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Preface

During the last two decades, much progress has been made in the application of nonlinear 
differential geometric control theory, first to robotic manipulators and then to autonomous 
vehicles. In fact, robot control is simply a metaphor for nonlinear control. The ability to trans-
form complex nonlinear systems sequentially to simpler prototypes, which can then be con-
trolled by the application of Lyapunov’s second method, has led to the development of some 
novel techniques for controlling both robot manipulators and autonomous vehicles without the 
need for approximations. More recently, a synergy of the technique of feedback linearization 
with classical Lyapunov stability theory has led to the development of a systematic adaptive 
backstepping design of nonlinear control laws for systems with unknown constant parame-
ters. Another offspring of the Lyapunov-based controllers is a family of controllers popularly 
known as sliding mode controls. Currently, sliding mode controls have evolved into second- 
and higher-order implementations, which are being applied extensively to robotic systems.

Some years ago, the author embarked on a comprehensive programme of research to 
bring together a number of techniques in an attempt to formulate the dynamics and solve 
the control problems associated with both robot manipulators and autonomous vehicles, such 
as unmanned aerial vehicles (UAVs), without making any approximations of the essentially 
nonlinear dynamics. A holistic approach to the two fields have resulted in new application 
ideas such as the morphing control of aerofoil sections and the decoupling of force (or flow) 
and displacement control loops in such applications. A number of results of several of these 
studies were also purely pedagogical in nature. Pedagogical results are best reported in the 
form of new learning resources, and for this reason, the author felt that the educational out-
comes could be best communicated in a new book. In this book, the author focuses on control 
and regulation methods that rely on the techniques related to the methods of feedback linear-
ization rather than the more commonly known methods that rely on Jacobian linearization. 
The simplest way to stabilize the zero dynamics of a nonlinearly controlled system is to use, 
when feasible, input–output feedback linearization. The need for such a book arose due to the 
increasing appearance of both robot manipulators and UAVs with operating regimes involv-
ing large magnitudes of state and control variables in environments that are not generally very 
noisy. The underpinning themes which serve as a foundation for both robot dynamics and 
UAVs include Lagrangian dynamics, feedback linearization and Lyapunov-based methods 
of both stabilization and control. In most applications, a combination of these fundamental 
techniques provides a powerful tool for designing controllers for a range of application tasks 
involving tracking, coordination and motion control. Clearly, the focus of these applications 
is primarily on the ability to handle the nonlinearities rather than dealing with the environ-
mental disturbances and noise which are of secondary importance. This book is of an applied 
nature and is about doing and designing control laws. A number of application examples 
are included to facilitate the reader’s learning of the art of nonlinear control system design. 
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The book is not meant to supplant the many excellent books on nonlinear and adaptive control 
but is designed to be a complementary resource. It seeks to present the methods of nonlinear 
controller synthesis for both robots and UAVs in a single, unified framework.

The book is organized as follows: Chapter 1 deals with the application of the Euler–
Lagrange method to robot manipulators. Special consideration is given to rapidly determining 
the equations of motion of various classes of manipulators. Thus, the manipulators are classi-
fied as parallel and serial, as Cartesian and spherical and as planar, rotating planar and spatial, 
and the methods of determining the equations of motion are discussed under these categories. 
The definition of planar manipulators is generalized so that a wider class of manipulators can 
be included in this category. The methods of deriving the dynamics of the manipulators can 
be used as templates to derive the dynamics of any manipulator. This approach is unique to 
this book. Chapter 2 focuses on the application of the Lagrangian method to UAVs via the 
method of quasi-coordinates. It is worth remembering that the use of the Lagrangian method 
for deriving the equations of motion of a UAV is not the norm amongst flight dynamicists. 
Moreover, the chapter introduces the velocity axes, as the synthesis of the flight controller 
in these axes is a relatively easy task. The concept of feedback linearization is introduced 
in Chapter 3, while the classical methods of phase plane analysis of the stability of nonlin-
ear systems and their features are discussed in Chapter 4 in the context of Lyapunov’s first 
method. Chapter 5 presents an overview of the methods of robot and UAV control. Chapter 6 
is dedicated to introducing the concepts of stability, and Chapter  7 is exclusively about 
Lyapunov stability with an enunciation of Lyapunov’s second method. The methodology of 
computed torque control is the subject of Chapter 8, and sliding mode controls are introduced 
in Chapter 9. Chapter 10 discusses parameter identification, including recursive egression, 
while adaptive and model predictive controller designs are introduced in Chapter 11. In a 
sense, linear optimal control, a particular instance of the Lyapunov design of controllers, is 
also covered in the section on model predictive control, albeit briefly. Chapter 12 is exclusively 
devoted to the Lyapunov design of controllers by backstepping. Chapter 13 covers the applica-
tion of feedback linearization in the task space to achieve decoupling of the position and force 
control loops, and Chapter 14 is devoted to the applications of nonlinear systems theory to the 
synthesis of flight controllers for UAVs.

It is the author’s belief that the book will not be just another text on nonlinear control but 
serve as a unique resource to both the robotics and UAV research communities in the years to 
come and as a springboard for new and advanced projects across the globe.

First and foremost, I thank Jonathan Plant, without his active support, this project would 
not have been successful. I also thank my colleagues and present and former students at the 
School of Engineering and Material Science at Queen Mary University of London for their 
assistance in this endeavour. In particular, I thank Professor Vassili Toropov for his support 
and encouragement.

I thank my wife Sudha for her love, understanding and patience. Her encouragement and 
support provided the motivation to complete the project. I also thank our children Lullu, Satvi 
and Abhinav for their understanding during the course of this project.

Ranjan Vepa
London, United Kingdom

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please 
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com
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1

Chapter ONE

Lagrangian methods and 
robot dynamics

Introduction

The basis of the Newtonian approach to dynamics is the Newtonian viewpoint, that motion 
is induced by the action of forces acting on particles. This viewpoint led Sir Isaac Newton to 
formulate his celebrated laws of motion. In the late 1700s and early 1800s, a different view 
of dynamic motion began to emerge. According to this view, particles do not follow trajecto-
ries because they are acted upon by external forces, as Newton proposed. Instead, amongst 
all possible trajectories between two points, they choose the one which minimizes a specific 
time integral of the difference between the kinetic and the potential energies called the action. 
Newton’s laws are then obtained as a consequence of this principle, by the application of varia-
tional principles in minimizing the action integral. Also, as a consequence of the minimization 
of the action integral, the total potential and kinetic energies of systems are conserved in the 
absence of any dissipative forces or forces that cannot be derived from a potential function. 
The alternate view of particle motion then led to a newer approach to the formulation and 
analysis of the dynamics of motion. It was no longer required to isolate each and every particle 
or body and forces acting on them, within a system of particles or bodies. The system of par-
ticles could be treated in a holistic manner without having to identify the forces of interaction 
between the particles or bodies.

The variational approach seeks to derive the equations of motion for a system of particles 
in the presence of a potential force field as a solution to a minimization problem. The inde-
pendent variable in the problem will clearly be time, and the dependent functions will be the 
three-dimensional (3D) positions of each particle. The aim is to find a function L such that the 
paths of the particles between times t1 and t2 extremize the integral:

	

I L x y z x y z t dt
t

t

= ( )ò , , , , , ;� � �

1

2

.	 (1.1)

The integral I will be referred to as the action of the system and the function L as the 
Lagrangian. In fact, we can show that when the Lagrangian L is defined as

	
L T V mv V x y z t= - = - ( )1

2
2 , , ; ,

	
(1.2)
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the equations of motion are given by the Euler–Lagrange equations which are obtained by 
setting the variation of the Lagrangian δL to zero. Thus, we set
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However, by expressing δL as
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and assuming that the variations δx, δy and δz can be varied t without placing any constraints 
on them, it follows that
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with q1 = x, q2 = y and q3 = z. These are the celebrated Euler–Lagrange equations which result 
in Newton’s second laws of motion when L = T − V.

Our focus in this chapter is the application of Lagrangian dynamics, not to particles in 
motion but to kinematic mechanisms in general, and robot manipulators in particular. To this 
end, a brief review of the kinematics of robot manipulators is essential.

