contact can cause repeated unknown breaking
down failures on the actuators in some control systems. Clearly, the actuator failures
cannot be restricted to occur only before a finite time in such a case. Moveover, the
idea of stability analysis based on Lyapunov function for the case with finite number
of failures cannot be directly extended to the case with infinite number of failures,
because the possible increase of the Lyapunov function cannot be ensured bounded
automatically when the parameters may experience an infinite number of jumps.
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1.3.2 Decentralized Adaptive Control with Nonsmooth
Nonlinearities

Nowadays, interconnected systems quite commonly exist in practice. Power
networks, urban traffic networks, digital communication networks, ecological
processes and economic systems are some typical examples of such systems. They
normally consist of a number of subsystems which are separated distantly. Due to
the lack of centralized information and computing capability, decentralized control
strategy was proposed and has been proved effective to control these systems. Even
though the local controllers are designed independently for each subsystem by
using only the local available signals in a perfectly decentralized control scheme,
to stabilize such large scale systems and achieve individual tracking objectives for
each subsystem cannot be straightforwardly extended from the results for single loop
systems. This is because the subsystems are often interconnected and the interactions
between any two subsystems may be difficult to be identified or measured. Besides,
the interconnected systems often face poor knowledge on the plant parameters
and external disturbances. In such cases, the problem of compensating the effects
of the uncertain subsystem interactions and other variety of uncertainties is quite
complicated.

Adaptive control is one of the most promising tools to accommodate parametric
and structural uncertainties. Thus, this technique is also an appropriate strategy to
be employed for developing decentralized control methods. Based on a conventional
adaptive approaches, several results on global stability and steady state tracking were
reported; see for examples [38, 53, 63, 65, 119, 181, 182]. In [65], a class of linear
interconnected systems with bounded external disturbances, unmodeled interactions
and singular perturbations are considered. A direct MRAC based decentralized
control scheme is proposed with the fixed σ−modification performed on the adaptive
laws. Sufficient conditions are obtained which guarantee the existence of a region of
attraction for boundedness and exponential convergence of the state errors to a small
residual set. The related extension work could be found in [66] where nonlinearities
are included. The relative degree corresponding to the decoupled subsystems are
constrained no more than two due to the use of Kalman-Yakubovich (KY) lemma. An
indirect pole assignment based decentralized adaptive control approach is developed
to control a class of linear discrete-time interconnected systems in [181]. The
minimum phase and relative degree assumptions in [63,65] are not required. By using
the projection operation technique in constructing the gradient parameter estimator,
the parameter estimates can be constrained in a known convex compact region.
Global boundedness of all states in the closed adaptive system for any bounded initial
conditions, set points and external disturbances are ensured if unmodeled dynamics
and interactions are sufficiently weak. The results are extended to continuous-time
interconnected systems in [179].

The backstepping technique was firstly adopted in decentralize adaptive control
by Wen in [178], where a class of linear interconnected systems involving nonlinear
interactions were considered. In contrast to previous results by utilizing conventional
direct adaptive control based methods, the restrictions on subsystem relative degrees
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were removed by following a step-by-step algorithm. Thus the interconnected system
to be regulated consists of N subsystems, each of which can have arbitrarily relative
degrees. By using the backstepping technique, more results have been reported on
decentralized adaptive control [70, 76, 96, 99, 183, 206]. Compared to [178], a more
general class of systems with the consideration of unmodeled dynamics is studied
in [183,206]. In [70,76], nonlinear interconnected systems are addressed. In [76,99],
decentralized adaptive stabilization for nonlinear systems with dynamic interactions
depending on subsystem outputs or unmodeled dynamics is studied. In [96], the
results for stochastic nonlinear interconnected systems are established.

Except for [76,183,206], all the decentralized adaptive control results mentioned
above are only applicable to systems with interaction effects bounded by static
functions of subsystem outputs. This is restrictive as it is a kind of matching
condition in the sense that the effects of all the unmodeled interactions to a local
subsystem must be in the range space of the output of this subsystem. In practice,
an interconnected system unavoidably has dynamic interactions involving both
subsystem inputs and outputs. Especially, dynamic interactions directly depending
on subsystem inputs commonly exist. The results reported to control systems with
interactions directly depending on subsystem inputs even for the case of static input
interactions by using the backstepping technique are very limited. This is due to
the challenge of handling the input variables and their derivatives of all subsystems
during the recursive design steps.