1.1  Constraining kinematic chains: Manipulators

The primary element of a mechanical system is a link. A link is a rigid body that possesses at 
least two nodes that are points for attachment to other links. A joint is a connection between 
two or more links at specific locations known as their nodes, which allows some motion, or 
potential motion, between the connected links. A kinematic chain is defined as an assem-
blage of links and joints, interconnected in a way to provide a controlled output motion in 
response to a specified input motion. A mechanism is defined as a kinematic chain in which 
at least one link has been ‘grounded’, or attached, to a frame of reference which itself may be 
stationary or in motion. A robot manipulator is a controlled mechanism, consisting of mul-
tiple segments of kinematic chains, that performs tasks by interacting with its environment. 
Joints are also known as kinematic pairs and can be classified as a lower pair to describe 
joints with surface contact while the term higher pair is used to describe joints with a point 
or line contact. Of the six possible lower pairs, the revolute and the prismatic pairs are the 
only lower pairs usable in a planar mechanism. The screw, cylindrical, spherical and flat 
lower pairs are all combinations of the revolute and/or prismatic pairs and are used in spatial 
(three-dimensional) mechanisms.

A primary problem related to the kinematics of manipulators is the forward kinematics 
problem, which refers to the determination of the position and orientation of the end effec-
tor, given the values for the joint variables of the robot. In the robotics community, a sys-
tematic procedure for achieving this in terms of four standardized parameters of a link, 
namely the joint angle, the link length, the link offset and the link twist, is adopted. This 
convention is known as the Denavit and Hartenberg convention, and the parameters are 
known as the Denavit and Hartenberg (DH) parameters. The complete systematic method 
of defining the DH parameters will not be discussed here. The interested reader is referred 
to texts such as Vepa [1], where the application of the DH convention to robot manipulators 
is discussed in some detail.

Manipulator 
kinematics: The 
Denavit and 
Hartenberg (DH) 
parameters
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The Denavit and Hartenberg conventions are used to derive the forward and inverse position 
equations relating joint, link and end-effector positions and orientations. From these relations, 
one derives the velocity relationships, relating the linear and angular velocities of the end 
effector or any point on a link in the manipulator to the joint velocities. The position refer-
enced to a frame attached to the end effector is a function of both the orientation of the frame 
and the position of the origin of the frame. Thus, it can be used to determine representations 
for both the translational and rotational velocities relating the linear and angular velocities of 
the end effector or any point on a link in the manipulator to the joint velocities. In particular, 
one could obtain the angular velocity of the end-effector frame and the linear velocity of the 
origin of the frame in terms of the joint velocities.

Mathematically, the Denavit and Hartenberg conventions are used to obtain the forward 
kinematics equations, defining functions relating the space of Cartesian positions and orien-
tations to the space of joint positions. The velocity relationships are then determined by the 
Jacobian of these functions. The Jacobian is a matrix-valued function and can be thought of 
as the vector version of the ordinary derivative of a scalar function. The interested reader is 
again referred to texts such as Vepa [1], where the velocity kinematics and the derivation of 
the Jacobian of specific robot manipulators are discussed in some detail.

A mechanical system’s mobility (M) can be classified according to the number of degrees of 
freedom that it possesses. The system’s degree of freedom is equal to the number of indepen-
dent parameters (measurements) that are needed to uniquely define its position in space at any 
instant of time. The degrees of freedom of any planar assembly of links can be obtained from 
the Gruebler condition, M = 3(L − G) − 2J, where M is the degree of freedom or mobility, L is 
the number of links, J is the number of joints and G is the number of grounded links. In real 
mechanisms as there can be only one ground plane G = 1. Furthermore, one can distinguish 
between joints with one degree of freedom which are referred to as full joints and joints with 
two degrees of freedom which are effectively equivalent to two half joints. Thus, if the num-
ber of full joints is JF and the number of half joints is JH, the Gruebler condition as modified 
by Kutzbach is

	
M L J JF H= -( ) - -3 1 2 .	 (1.6)

The approach used to determine the mobility of a planar mechanism can be easily extended 
to three dimensions. In a three-dimensional space, a rigid body has six degrees of freedom 
unlike in two dimensions where a body has only three degrees of freedom. Thus, a full joint 
in 3D space removes five degrees of freedom. In general, if the number of joints that remove 
k degrees of freedom is denoted as J6−k, the Kutzbach criterion is

	

M L kJ k

k

= -( ) - -

=
å6 1 6

1

5

.	 (1.7)

Similar criteria can be established to identify the number of rotational degrees of freedom of 
a mechanism.

1.2  The Lagrangian formulation of dynamics

Joseph Louis Lagrange defined the so-called Lagrangian method based on sound mathemati-
cal foundations by using the concept of virtual work along with D’Alembert’s principle. While 
Newton argued that the rate of change of momentum of a body was directly proportional to 
the applied force, D’Alembert proposed that the change in the momentum of a body was itself 
responsible for the generation of a force and that this force along with all other applied forces 
was responsible in maintaining the body in an equilibrium state.

Velocity 
kinematics: 
Jacobians

Degrees of 
freedom: The 
Gruebler criterion 
and Kutzbach’s 
modification
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Virtual displacements are the result of infinitesimal changes to the system of coordinates that 
define a particular system and that are consistent with the different forces and constraints 
imposed on the system at a given instant of time. An element of the complete system or vec-
tor of virtual displacements is referred to as a single virtual displacement. The term virtual is 
used to distinguish these types of displacement with actual displacement occurring in a finite 
time interval, during which the forces could be changing.

Suppose that a system is in static equilibrium. In this case, the total force Fi acting on each 
particle that compose the system must vanish, that is, Fi = 0. If we define the virtual work done 
on a particle as Fi ⋅ δqi (assuming the use of Cartesian coordinates), then we have for the total 
virtual work done by all of the particles

	

F qi i

i

× =å d 0.	 (1.8)

Let’s now decompose the force Fi as the sum of the externally applied forces Fi
a and the forces 

of constraints Fi
c such that

	 F F Fi i
a

i
c= + .	 (1.9)

Then the equation for the total virtual work becomes

	

F q F qi
a

i i
c

i

i

× + ×( ) =å d d 0.	 (1.10)

Generally, it is true that the forces of constraints satisfy

	

F qi
c

i

i

× =å d 0.	 (1.11)

Hence, it follows that

	

F qi
a

i

i

× =å d 0.	 (1.12)

Furthermore, if the applied forces are indeed equal to the rate of change of momenta, we can 
write

	 F pi i= � .	 (1.13)

Thus, it follows that

	 F pi i- =� 0,	 (1.14)

and that

	

F p qi i i

i

-( ) × =å � d 0,	 (1.15)

which reduces to

	

F p qi
a

i i

i

-( ) × =å � d 0.	 (1.16)

Principle of 
virtual work
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D’Alembert argued that - �pi was itself a force due to the inertia of the particle. Consequently, 
D’Alembert expressed

	 F pi
m

i= - � .	 (1.17)

Examples of the forces of inertia are the so-called centrifugal force exerted by a rotating body 
as well as the forces due to the Coriolis acceleration. The force due to gravity on the surface 
of the Earth is an example, which includes the forces due to gravitation and the centrifugal 
and Coriolis forces due to the Earth’s rotation. Thus, by eliminating the rates of change of 
momenta, the total virtual work done reduces to

	

F F qi
a

i
m

i

i

+( ) × =å d 0.	 (1.18)

The previous relation is the principle of virtual work in its most general form. The principle 
naturally leads to Newton’s laws of motion and to Euler’s equations.

Hamilton’s principle is concerned with the minimization of a quantity (i.e. the action integral) 
in a manner that is similar to extremum problems solved using the calculus of variations. 
Hamilton’s principle can be stated as follows:

The motion of a system from time t1 to time t2 is such that the line integral (called the 
action or the action integral)

	

I L x y z x y z t dt
t

t

= ( )ò , , , , , ;� � �

1

2

	 (1.19)

where L = T − V (with T and V the kinetic and potential energies, respectively) has a station-
ary value for the actual path of the motion.

Note that a ‘stationary value’ for the action integral implies an extremum for the action, 
not necessarily a minimum. But in almost all important applications in dynamics, a minimum 
does occur. Because of the dependency of the kinetic and potential energies on the coordi-
nates x, y and z and the velocities �x, �y and �z, and possibly the time t, it is found that

	
L L x y z x y z t= ( ), , , , , ;� � � .	 (1.20)

Hamilton’s principle can now be expressed mathematically by

	

d dI L x y z x y z t dt
t

t

= ( ) =ò , , , , , ;� � �

1

2

0.	 (1.21)

A solution for the previous equation is obtained by setting the variation of the Lagrangian δL 
to zero. Thus, we get the equations
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q

d

dt

L

qi i�
0,	 (1.22)

with q1 = x, q2 = y and q3 = z. These are the celebrated Euler–Lagrange equations in Cartesian 
coordinates which were shown to be equivalent to Newton’s second law of motion.