A limited number of results have been obtained in solving tracking problems
for interconnected systems. The main challenge is how to compensate the effects of
all the subsystem reference inputs through interactions to the other local tracking
errors, the equations of which are key state equations used in backstepping adaptive
controller design. References [183] and [76] are two representative results reported in
this area. In [183], decentralized adaptive tracking for linear systems are considered
and local parameter estimators are designed using the gradient type of approaches.
In [76], decentralized adaptive tracking of nonlinear systems is addressed. To handle
the effects of reference inputs, two critical assumptions are imposed. One is that the
interaction functions are known exactly, which is difficult to be satisfied in practice,
especially in the context of adaptive control. To cancel the effects of reference inputs,
the interactions must also satisfy global Lipschitz condition. The other is that the
designed filters are partially decentralized in the sense that the reference signals
from other subsystems are used in local filters. It means that all the controllers share
prior information about the reference signals. Therefore, the proposed controllers are
partially decentralized.

Nonsmooth nonlinearities such as dead-zone [93, 140], backlash [149, 162],
hysteresis [2, 121] and saturation [46, 199] can be commonly encountered
in industrial control systems. For example, dead-zone is a static input-output
characteristic which often appears in mechanical connections, hydraulic servo
values, piezoelectric translators and electric servomotors. Hysteresis can be
represented by both dynamic input-output and static constitutive relationships, which
exists in a wide range of physical systems and devices. Such nonlinearities, which
are usually poorly known and vary with time, often limit system performance. A
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desirable control design approach should be able to accommodate the uncertainties.
The need for effective control methods to deal with nonsmooth systems has
motivated growing research activities in adaptive control of systems with such
common practical nonsmooth nonlinearities [163, 164]. Various design methods
based on different control objectives and system conditions have been developed and
verified in theory and practice. Adaptive control schemes have been used to cope with
actuator dead-zone [26,30,131,166], backlash [2,151,162], hysteresis [121,144,157,
161] and saturation [5,23,24,46,83,116]. Other schemes to handle such nonlinearities
have included neural networks control in [87, 125, 139, 140], fuzzy logic control
in [71, 85, 92, 93], variable structure control in [10, 30, 31, 33, 62, 149, 175], pole
placement control in [23, 46, 199] and recursive least square algorithm in [188].

Besides, stabilization and control problem for time-delay systems have also
received much attention; see for example [72, 101, 190]. The Lyapunov-Krasovskii
method and Lyapunov-Razumikhin method are normally employed. The results
are often obtained via linear matrix inequalities. However, little attention has
been focused on nonlinear time-delay large-scale systems. References [78] and
[189] considered the control problem of the class of time-invariant large-scale
interconnected systems subject to constant delays. In [27], a decentralized model
reference adaptive variable structure controller was proposed for a large-scale time-
delay system, where the time-delay function is known and linear. In [60], the robust
output feedback control problem was considered for a class of nonlinear time-varying
delay systems, where the nonlinear time-delay functions are bounded by known
functions. In [145], a decentralized state-feedback variable structure controller
was proposed for large-scale systems with time delay and dead-zone nonlinearity.
However, in [145], the time delay is constant and the parameters of the dead-zone are
known. Due to state feedback, no filter is required for state estimation. Furthermore,
only the stabilization problem was considered.