Principle of least 
action: Hamilton’s 
principle
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If a mechanical system is made up of n interconnected particles, the positions of all particles 
may be specified by 3n coordinates. However, if there are m physical constraints resulting 
in an equal number of constraint equations, then the 3n coordinates are not all independent. 
Furthermore, if the m constraint equations are in the form of functional relations between the 
degrees of freedom, they are said to be holonomic. When the constraints are holonomic, there 
will be only 3n − m independent coordinates, and the system will possess only 3n − m degrees 
of freedom. Moreover, the degrees of freedom do not need to be specified as Cartesian coordi-
nates but can be any transformation of them so long as the corresponding virtual displacements 
associated with the set of degrees of freedom are independent of each other. Such coordinates 
are known as generalized coordinates. Thus, one may choose to have different types of coor-
dinate systems for different coordinates as long as they are a minimal set. Also, the degrees 
of freedom do not even need to share the same unit or dimensions. One could also transform a 
set of generalized coordinates to another set as long as the transformation is invertible over the 
entire domain of the generalized coordinate set. It follows naturally that Hamilton’s principle 
can now be expressed in terms of the generalized coordinates and velocities as

	

d dI L q q t dti i

t

t

= ( ) =ò , ;�

1

2

0.	 (1.23)

It also follows naturally that the Euler–Lagrange can now be expressed in terms of the gener-
alized coordinates and velocities as
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q

d

dt

L

qi i�
0.	 (1.24)

We now go back to our usual coordinate transformation that relates the Cartesian and general-
ized coordinates. We distinguish between the two sets of coordinates by using a superscript 
‘C’ for the Cartesian coordinates. Thus, one can express the Cartesian coordinates as func-
tions of the generalized coordinates as

	
q q q ti

C
i
C

j= ( ), .	 (1.25)

Hence, it follows that

	
� �q

q q t

q
q

q q t

t
i
C i

C
j

j
j

i
C

j=
¶ ( )

¶
+

¶ ( )
¶

, ,
.	 (1.26)

Similarly, the components dqi
C of the virtual displacement vectors at a given instant of time 

t can be written as

	
d dq

q q t

q
qi

C i
C

j

j
j=

¶ ( )
¶

,
.	 (1.27)

From the expression for the virtual work done by external forces,

	

F q F
q q

i
a

i
C

i

i
a i

C
j

j
j

ji

j j

j

t

q
q Q q× =

¶ ( )
¶

× = × =å åå åd d d
,

0.	 (1.28)
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Hence, one can express the generalized forces in the transformed generalized coordinates as

	

Q
t

q
j i

a i
C

j

ji

=
¶ ( )

¶åF
q q ,

.	 (1.29)

Considering the inertia forces in the principle of virtual work, we may show that

	

F qi
m
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i j j
j
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¶
- ¶

¶
æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷å åd d

�
,	 (1.30)

where T is the total kinetic energy expressed in terms of the generalized coordinates and 
generalized velocities. Hence, it follows that

	

F F qi
a

i
m

i
C

i

j
j j

j

j

Q
T

q

d

dt

T

q
q+( ) × = + ¶

¶
- ¶
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0.	 (1.31)

The Euler–Lagrange equations may be expressed as

	

Q
d

dt

T

q

T

q
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j j

= ¶
¶
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ø
÷ - ¶

¶�
.	 (1.32)

We can now identify two types of external forces: forces that can be derived from a potential 
function and other generalized forces. Forces that can be derived from a potential are then 
expressed in terms of a potential energy function and the other generalized forces are denoted 
by Qj. The Euler–Lagrange equations now reduce to

	

d

dt

L

q

L

q
Q

j j
j

¶
¶
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è
ç

ö

ø
÷ - ¶

¶
=

�
,	 (1.33)

where L = T − V, with V equal to the total potential energy of all the forces that can be derived 
from a potential function.

1.3  Application to manipulators: Parallel and serial manipulators

Classically, a manipulator is said to be a planar manipulator if all the moving links and 
their motion are restricted to planes parallel to one another. A manipulator is said to be a 
spatial manipulator if at least one of the links of the mechanism possesses a general spatial 
motion in three-dimensional space. A manipulator is said to be a serial manipulator or an 
open-loop manipulator if all of its links form an open-loop kinematic chain. A manipulator 
is said to be a parallel manipulator if it is made up of one or more closed-loop kinematic 
chains. A manipulator is known as a hybrid manipulator if it consists of both open-loop and 
closed-loop kinematic chains.

In this example, the motion of the platform of a parallel manipulator is along three axes 
which are parallel to each other. Consider a uniform homogeneous platform in the shape of 
an equilateral triangle with a side of length L, in the horizontal plane, supported at its three 
vertices by three extendable vertical legs. The moving mass of each leg is assumed to be ml 

Three-degree-of-
freedom parallel 
manipulator
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and the three vertices of the platform are assumed at depths of z1, z2 and z3. The depth of the 
CM of the platform is

	
z

z z z
cm = + +1 2 3

3
.	 (1.34)

The nose of the platform is represented by the vertex ‘1’ and the base by the other two vertices. 
The longitudinal axis passes through the nose and the mid-point of the base.

The displacement of any point on the platform may be expressed in triangular area coordi-
nates Lj, j = 1, 2, 3, as in Vepa [1, Section 5.2.1]

	 w L z L z L z= + +1 1 2 2 3 3 .	 (1.35)

The velocity of any point on the surface of the platform is

	 � � � �w L z L z L z= + +1 1 2 2 3 3 .	 (1.36)

The kinetic energy of the platform is given by

	

T
m

A
L z L z L z dAp

A

= + +( )ò2
1 1 2 2 3 3

2� � � .	 (1.37)

Employing the integration formula for polynomial functions of triangle coordinates,

	

L L L dA
a b c

a b c
Aa b c

A

1 2 3
2

2ò =
+ + +( )

! ! !
!

.	 (1.38)

The total kinetic energy of the platform is

	
T m z z z z z z z z zp p= + + + + +( )1

12
1
2

2
2

3
2

1 2 2 3 3 1� � � � � � � � � .	 (1.39)

The kinetic energy of the moving masses of the three legs is

	
T m z z zl l= + +( )1

2
1
2

2
2

3
2� � � .	 (1.40)

The total kinetic energy of the manipulator is

	

T m
m

z m
m

z m
m

z
m

l
p

l
p

l
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2� � � �� � � � � �z z z z z z1 2 2 3 3 1+ +( )æ

è
ç

ö

ø
÷ .	 (1.41)

The potential energy in the legs and platform is

	
V m

m
g z z zl

p= - +æ

è
ç

ö

ø
÷ + +( )

3
1 2 3 .	 (1.42)

The Lagrangian may be defined as L = T − V.
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In terms of the generalized coordinates qj and the generalized applied forces Qj, the Euler–
Lagrange equations are

	

d
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The Euler–Lagrange equations are
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(1.44)

It is interesting to note that the equations are linear.

A manipulator is said to be a Cartesian manipulator if all its motion can be resolved to one-
directional uncoupled motion along three axes which are mutually perpendicular to each 
other. A manipulator is said to be a spherical manipulator if all the links perform motions over 
the surface of a sphere referenced to a common stationary point.

In the example of the Cartesian manipulator considered in the following text, the motion of 
the end effector of the manipulator is resolved along three axes which are mutually perpendicular 
to each other. An example of a three-dimensional Cartesian manipulator is shown in Figure 1.1.

The 3D Cartesian manipulator is by far the simplest example illustrating the application 
of the Euler–Lagrange equations. If the mass of link and end effector moving only along the 
y-axis is my, the mass of the link moving in the x-axis alone is mx and the block moving only 
along the z-axis is mz, the total kinetic energy is given by

	
T m Y m m X m m m Zy x y z x y= + +( ) + + +( )1

2
1
2

1
2

2 2 2� � � .	 (1.45)

Cartesian 
and spherical 
manipulators

x

z

y

FIGURE 1.1  Example of a 3D Cartesian manipulator.
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The total gravitational potential energy stored is given by

	
V m m m gZz x y= + +( ) .	 (1.46)

The Euler–Lagrange equations are

	

d

dt

T

X

V

X

¶
¶

+ ¶
¶

=� t1,	 (1.47)

	

d

dt

T

Y

V

Y

¶
¶

+ ¶
¶

=� t2,	 (1.48)

	

d

dt

T

Z

V

Z

¶
¶

+ ¶
¶

=� t3.	 (1.49)

Hence,

	
m m Xx y+( ) =�� t1,	 (1.50)

	
m Yy

�� = t2,	 (1.51)

	
m m m Z m m m gz x y z x y+ +( ) + + +( ) =�� t3.	 (1.52)

A typical example of a spherical joint is shown in Figure 1.2.
A manipulator based on the spherical joint may be treated as a rotating planar manipulator 

and is discussed in a latter section. Typically, a planar manipulator is one where all motion 
is restricted to a single plane. Any rotational axes are orthogonal to the plane in which the 
motion is permitted. However, for our purposes, the definition of planar manipulators is gen-
eralized so that a wider class of manipulators could be included in this category. Thus, we 
define a planar manipulator as one where all motion is restricted to a plane and along one or 

FIGURE 1.2  Example of a 3D spherical manipulator.
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more axes normal to the plane; that is in a direction parallel to the axes of rotations. A typi-
cal example of such a manipulator is the selectively compliant assembly robot arm (SCARA) 
manipulator which is considered in a subsequent section.

1.4  Dynamics of planar manipulators: Two-link planar manipulators

Consider the two-link planar arm [1] which is a typical configuration that is a planar open-
loop chain with only revolute joints as shown in Figure 1.3, where the end effector and its 
payload are modeled as a lumped mass, located at the tip of the outer link.

The total kinetic and potential energies will be obtained in terms of the moment of inertia 
and mass moment components:

	
I m L k m M Lcg cg11 1 1

2
1
2

2 1
2= +( ) + +( ) ,	 (1.53)

	
I m L ML L L I m L k MLcg cg cg21 2 2 2 1 22 1 22 2 2

2
2
2

2
2= +( ) = = +( ) +G , ,	 (1.54)

	
G G11 1 1 2 1 1 22 2 2 2= + +( ) = +( )m L m L ML m L MLcg cg, .	 (1.55)

In the previous expressions, M is the tip mass and mi, Li, Licg and kicg are, respectively, the ith 
link mass, the ith link length, the ith link’s position of the CM with reference to the ith joint 
and the ith link’s radius of gyration about its CM.

Let q1 = θ1, the angle of rotation of the first link with respect to the local horizontal, posi-
tive counterclockwise, and q2 = θ2, the angle of rotation of the second link with respect to the 
first, positive counterclockwise.

The height of the centre of gravity (CG) of the first link from the axis of the first revolute 
joint is Y1 = L1cgsin θ1. For the second link, it is Y2 = L1sin θ1 + L2cgsin (θ2 + θ1), and for the tip 
mass, it is Ytip = L1sin θ1 + L2sin (θ2 + θ1).

X0

Y0

X1Y1

X2

Y2

L1

L2

Tip mass

θ2

θ1

FIGURE 1.3  Two-link planar anthropomorphic manipulator (the ACROBOT); the Z axes are all 
aligned normal to the plane of the paper.
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Increase in the potential energy of the body is

	
V m g L m g L L Mg Lcg cg= éë ùû + + +( )éë ùû +1 1 1 2 1 1 2 2 1 1 1sin sin sin sinq q q q q ++ +( )éë ùûL2 2 1sin q q .

Hence, V = g(m1L1cg + m2L1 + ML1)sinθ1 + g(m2L2cg + ML2)sin(θ1 + θ2) which may be 
written as

	
V g g= + +( )G G11 1 22 1 2sin sinq q q ,	 (1.56)

where

	
G G11 1 1 2 1 1 22 2 2 2= + +( ) = +( )m L m L ML m L MLcg cg, .	 (1.57)

The horizontal positions of the CG of the first and second link and the tip mass, positive east, 
are X1 = L1cg cos θ1, X2 = L1 cos θ1 + L2cg cos(θ2 + θ1), Xtip = L1 cos θ1 + L2 cos(θ2 + θ1).

The horizontal velocities of the CGs of the masses are � �X L cg1 1 1 1= - q qsin , � �X L2 1 1 1= - -q qsin

L cg2 2 1 2 1
� �q q q q+( ) +( )sin , � � � �X L Ltip = - - +( ) +( )1 1 1 2 2 1 2 1q q q q q qsin sin .

The vertical velocities of the CGs of the masses are � �Y L cg1 1 1 1= q qcos , � �Y L2 1 1 1= +q qcos

L cg2 2 1 2 1
� �q q q q+( ) +( )cos , 

� � � �Y L Ltip = + +( ) +( )1 1 1 2 2 1 2 1q q q q q qcos cos .

The translational kinetic energy for the three masses is

	
T m X Y m X Y M X Ytip tip1 1 1

2
1
2

2 2
2

2
2 2 21

2
1
2

1
2

= +( ) + +( ) + +( )� � � � � � .	 (1.58)

In Equation 1.58,

� � � � � �X Y L L Ltip tip
2 2

1 1 1 2 2 1 2 1

2

1 1+ = + +( ) +( )( ) +q q q q q q qsin sin cosqq q q q q1 2 2 1 2 1

2

+ +( ) +( )( )L � � cos .

Expanding

	

� � � � �X Y L Ltip tip
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1
2

1
2 2

1
2
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2
2

2+ = +( ) + +( ) +q q q q q q qsin cos sin 11
2

2 1

1 2 1 2 1 1 2 1 12

( ) + +( )( )
+ +( ) +( ) +

cos

sin sin cos c

q q

q q q q q q qL L � � � oos .q q2 1+( )( )

The expression reduces to

	
� � � � � � � �X Y L L L Ltip tip

2 2
1
2

1
2

2
2

2 1

2

1 2 1 2 1 22+ = + +( ) + +( )q q q q q q qcos .	 (1.59)

Furthermore,

	
� � � � � � � �X Y L L L Lcg cg2

2
2
2

1
2

1
2

2
2

2 1

2

1 2 1 2 1 22+ = + +( ) + +( )q q q q q q qcos ;	 (1.60)

	
� � �X Y L cg1

2
1
2

1
2

1
2+ = q .	 (1.61)
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Substituting and simplifying,

	

T m L m L L M Lcg cg1 1 1
2

1
2

2 1
2

1
2

2
2

1 2

2

1
21

2
1
2

1
2

= + + +( )æ
è
ç

ö
ø
÷ +� � � � �q q q q qq q q

q q q q

1
2

2
2

1 2

2

2 2 2 1 2 1 1 2

+ +( )æ
è
ç

ö
ø
÷

+ +( ) +( )( )

L

m L ML Lcg

� �

� � �cos ..

	

(1.62)

The kinetic energy of rotation of the rods is

	
T m k m k2 1 1

2
1
2

2 2
2

1 2

21
2

1
2

= + +( )� � �q q q .	 (1.63)

The total kinetic energy is

	

T T T m L k m M L m L k MLcg cg= + = +( ) + +( )( ) + +( ) +1 2 1 1
2

1
2

2 1
2

1
2

2 2
2

2
21

2
1
2

�q 22
2

1 2

2

2 2 2 1 2 1 1 2

( ) +( )

+ +( ) +( )( )

� �

� � �

q q

q q q qm L ML Lcg cos .

	

(1.64)

Hence, the total kinetic energy may be expressed as

	
T I I I= + +( ) + +( ) ( )1

2
1
2

11 1
2

22 1 2

2

21 1 1 2 2
� � � � � �q q q q q q qcos ,	 (1.65)

or as

	
T I I I I I I= + + ( )( ) + + + ( )( )1

2
2

1
2

11 22 21 2 1
2

22 2
2

22 21 2cos cosq q q q q� � �
11 2
�q ,	 (1.66)

where

	
I m L k m M Lcg cg11 1 1

2
1
2

2 1
2= +( ) + +( )

	
I m L ML Lcg21 2 2 2 1= +( )

	
I m L k MLcg cg22 2 2

2
2
2

2
2= +( ) +

The total potential energy is

	
V g m L m L ML g m L MLcg cg= + +( ) + +( ) +( )1 1 2 1 1 1 2 2 2 1 2sin sinq q q ,	 (1.67)

which may be written as

	
V g g= + +( )G G11 1 22 1 2sin sinq q q ,	 (1.68)

where

	
G G11 1 1 2 1 1 22 2 2 2= + +( ) = +( )m L m L ML m L MLcg cg, .	 (1.69)

Hence, the Lagrangian may be defined as L = T − V.
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Applying the Lagrangian energy method, it can be shown that the general equations of motion 
of a two-link manipulator may be expressed as

	
�q w1 1= ,	 (1.70)

	
�q w w2 2 1= - ,	 (1.71)

	

I I I

I I
m L c

11 21 2 12

21 2 22

1

2

2 2

+ ( )
( )

é

ë
ê
ê

ù

û
ú
ú

é

ë
ê
ê

ù

û
ú
ú

+
cos

cos

q
q

w

w

�

�
gg ML L g

T

T
+( ) ( )

-é

ë
ê
ê

ù

û
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

=2 1 2

1
2

2
2

1
2

1

2

1

2

sin q
w w

w    

G

G

éé

ë
ê
ê

ù

û
ú
ú
,	
(1.72)

where

	
I m L k ML m L ML L I Icg cg cg12 2 2

2
2
2

2
2

2 2 2 1 2 22 21= +( ) + + +( ) ( ) = +cos cosq q22( ) ,	 (1.73)

	
G G G1 11 1 22 1 2= ( ) + +( )cos cosq q q ,	 (1.74)

	
G G2 22 1 2= +( )cos q q .	 (1.75)

The Euler–Lagrange equations are 
d

dt

L

q

L

q
Q

i i
i

¶
¶

¶
¶�

- = ,
 
where qi = θi; Qi are the generalized 

forces other than those accounted for by the potential energy function and are equal to the 
torques applied by the joint servo motors, Ti.