1.3.3 Distributed Adaptive Consensus Control
Because of its widespread potential applications in various fields such as mobile
robot networks, intelligent transportation management, surveillance and monitoring,
distributed coordination of multiple dynamic subsystems (also known as multi-agent
systems) has achieved rapid development during the past decades. Consensus is one
of the most popular topics in this area, which has received significant attention by
numerous researchers. It is often aimed to achieve an agreement for certain variables
of the subsystems in a group. A large number of effective control approaches have
been proposed to solve the consensus problems; see [6, 11, 12, 57, 69, 111, 132, 133]
for instance. According to whether the desired consensus values are determined by
exogenous inputs, which are sometimes regarded as virtual leaders, these approaches
are often classified as leaderless consensus and leader-following consensus solutions;
see [79, 115, 146, 201] and the references therein. Besides, many of the early
works were established for systems with first-order dynamics, whereas more results
have been reported in recent years such as [115, 135, 141, 198] for systems with
second or higher-order dynamics. A comprehensive overview of the state-of-the-
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art in consensus control can be found in [134], in which the results on some
other interesting topics including finite-time consensus and consensus under limited
communication conditions including time delays, asynchronization and quantization
are also discussed.

It is worth mentioning that except for [79], all the aforementioned results are de-
veloped based on the assumptions that the considered model precisely represents the
actual system and is exactly known. However, such assumptions are rather restrictive
since model uncertainties, regardless of their forms, inevitably exist in almost all the
control problems. Motivated by this fact, the intrinsic model uncertainty has become
a new hot-spot issue in the area of consensus control. In [59, 97, 194], robust control
techniques are adopted in consensus protocols to address the intrinsic uncertainties
including unknown parameters, unmodeled dynamics and exogenous disturbances.
In addition, adaptive control has also been proved as a promising tool in dealing with
such an issue. In [79], a group of linear subsystems with unknown parameters are
considered and a distributed model reference adaptive control (MRAC) strategy is
proposed. Different from [97] where H∞ control is investigated, the bounds of the
unknown parameters are not required a priori by using adaptive control. However,
the result is only applicable to the case that the control coefficient vectors of all
the subsystems are the same and known. In [118], adaptive consensus tracking con-
trollers are designed for Euler-Lagrange swarm systems with nonidentical dynamics,
unknown parameters and communication delays. However, it is assumed that the
exact knowledge of the desired trajectory is accessible for all the subsystems. In [36],
a distributed neural adaptive control protocol is proposed for multiple first-order
nonlinear subsystems with unknown nonlinear dynamics and disturbances. The state
of the reference system is only available to a subset of the subsystems. Based on the
condition that the basis neural network (NN) activation functions and the reference
system dynamics are bounded, the convergence of the consensus errors to a bound
can be ensured if the local control gains are chosen to be sufficiently large. The results
are extended to a more general class of systems with second and higher-order dynam-
ics in [37] and [200]. In [197], distributed adaptive control on first-order systems with
similar structures to those in [36] is investigated. By introducing extra information
exchange of local consensus errors among the linked agents, the assumptions on
boundedness of inherent nonlinear functions can be relaxed. Apart from these, there
are also some other results on distributed adaptive control of multi-agent systems,
for instance [58,104,150,210]. Nevertheless, to the best of our knowledge, results on
distributed adaptive consensus control of more general multiple high-order nonlinear
systems are still limited. In [177], output consensus tracking problem for nonlinear
subsystems in the presence of mismatched unknown parameters is investigated. By
designing an estimator whose dynamics is governed by a chain of n integrators for
the desired trajectory in each subsystem, bounded output consensus tracking for
the overall system can be achieved. However, it is not easy to check whether the
derived sufficient condition in the form of LMI is satisfied by choosing the design
parameters properly. Moreover, transmissions of online parameter estimates among
the neighbors are required, which may increase communication burden and also
cause some other potential problems such as those related to network security.
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1.4 Objectives
In this book, innovative technologies for designing and analyzing adaptive
backstepping control systems involving treatment on actuator failures, subsystem
interactions and nonsmooth nonlinearities are presented. Compared with the existing
literature, the novel solutions by adopting a backstepping design tool to a number of
hot-spot and challenging problems in the area of adaptive control are provided.

In the first part of this book, three different backstepping based adaptive actuator
failure compensation methods will be introduced for solving the problems of relaxing
relative degree condition with respect to redundant inputs (Chapter 3), guaranteeing
transient performance (Chapter 4) and tolerating intermittent failures (Chapter 5).
Chapters 3-4 employ a tuning function design scheme, whereas Chapter 5 adopts a
modular design method.