The partial derivative,

	

¶
¶q

q q q q q qT
I I I�

� � � � �
1

11 1 22 1 2 21 2 1 22= + +( ) + ( ) +( )cos ,	 (1.76)

simplifies to

	

¶
¶q

q q q q qT
I I I I�

� � �
1

11 21 2 1 22 21 2 1 2= + ( )( ) + + ( )( ) +( )cos cos .	 (1.77)

The other partial derivatives are

	

¶
¶q

q q q qT
I I�

� � �
2

21 2 1 22 1 2= ( ) + +( )cos ;	 (1.78)

	

¶
¶q

¶
¶q

q q q qT T
m L ML Lcg

1 2
2 2 2 1 2 1 1 20= = - +( ) +( )( ); sin � � � ;	 (1.79)

	

¶
¶

q q qV

q
g m L m L ML g m L MLcg cg

1
1 1 2 1 1 1 2 2 2 1 2= + +( ) ( ) + +( ) +( )cos cos ;	 (1.80)

	

¶
¶

q qV

q
g m L MLcg

2
2 2 2 1 2= +( ) +( )cos .	 (1.81)

Euler–Lagrange 
equations
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Hence, the partial derivatives of the Lagrangian L = T − V are

	

¶
¶

q q q qL

q
I I I

�
� � �

1
11 21 2 1 12 1 2= + ( )( ) + +( )cos ,	 (1.82)

	

¶
¶

q q q q ¶
¶

L

q
I I

L

q
g

�
� � �

2
21 2 1 22 1 2

1
1= ( ) + +( ) = -cos , G ,	 (1.83)

and

	

¶
¶

q q q qL

q
g m L ML Lcg

2
2 2 2 2 1 2 1 1 2= - - +( ) +( )( )G sin � � � ,	 (1.84)

where

	
G1 1 1 2 1 1 1 2 2 2 1 2= + +( ) ( ) + +( ) +( )m L m L ML m L MLcg cgcos cosq q q ,	 (1.85)

	
G2 2 2 2 1 2= +( ) +( )m L MLcg cos q q .	 (1.86)

Hence, the two Euler–Lagrange equations of motion are

	

I I I I I

I I I
11 22 21 2 22 21 2

22 21 2 22

2+ + ( ) + ( )
+ ( )

é

ë
ê
ê

ù

û
ú
ú

cos cos

cos

q q
q

���

��
�

�

�

q

q
q q

q

q

1

2

21 2 2

1

2

2

2 1

1 0

é

ë

ê
ê

ù

û

ú
ú

- ( ) é

ë
ê

ù

û
ú

é

ë

ê
ê

ù

û

ú
ú

+

I

m

sin

LL ML L g
T

cg2 2 1 2 1 1 2

1

2

0

1
+( ) +( )( ) é

ë
ê
ê

ù

û
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

=sin q q q q� � �
G

G

11

2T

é

ë
ê
ê

ù

û
ú
ú
.

	

(1.87)

In fact, if one defines

	

H =
+ + ( ) + ( )

+ ( )
é

ë
ê
ê

ù

û

I I I I I

I I I
11 22 21 2 22 21 2

22 21 2 22

2 cos cos

cos

q q
q

úú
ú
,	 (1.88)

	

T = éë ùû

é

ë

ê
ê

ù

û

ú
ú

1
2

1 2

1

2

� �
�

�
q q

q

q
H ,	 (1.89)

and then the two Euler–Lagrange equations of motion are

	

H H
��

��

�

�

q

q

q

q q

1

2

1

2
2

0

1

é

ë

ê
ê

ù

û

ú
ú

+ æ
è
ç

ö
ø
÷

é

ë

ê
ê

ù

û

ú
ú

-
é

ë
ê
ê

ù

û
ú
ú

¶
¶

d

dt

T ++
é

ë
ê
ê

ù

û
ú
ú

=
é

ë
ê
ê

ù

û
ú
ú

g
T

T

G

G

1

2

1

2

.	 (1.90)

Hence, we have

	

H I
H

��

��
� � �

q

q
q q q

q

1

2

2 1 2
2

1
2

0

1

é

ë

ê
ê

ù

û

ú
ú

+ -
é

ë
ê
ê

ù

û
ú
ú

éë ùû
æ

è
ç
ç

ö

ø
÷
÷

¶
¶

ææ

è
ç

ö

ø
÷

é

ë

ê
ê

ù

û

ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

=
é

ë
ê
ê

ù

û
ú
ú

�

�

q

q

1

2

1

2

1

2

g
T

T

G

G
;	 (1.91)
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that is, the equations are expressed entirely in terms of the matrix H, its partial derivatives 
and the partial derivatives of the potential energy function. There are indeed several alternate 
ways of expressing the two Euler–Lagrange equations of motion.

The two Euler–Lagrange equations of motion may also be expressed as

	

I I I

I I
11 21 2 12

21 2 22

1

1 2

+ ( )
( )

é

ë
ê
ê

ù

û
ú
ú +

é

ë

êcos

cos

q
q

q

q q

    ��

�� ��êê

ù

û

ú
ú

- ( ) é

ë
ê

ù

û
ú

+

é

ë

ê
ê

ù

û

ú
ú

+

I

I

21 2 2

1

1 2

21

1 1

1 0
�

�

� �
q q

q

q q
sin

si

    

nn .q q q q2 1 1 2

1

2

1

2

0

1
� � �+( )( ) é

ë
ê
ê

ù

û
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

=
é

ë
ê
ê

ù

û
ú
ú

g
T

T

G

G

	

(1.92)

Let

	

w
w

q

q q

1

2

1

1 2

é

ë
ê

ù

û
ú =

+

é

ë

ê
ê

ù

û

ú
ú

    �

� �
,	 (1.93)

and it follows that

	

�

�

q

q

w
w w

1

2

1

2 1

é

ë

ê
ê

ù

û

ú
ú

=
-

é

ë
ê

ù

û
ú .	 (1.94)

Hence, the expression associated with the second term in the Euler–Lagrange equations may 
be expressed as

	

I I21 2

1

1 2

21 2
1 21 1

1 0
sin sinq

q

q q
q

w w( ) é

ë
ê

ù

û
ú

+

é

ë

ê
ê

ù

û

ú
ú

= ( ) +    �

� � ww1

é

ë
ê

ù

û
ú .	 (1.95)

It follows that

	

�q q
w w

w
w w q

w w
w2 21 2

1 2

1
2 1 21 2

1 2

1
2I I Isin sin( ) +é

ë
ê

ù

û
ú = -( ) +é

ë
ê

ù

û
ú = 11 2

1
2

2
2

1 2 1

sin q
w w

w w w
-

-( )
é

ë
ê
ê

ù

û
ú
ú
.	 (1.96)

Hence, the two Euler–Lagrange equations of motion are

	

I I I

I I
I

11 21 2 12

21 2 22

1

2

21

+ ( )
( )

é

ë
ê
ê

ù

û
ú
ú

é

ë
ê
ê

ù

û
ú
ú

+
cos

cos
si

q
q

w

w

�

�
nn q

w w
w w w

w w2
1
2

2
2

1 2 1
1 2

10

1

-
-( )

é

ë
ê
ê

ù

û
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ï

þï
+ g

G

G22

1

2

é

ë
ê
ê

ù

û
ú
ú

=
é

ë
ê
ê

ù

û
ú
ú

T

T
.	