In the second part of this book, some advances in decentralized adaptive
backstepping control of uncertain interconnected systems are presented. Issues
including decentralized adaptive stabilization despite the presence of dynamic
interactions depending on subsystem inputs and outputs (Chapter 6), decentralized
adaptive stabilization with backlash-like hysteresis (Chapter 7), decentralized
adaptive output tracking (Chapter 8), decentralized adaptive output tracking with
delay and dead-zone input (Chapter 9) are discussed in detail. Note that the
subsystem interactions in these chapters are uncertain in structure and strength. Their
effects need be handled with care, otherwise the entire closed-loop system may
be destabilized. In Chapter 10, our recent result on backstepping based distributed
adaptive coordinated control of uncertain multi-agent systems is presented. Different
from Chapters 6-9, Chapter 10 is aimed to achieve output consensus tracking of all
the subsystems by carefully designing the subsystem interactions.

1.5 Preview of Chapters
This book is composed of 11 chapters. Chapters 2-11 are previewed below.

In Chapter 2, the concepts of adaptive backstepping control design and related
analysis, as the basic tool of new contributions achieved in the remaining chapters
are given.

In Chapter 3, by introducing a pre-filter before each actuator in designing output-
feedback controllers for the systems with TLOE type of failures, the relative degree
restriction corresponding to the redundant actuators will be relaxed. To illustrate the
design idea, we will firstly consider a set-point regulation problem for linear systems
and then extend the results to tracking control of nonlinear systems.

In Chapter 4, transient performance of the adaptive systems in failure cases, when
the existing backstepping based compensation control method is utilized, will be
analyzed. A new adaptive backstepping based failure compensation scheme will be
proposed to guarantee a prescribed transient performance of the tracking error, no
matter when actuator failures occur.

In Chapter 5, a modular design based adaptive backstepping control scheme will
be presented with the aid of projection operation technique to ensure system stability
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in the presence of intermittent actuator failures. It will be shown that the tracking
error can be small in the mean square sense when the failure pattern changes are
infrequent and asymptotic tracking in the case with finite number of failures can be
ensured.

In Chapter 6, a decentralized control method, by using the standard adaptive
backstepping technique without any modification, will be proposed for a class of
interconnected systems with dynamic interconnections and unmodeled dynamics
depending on subsystem inputs as well as outputs. It will be shown that the overall
interconnected system can be globally stabilized and the output regulation of each
subsystem can be achieved. The relationship between the transient performance of
the adaptive system and the design parameters will also be established. The results
on linear interconnected systems will be presented firstly and then be extended to
nonlinear interconnected systems.

In Chapter 7, two decentralized output feedback adaptive backstepping control
schemes are presented to achieve stabilization of unknown interconnected systems
with hysteresis. In Scheme I, the term multiplying the control and the system
parameters are not assumed to be within known intervals. Two new terms are added
in the parameter updating law, compared to the standard backstepping approach.
In Scheme II, uncertain parameters are assumed inside known compact sets. Thus
projection operation is adopted in the adaptive laws. With Scheme II, the strengths
are allowed arbitrary strong provided that their upper bounds are available.

In Chapter 8, a solution of designing decentralized adaptive controllers is
provided for achieving output tracking of nonlinear interconnected systems in the
presence of external disturbances. The subsystem interactions are unknown and
allowed to satisfy a high-order nonlinear bound. A new smooth function is proposed
to compensate the effects of unknown interactions and the reference inputs. Apart
from global stability ensured with the designed local controllers, a root mean square
type of bound for the tracking error is obtained as a function of design parameters.

In Chapter 9, a decentralized adaptive tracking control scheme is presented for
a class of interconnected systems with unknown time-varying delays and with the
input of each loop preceded by unknown dead-zone nonlinearity.

In Chapter 10, output consensus tracking for a group of nonlinear subsystems
in parametric strict feedback form is discussed under the condition of directed com-
munication graph. A distributed adaptive control approach based on backstepping
technique is presented to achieve asymptotically consensus tracking. Then the design
strategy is successfully applied to solve a formation control problem for multiple
nonholonomic mobile robots.