(1.97)

The final equations of motion may be written in state-space form as

	
�q w1 1= ,	 (1.98)

	
�q w w2 2 1= - ,	 (1.99)
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I I I I

I I
11 21 2 21 2 22

21 2 22

1

2

+ ( ) ( ) +

( )
é

ë
ê
ê

ù

û
ú
ú

é

ë
ê

cos cos

cos

q q
q

w

w

�

�êê

ù

û
ú
ú

+ ( )
-é

ë
ê
ê

ù

û
ú
ú

+
é

ë
ê
ê

ù

û
ú
ú

=I g
T

T
21 2

1
2

2
2

1
2

1

2

1

2

sin q
w w

w    

G

G

éé

ë
ê
ê

ù

û
ú
ú
,	 (1.100)

where

	
G G G1 11 1 22 1 2= ( ) + +( )cos cosq q q ,	 (1.101)

	
G G2 22 1 2= +( )cos q q ,	 (1.102)

and

	
I m L k m M Lcg cg11 1 1

2
1
2

2 1
2= +( ) + +( ) ,	 (1.103)

	
I m L ML L L I m L k MLcg cg cg21 2 2 2 1 22 1 22 2 2

2
2
2

2
2= +( ) = = +( ) +G , ,	 (1.104)

	
G G11 1 1 2 1 1 22 2 2 2= + +( ) = +( )m L m L ML m L MLcg cg, .	 (1.105)

When

	
L L L L L m m m M m k kcg cg cg cg1 2 1 2 1 2 1

2
2
22 2

1
12

= = = = = = = = =, , ,m and

	
I mL I mL I mL11

2
21

2
22

24
3

1
2

1
3

= +æ
è
ç

ö
ø
÷ = +æ

è
ç

ö
ø
÷ = +æ

è
ç

ö
ø
÷m m m, , ,	 (1.106)

	
G G11 22

3
2

1
2

= +æ
è
ç

ö
ø
÷ = +æ

è
ç

ö
ø
÷mL mLm m, .	 (1.107)

	

4
3

1
2

1
2

1
3

1
2

2 2+æ
è
ç

ö
ø
÷ + +æ

è
ç

ö
ø
÷ ( ) +æ

è
ç

ö
ø
÷ ( ) + +æ

è
ç

ö
ø
÷m m q m q mcos cos

++æ
è
ç

ö
ø
÷ ( ) +æ

è
ç

ö
ø
÷

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

é

ë
ê
ê

ù

û
ú
ú

+ +æ

m q m

w

w

m

cos 2

1

21
3

1
2

�

�

èè
ç

ö
ø
÷ ( )

-é

ë
ê
ê

ù

û
ú
ú

+

+æ
è
ç

ö
ø
÷

+æ
è
ç

ö
ø
÷

sin q
w w

w

m

m

2

1
2

2
2

1
2

3
2

1
2

    

g
L

éé

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

=
é

ë
ê
ê

ù

û
ú
ú

1
2

1

2
mL

T

T
.

	

(1.108)

1.5  The SCARA manipulator

The dynamic model of the three-axis SCARA robot [1] is formulated using the Lagrange 
method. The dynamics of the first two links are identical to the two-link planar manipulator 
discussed in the preceding section. The dynamics of the third link moving within a prismatic 
joint and normal to the plane of motion of the first two links is

	 M v M g F3 3 3� = + .	 (1.109)

The rotational dynamics of the end effector is

	
I T4 1 2 4 4

�� �� ��q q q+ +( ) = .	 (1.110)
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1.6  A two-link manipulator on a moving base

A robotic manipulator, which was designed to clean a whiteboard, is shown in Figure 1.4. 
It consists of a slider constrained to move horizontally above the whiteboard. A two-link 
planar manipulator is attached to the slider. The two links of the manipulator are attached 
to each other by a revolute joint. The top end of the manipulator is attached to the slider by 
a revolute joint while the bottom end is attached to a duster by another revolute joint, and 
constrained so that the duster cannot rotate relative to the whiteboard. The slider and duster 
are modeled as point masses.

Our objective is to

	 1.	Apply the Lagrangian energy method

	 2.	Obtain the general equations of motion of a two-link manipulator

To obtain the Euler–Lagrange equations, we must obtain the total kinetic and potential ener-
gies in terms of the total mass, moment of inertia and mass moment components. The slider 
and duster masses are Ms and M, respectively; mi and Li are, respectively, the ith link mass 
and the ith link length; Licg is the position of the CM of the ith link with reference to the ith 
joint and kicg is the ith link’s radius of gyration about its CM. All the disturbance torques and 
forces are ignored.

Let q1 be the horizontal displacement of the slider d. Let θ1 = q2, the angle of rotation of the 
first link w.r.t. the local horizontal, positive clockwise and θ2 = q3, the angle of rotation of 
the second link w.r.t. the first, positive clockwise.

The depth of the CG of the first link from the axis of the first revolute joint is

	
X L cg1 1 1= ( )cos q .

For the second link, it is

	
X L L cg2 1 1 2 2= ( ) + ( )cos cosq q .	 (1.111)

θ1

θ2

x1 x0

x2

l2

l1

y2

y1
y0

d

Ms

Tip mass, M Whiteboard

FIGURE 1.4  A robotic manipulator designed to clean a whiteboard.
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For the tip mass, it is

	
X L Ltip = ( ) + ( )1 1 2 2cos cosq q .	 (1.112)

Increase in the potential energy of the system comprising the two links, the duster and the 
slider, is

	
V m g L m g L L Mg Lcg cg= - ( )éë ùû - ( ) + ( )éë ùû -1 1 1 2 1 1 2 2 1cos cos cos cosq q q qq q1 2 2( ) + ( )éë ùûL cos .	

(1.113)

It may be expressed as

	
V g m L m L ML g m L MLcg cg= - + +( ) ( ) - +( ) ( )1 1 2 1 1 1 2 2 2 2cos cosq q ,	 (1.114)

or as

	
V g g= - ( ) - ( )G G11 1 22 2cos cosq q ,	 (1.115)

where

	
G G11 1 1 2 1 1 22 2 2 2= + +( ) = +( )m L m L ML m L MLcg cgand .	 (1.116)

The horizontal positions of the CG of the first and second link and the tip mass, positive east, 
are Y1 = d + L1cgsin(θ1), Y2 = d + L1sin(θ1) + L2cgsin(θ2) and Ytip = d + L1sin(θ1) + L2sin(θ2).

The horizontal velocities of the CGs of the masses are

	
� � �Y d L cg1 1 1 1= + ( )q qcos ,	 (1.117)

	
� � � �Y d L L cg2 1 1 1 2 2 2= + ( ) + ( ) ( )q q q qcos cos ,	 (1.118)

	
� � � �Y d L Ltip = + ( ) + ( ) ( )1 1 1 2 2 2q q q qcos cos .	 (1.119)

The vertical velocities of the CGs of the masses are

	
� � � � �X L X L Lcg cg1 1 1 1 2 1 1 1 2 2 2= - ( ) = - ( ) - ( ) ( )q q q q q qsin , sin sin ,	 (1.120)

	
� � �X L Ltip = - ( ) - ( ) ( )1 1 1 2 2 2q q q qsin sin .	 (1.121)

The kinetic energies of translation of the slider and the manipulator masses are

	
T M ds s= 1

2
2� ,	 (1.122)

	
T m X Y m X Y M X Ytip tip1 1 1

2
1
2

2 2
2

2
2 2 21

2
1
2

1
2

= +( ) + +( ) + +( )� � � � � � .	 (1.123)
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Thus,

	

T m L m L L M L Lcg cg1 1 1
2

1
2

2 1
2

1
2

2
2

2
2

1
2

1
2

2
2

2
1
2

1
2

1
2

= + +( ) + +� � � � �q q q q q22
1 2

2

2 2 2 1 2 1 1 2 1

1
2

( ) + + +( )

+ +( ) -( )( ) +

m m M d

m L ML L d m Lcg

�

� � �cos q q q q 11 2 1 1 1 1

2 2 2 2 2
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m L ML

d m L ML

+ +( ) ( )( )
+ +( )( ) ( )( )

�

� �

q q

q q

cos

cos .
	