Finally, the entire book is concluded in Chapter 11 by summarizing the main
approaches, contributions and discussing some promising open problems in the
areas of adaptive failure compensation, decentralized adaptive control and distributed
adaptive coordinated control.
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Chapter 2

Adaptive Backstepping
Control

Backstepping technique is a powerful tool to stabilize nonlinear systems with relaxed
matching conditions. It was initiated in the early 1990s and was comprehensively
discussed by Krstic, Kanellakopoulos and Kokotovic [90]. “Backstepping” vividly
describes a step-by-step procedure to generate the control command for achieving
system stabilization and certain specific output regulation properties for a higher-
order system, while starting with the first scalar differential equation. In those
immediate steps, some state variables are selected as virtual controls and stabilizing
functions are designed correspondingly.

To handle systems with parametric uncertainties, adaptive backstepping
controllers are designed by incorporating the estimated parameters. Similar to
traditional adaptive control methods, the adaptive backstepping control systems can
be constructed either directly or indirectly [67]. In direct adaptive backstepping
control, parameter estimators are designed at the same time with controllers based
on the Lyapunov functions augmented by the squared terms of parameter estimation
errors. By combining tuning function technique, the over-parametrization problem
can be solved and the cost for implementing the adaptive control scheme can be
reduced. However, in indirect adaptive backstepping control, parameter estimators
are treated as separate modules from the control modules, thus they are often
designed as gradient or least-squares types.

In this chapter, the concepts of integrator backstepping and adaptive backstepping
control will be firstly introduced. The procedures to design adaptive controllers by
incorporating the tuning functions and modular design schemes are then presented. In
the second part, a class of parametric strict-feedback nonlinear systems is considered
and stability analysis for the two schemes are also provided briefly.

13
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2.1 Some Basics
2.1.1 Integrator Backstepping
Consider the system

ẋ = f(x) + g(x)u, f(0) = 0, (2.1)
where x ∈ <n and u ∈ < are the state and control input, respectively. To illustrate
the concept of integrator backstepping, an assumption on (2.1) is firstly made.

Assumption 2.1.1 There exists a continuously differentiable feedback control law

u = α(x) (2.2)

and a smooth, positive definite, radially unbounded function V : <n → <+ such that

∂V

∂x
(x)[f(x) + g(x)α(x)] ≤ −W (x) ≤ 0, ∀x ∈ <n, (2.3)

where W : <n → < is positive semidefinite.

We then consider a system that is (2.1) augmented by an integrator,

ẋ = f(x) + g(x)ξ (2.4)
ξ̇ = u, (2.5)

where ξ ∈ < is an additional state, u ∈ < is the control input. Based on Assumption
2.1.1, the control law for u will be generated in the following two steps.

Step 1. We stabilize (2.4) by treating ξ as a virtual control variable. According
to Assumption 2.1.1, α(x) is a “desired value” of ξ. We define an error variable z as
the difference between the “desired value” α(x) and the actual value of ξ, i.e.,

z = ξ − α(x). (2.6)

Rewrite the first equation (2.4) by considering the definition of z and differentiate z
with respect to time,

ẋ = f(x) + g(x)(α(x) + z) (2.7)

ż = ξ̇ − α̇(x) = u− ∂α(x)

∂x
[f(x) + g(x)(α(x) + z)] . (2.8)

Step 2. We define a positive definite function Va(x, z) by augmenting V (x) in
Assumption 2.1.1 as

Va(x, z) = V (x) +
1

2
z2. (2.9)

Computing the time derivative of Va(x, z) along with (2.3), (2.7) and (2.8), we have

V̇a(x, z) = V̇ (x) + zż

=
∂V

∂x
(f + gα+ gz) + z

[
u− ∂α

∂x
(f + gα+ gz)

]
=

∂V

∂x
(f + gα) + z

[
∂V

∂x
g + u− ∂α

∂x
(f + gα+ gz)

]
≤ −W (x) + z

[
∂V

∂x
g + u− ∂α

∂x
(f + gα+ gz)

]
, (2.10)
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where the argument (x) has been omitted for simplicity. By observing (2.10), we
may choose u as

u = −cz +
∂α

∂x
(f + gα+ gz)− ∂V

∂x
g, (2.11)

where c is a positive constant. Thus

V̇a ≤ −W (x)− cz2 , −Wa(x, z). (2.12)

Thus global boundedness of all signals can be ensured. If W (x) is positive definite,
Wa can also be rendered positive definite. According to the LaSalle-Yoshizawa
Theorem given in Appendix B, the globally asymptotic stability of x = 0, z = 0
is guaranteed. If α(0) = 0, then from (2.6), the equilibrium x = 0, ξ = 0 of (2.4)-
(2.5) is also globally asymptotically stable.

The idea of integrator backstepping is further illustrated by the following
example.

Example 2.1.1 Consider the following second order system

ẋ = x2 + xξ (2.13)
ξ̇ = u. (2.14)

Comparing (2.13)-(2.14) with (2.4)-(2.5), we see that x ∈ <, f(x) = x2 and g(x) =
x. To stabilize (2.13) with ξ as the input, we define V (x) = 1

2x
2. By choosing the

desired value of ξ as
α(x) = −x− 1, (2.15)

we have
V̇ = x(x2 + xα) = −x2. (2.16)

Thus the error variable is

z = ξ − α = ξ + x+ 1. (2.17)

Substituting ξ = z − x− 1 into (2.13) and computing the derivative of z, we obtain

ẋ = xz − x (2.18)
ż = u+ xz − x. (2.19)

We then define Va = 1
2x

2 + 1
2z

2, of which the derivative is computed as

V̇a = −x2 + x2z + z(u+ xz − x). (2.20)

Thus the control
u = −z − xz + x− x2 (2.21)

can render V̇a = −x2 − z2 < 0. From the LaSalle-Yoshizawa Theorem, global
uniform boundedness of x, z is achieved and lim

t→∞
x(t) = lim

t→∞
z(t) = 0. From

(2.15), ξ = z − x − 1 and (2.21), we have α, ξ and the control u are also globally
bounded.
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2.1.2 Adaptive Backstepping Control
To illustrate the idea of adaptive backstepping control, we consider the following
second order system as an example, in which the parametric uncertainty enters the
system one integrator before the control u does.

ẋ1 = x2 + ϕT (x1)θ (2.22)
ẋ2 = u, (2.23)

where the states x1, x2 are measurable, ϕ(x1) ∈ <p is a known vector of nonlinear
functions and θ ∈ <p is an unknown constant vector. The control objective is to
stabilize the system and regulate x1 to zero asymptotically.

We firstly present the design procedure of controller if θ is known. Introduce the
change of coordinates as

z1 = x1 (2.24)
z2 = x2 − α1, (2.25)

where α1 is a function designed as a “desired value” of the virtual control x2 to
stabilize (2.22) and

α1 = −c1x1 − ϕT θ, c1 > 0. (2.26)

Define the control Lyapunov function as

V =
1

2
z2

1 +
1

2
z2

2 , (2.27)

whose derivative is computed as

V̇ = z1(z2 − c1z1) + z2

[
u− ∂α1

∂x1

(
x2 + ϕT θ

)]
= −c1z2

1 + z2

[
z1 + u− ∂α1

∂x1

(
x2 + ϕT θ

)]
. (2.28)

By choosing the control input as

u = −z1 − c2z2 +
∂α1

∂x1

(
x2 + ϕT θ

)
, c2 > 0 (2.29)

Eqn. (2.28) becomes
V̇ = −c1z2

1 − c2z2
2 < 0. (2.30)

From the LaSalle-Yoshizawa Theorem, z1 and z2 are ensured globally asymptotically
stable. Since x1 = z1, we obtain that lim

t→∞
x1(t) = 0. From (2.26) and (2.25), we

have α1, x2 are also globally bounded. From (2.29), we conclude that the control u
is also bounded.

However, θ is actually unknown. To ensure the stabilizing function α1 is
implementable, (2.26) can be modified by replacing θ with its estimated parameter