(1.124)

The kinetic energy of rotation of the links is

	
T m k m k2 1 1

2
1
2

2 2
2

2
21

2
1
2

= +� �q q .	 (1.125)

If we let

	
M M m m M I m L k m M Ltotal s cg cg= + + +( ) = +( ) + +( )1 2 11 1 1

2
1
2

2, ,

	
I m L ML L I m L k MLcg cg cg21 2 2 2 1 2 22 2 2

2
2
2

2
2= +( ) ( ) = +( ) +cos ,q ,	 (1.126)

the total kinetic energy is
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It may be expressed as
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(1.128)

since the potential energy is

	
V g g= - ( ) - ( )G G11 1 22 2cos cosq q ,	 (1.129)

Hence, the Lagrangian may be obtained since it is defined as L = T − V. The Euler–Lagrange 
equations are

	

d

dt

L

q

L

q
Q

i i
i

¶
¶

¶
¶�

- = ,	 (1.130)

where Qi are the generalized forces other than those accounted for by the potential energy 
function and are equal to the torques applied by the joint servo motors.
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The partial derivatives in the Euler–Lagrange equations are
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If we let

	
�d vº ,	 (1.137)

then
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(1.140)

with

	
G1 1 1 2 1 1 1= + +( ) ( )m L m L MLcg sin q ,	 (1.141)

	
G2 2 2 2 2= +( ) ( )m L MLcg sin q .	 (1.142)

Differentiating the inertia expression, I21, with respect to time,

	
� � �I m L ML Lcg21 2 2 2 1 2 1 2 1 = - +( ) -( ) -( )q q q qsin .	 (1.143)
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The final state-space equations of the manipulator are

	
�d v= ,	 (1.144)

	
�q w1 1= ,	 (1.145)

	
�q w2 2= ,	 (1.146)
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(1.148)

1.7  A planar manipulator: The two-arm manipulator with extendable arms

Each of the two extendable arms is assumed to be made of two links, the second moving 
relative to the first. The CG offset between the first two links is d1 and the second pair is d2. 
The lengths of the first pair of links are assumed to be L1 and L2 and those of the second pair 
L3 and L4. The lower arm makes an angle θ1 to the horizontal while the upper arm makes an 
angle θ2 to the lower arm. The horizontal positions of the CG of the first, second, third and 
fourth links and the tip mass, positive east, are

	 X L1 1 1= cosq ,	 (1.149)

	
X L d2 1 1 1= +( )cosq ,	 (1.150)

	
X L d L L3 1 1 2 1 3 2 1= + +( ) + +( )cos cosq q q ,	 (1.151)

	
X L d L L d4 1 1 2 1 3 2 2 1= + +( ) + +( ) +( )cos cosq q q ,	 (1.152)

	
X L d L L d Ltip = + +( ) + + +( ) +( )1 1 2 1 3 2 4 2 1cos cosq q q .	 (1.153)

The height of the CG of the first link from the axis of the first revolute joint is

	 Y L1 1 1= sin q .	 (1.154)

For the second, third and fourth links, it is

	
Y L d2 1 1 1= +( )sin q ,	 (1.155)

	
Y L d L L3 1 1 2 1 3 2 1= + +( ) + +( )sin sinq q q ,	 (1.156)

	
Y L d L L d4 1 1 2 1 3 2 2 1= + +( ) + +( ) +( )sin sinq q q ,	 (1.157)
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and for the tip mass, it is

	
Y L d L L d Ltip = + +( ) + + +( ) +( )1 1 2 1 3 2 4 2 1sin sinq q q .	 (1.158)

The corresponding velocities are

	
� �X L1 1 1 1= - q qsin ,	 (1.159)

	
� � �X L d d2 1 1 1 1 1 1= - +( ) +q q qsin cos ,	 (1.160)

	
� � � � �X L d L d L3 1 1 2 1 1 1 1 3 2 1 1 2= - + +( ) + - +( ) +( )q q q q q q qsin cos sin ,	 (1.161)
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+ +( )�d2 2 1cos ,q q 	 (1.162)
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� �Y L1 1 1 1= q qcos ,	 (1.164)

	
� � �Y L d d2 1 1 1 1 1 1= +( ) +q q qcos sin ,	 (1.165)
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(1.167)
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The kinetic energy of translation is
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The kinetic energy of rotation is
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The total kinetic energy is
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where
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m m m m m m m mtip tip33 2 3 4 44 4= + + + = +; ;	 (1.174)

	
I m L d L L m L d L L d m L d L L dtip12 3 1 1 2 3 4 1 1 2 3 2 1 1 2 3 2= + +( ) + + +( ) +( ) + + +( ) +(( ) ,	 (1.175)

	
I m L m L d m L d Ltip23 3 3 4 3 2 3 2 4= + +( ) + + +( ) ,	 (1.176)

	
I m m L d Ltip14 4 1 1 2= +( ) + +( ).	 (1.177)

The total change in the potential energy is
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The total change in the potential energy is expressed as
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The partial derivatives in the Euler–Lagrange equations are
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with
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G2 3 3 4 3 2 3 2 4= + +( ) + + +( )m L m L d m L d Ltip .	 (1.193)

The Euler–Lagrange equations are
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Hence, we have the following equations of motion:
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(1.201)

1.8  The multi-link serial manipulator

The modeling of a multi-link manipulator can be done by adopting the Lagrangian formula-
tion. With the correct choice of reference frames, the dynamics can be reduced to a standard 
form. The most appropriate choice of the reference frames is not the traditional frames 
defined by the Denavit and Hartenberg convention. A typical three-link serial manipulator 
is illustrated in Figure 1.5.

The positions and velocities of link CMs in planar Cartesian coordinates for the first, sec-
ond, third and Nth links are, respectively, given by

	 x l y lC C1 1 1 1 1 1= =cos , sinq q ,	 (1.202)

	 x l lC2 1 1 2 2= +cos cosq q ,	 (1.203)

	 y l lC2 1 1 2 2= +sin sinq q ,	 (1.204)
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	 x l l lC3 1 1 2 2 3 3= + +cos cos cosq q q ,	 (1.205)

	 y l l lC3 1 1 2 2 3 3= + +sin sin sinq q q ,	 (1.206)
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The kinetic energy for N links is given by the sum of the translational and rotational kinetic 
energy and is
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The potential energy for N links is given by the gravitational potential energy and is
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To simplify the expression for the total kinetic energy, it may be noted that
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FIGURE 1.5  A typical three-link manipulator showing the definitions of the degrees of freedom.
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which is expressed as

	

v v l l lxi yi i Ci j j j

j

i

j j j

j

2 2 2 2

1

1
2

+ = +
æ

è
ç
ç

ö

ø
÷
÷

+
=

-

=
å� � �q q q q qsin cos

11

1
2

1

1

2

i

Ci i i j j j

j

i

i i jl l l

-

=

-

å

å

æ

è
ç
ç

ö

ø
÷
÷

+ +� � � �q q q q q q qsin sin cos jj j

j

i

cosq
=

-

å
æ

è
ç
ç

ö

ø
÷
÷

1

1

.

	

(1.212)

The last term in this expression on the right-hand side of the equation is
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The second and third terms are
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The last term in this equation is
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Finally,
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The complete expression for the total kinetic energy of N links is
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For N = 4, the equations of motion may be defined by employing the Lagrangian approach 
(Vepa [1]), and the Euler–Lagrange equations are given by
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In Equation 1.218, the terms in the inertia matrix are defined by
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Finally, the terms Γi are defined as
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In Equation 1.218, the angles θi are defined in Figure 1.1. In Equation 1.218, mi and li, i =1, 
2, 3, …, are the masses and lengths of the links. In Equation 1.218, M4 is the moment acting 
on the outer or tip link, while Mi,i + 1 = Mi − Mi + 1 is the net moment acting on the ith link and 
Mi is the moment acting on the ith link at the pivot Oi−1. In Equation 1.219, lCi are the distances 
of the link CMs from the pivots while Li are the link moments of inertia about the CMs. One 
could introduce a tip mass by suitably altering m3, lC3 and IC3. The functions C(⋅) and S(⋅) refer 
to the trigonometric cosine and sine functions.

1.9  The multi-link parallel manipulator: The four-bar mechanism

In the case of multi-link parallel closed-chain manipulators, one approach of modeling their 
dynamics is to introduce one or more virtual cuts so as to reduce them to several serial or 
open-chain manipulators. The closed-chain manipulator is then obtained by introducing holo-
nomic constraints to realize the original closed-chain configuration. A typical example is a 
four-bar mechanism. In this case, the input crank and the coupler are treated as an indepen-
dent inverted double pendulum or a two-link planar serial mechanism, while the rocker or 
output crank is treated as an independent single-link serial manipulator. Two constraints are 
then applied to realize the original four-bar mechanism.

The kinetic energy of all the bodies in the virtual serial manipulators is expressed as

	
T T q q j Jj j= ( ) =� , , , , ,...,1 2 3 .	 (1.221)

The total potential energy is expressed as

	
V V qj= ( ) .	 (1.222)

The holonomic constraints are expressed as

	
f fi i jq i m= ( ) = =0 1 2 3, , , ,..., .	 (1.223)

The Lagrangian is defined as
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where λi are Lagrange multipliers. The Euler–Lagrange equations are
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They may be expressed as
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where
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These equations correspond to the case when the constraints are expressed in differential 
form as
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The differential constraints can be either holonomic or even non-holonomic or not integrable.
To apply this method to the four-bar linkage, consider a four-bar mechanism where the 

fixed link is aligned with the horizontal and of length d, the length of the input crank is L1, 
the length of the coupler is L2 and that of the output crank is L3. The corresponding masses 
are m1, m2 and m3. The crank makes an angle θ1 to the horizontal. The coupler is at angle θ2 
to the crank. The output crank makes an angle θ3 to the horizontal. The subscripts ‘cg’ denote 
the location of the CG of the corresponding link along the length of the link. k1, k2 and k3 
denote the radii of gyration of the input crank, coupler and output crank, respectively. The 
kinetic energy is expressed as
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The potential energy is

	
V g m L m L gm L gm Lcg cg cg= +( ) + +( ) +1 1 2 1 1 2 2 1 2 3 3 3sin sin sinq q q q .	 (1.230)

The horizontal and vertical position constraints are

	
L L L d1 1 2 2 1 3 3cos cos cosq q q q+ +( ) - = ,	 (1.231)

	
L L L1 1 2 2 1 3 3 0sin sin sinq q q q+ +( ) - = .	 (1.232)

From these constraint equations,

	
L L d L2 2 3 3 1 1 1cos cos cosq q q q= -( ) + - ,	 (1.233)

	
L L d2 2 3 3 1 1sin sin sinq q q q= -( ) - .	 (1.234)

Thus,
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The latter equation reduces to a quadratic equation for cos θ1.
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The constraints in differential form are
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The matrix Ai,j(qk) is
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Hence, the velocity constraints are
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The previous equation can be used to eliminate �q1 and �q2.
The acceleration constraints are obtained by differentiating the velocity constraints and are
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The Euler–Lagrange equations are
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where
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G G1 1 1 2 1 1 2 2 1 2 2 2 2 1 2= +( ) ( ) + +( ) = +m L m L m L m Lcg cg cgcos cos , cosq q q q q(( ) 	 (1.245)

On eliminating ��q1, ��q2, �q1, �q2, θ1, θ2 and the Lagrange multipliers λ1 and λ2, the system of equa-
tions reduces to those of a one-degree-of-freedom system.
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1.10  �Rotating planar manipulators: The kinetic energy 
of a rigid body in a moving frame of reference

The strategy adopted in evaluating the Kinetic Energy (KE) is to independently evaluate the 
translational KE and the rotational KE of each body at its CM. Thus, we need to find the 
translational velocity and rotational velocity of each body at its CM.

The velocity of a ‘particle’ in a body, at a fixed point x, y, z relative to a reference 
frame  that is not fixed, with the velocity of the origin reference to inertial coordinates 
given as v0, is

	
v v z yx x y z= + -0 w w ,	 (1.246)

	
v v x zy y z x= + -0 w w ,	 (1.247)

	
v v y xz z x y= + -0 w w ,	 (1.248)

where ωx, ωy and ωz are the components of the body angular velocity in the frame.
If the frame is rotating with angular velocity components Ωx, Ωy and Ωz with respect to an 

inertial frame, and if in addition the particle is only translating with velocities � � �x y z, ,  , relative 
to the frame, the velocity of a particle is

	
v v x z yx x y z= + + -0 � W W ,	 (1.249)

	
v v y x zy y z x= + + -0 � W W ,	 (1.250)

	
v v z y xz z x y= + + -0 � W W .	 (1.251)

When the point at x, y, z represents the CM of the body,
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� W W ,	 (1.252)
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� W W ,	 (1.253)
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� W W .	 (1.254)

The translational KE of a body idealized as a particle is
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The rotational KE of a body is
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where I is the moment of inertia matrix of the body about a set of axes passing through 
the body’s CM and ωx, ωy and ωz are the components of the body angular velocity in the body-
fixed frame. When the axes are parallel to the principal axes, the rotational KE is

	
T I I Ixx x yy y zz z2

2 2 21
2

= + +( )w w w .	 (1.257)

The total KE is the sum of the translational and rotational kinetic energies. Hence,

	 T T T= +1 2.	 (1.258)

1.11  An extendable arm spherical manipulator

This manipulator consists of an extendable telescopic arm rotating about a horizontal revolute 
joint mounted on top of a capstan, along its vertical axis, as shown in Figure 1.2. The capstan can 
freely rotate about the vertical axis with an angular velocity �f. The length of the first link is L 
and the distance of the CG of the second telescoping link from the end of the first link is d. The 
position coordinates of the CM of the arm in a rotating frame with the capstan, in terms of the 
link’s pointing angle θ and the distance of the link CG from the capstan axis Lcg, are

	
x L y L zcg cg1 1 1 0= = =cos , sin ,q q .	 (1.259)

The corresponding velocities are

	
� � � � � �x L y L z xcg cg1 1 1 1= - = = -q q q q fsin , cos , 	 (1.260)

The position coordinates of the extending second link in a rotating frame rotating with the 
capstan are

	
x L d y L d z2 2 2 0= +( ) = +( ) =cos , sin ,q q .	 (1.261)

The corresponding velocities are

	
� � �x L d d2 = - +( ) + q q qsin cos ,	 (1.262)

	
� � �y L d d2 = +( ) +q q qcos sin ,	 (1.263)

	 � �z x2 2= - f.	 (1.264)

The translation kinetic energy is
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The angular velocity components of the two links (links 2 and 3), corresponding to the 3–2 
Euler angle sequence, are
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The moment of inertia of the capstan about its axis of rotation is I1. Its angular velocity is �f.
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Assuming that the moments of inertia of each of the two links (the second and third link) 
about the body transverse axes are the same and equal to Ij, j = 2, 3, and that about the body 
longitudinal axis are zero, the total kinetic energy of rotation is
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	 T T T= +1 2.	 (1.268)

The potential energy is

	
V g m L m L dcg= + +( )( )1 2 sin q.	 (1.269)

The partial derivatives in the Euler–Lagrange equations are
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The Euler–Lagrange equations are
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m L m L d I I m L d d I Icg1
2

2
2

2 3 2 2 3
22+ +( ) + +( ) + +( ) + +( )�� � � �q q j q qsin cos

++ + +( )( ) =g m L m L dcg1 2 2cos .q t
	

(1.276)
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If one now adds a point mass at the tip of the manipulator, the position coordinates of the tip 
must be obtained first. These are

	
x L d L y L d L ztip tip tip tip tip= + +( ) = + +( ) =cos , sin ,q q 0.	 (1.278)

Adding a point 
mass at the tip
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The corresponding velocities are

	
� � �x L d L dtip tip= - + +( ) + q q qsin cos ,	 (1.279)

	
� � �y L d L dtip tip= + +( ) +q q qcos sin ,	 (1.280)

	
� �z xtip tip= - f.	 (1.281)

The additional translational kinetic energy due to the mass at the tip is
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The additional potential energy due to the mass at the tip is

	
DV gm L d Ltip tip= + +( )sin q.	 (1.283)

The new Euler–Lagrange equations are
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We now wish to add a 3–2–1 sequence spherical wrist holding a body at the tip. The body 
components of the angular velocity vector of the tip are
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The angular velocity components of the outer gimbal are
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Adding a spherical 
3–2–1 sequence 
wrist at the tip
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Hence,
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The additional rotational kinetic energy of the outer gimbal of the wrist is
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where Ixx3w, Iyy3w and Izz3w are the principal moments of inertia of the outer gimbal. (The wrist 
rotation axes are assumed to be coincident with the principal axes.)

The angular velocity components of the middle gimbal are
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Hence,
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The additional rotational kinetic energy of the middle gimbal of the wrist is
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where Ixx2w, Iyy2w and Izz2w are the principal moments of inertia of the middle gimbal.
The angular velocity components of the body being held by the wrist are
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Hence,
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The additional rotational kinetic energy of the body being held by the inner gimbal of the 
wrist is
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where IxxBw, IyyBw and IzzBw are the principal moments of inertia of body being held by the inner 
gimbal of the wrist as well as that of the inner gimbal.

The total increase in the rotational kinetic energy is ΔT2 = ΔT21 + ΔT22 + ΔT23. The addi-
tional terms in the three equations are given by
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where qj = ϕ,θ,d,  j = 1,2,3.
There are also three new equations:

	

d

dt

T

q

T

q
j

j j
j

¶
¶

- ¶
¶

= =D D2 2 4 5 6
�

t , , , ,	 (1.304)

with qj = ψw,θw,ϕw,  j = 4,5,6.

1.12  A rotating planar manipulator: The PUMA 560 four-link model

The programmable universal machine for assembly (PUMA) a 560 four-link manipulator 
is a planar manipulator rotating about a single axis in the plane in which all the transla-
tional motions of the main body of the manipulator are taking place. The main body of the 
manipulator is the manipulator with all the jaws of the gripper in the end effector locked 
in a position, as it is in this configuration that the manipulator is spatially controlled and/
or regulated. The PUMA 560 four-link manipulator is shown in Figure 1.6. Also shown 
are the DH coordinate systems associated with each link. However, these coordinate 
frames do not need to be used for angular velocity determination.

The angular velocity of link 1 is rB
1

1= �q  about the Z0 axis (three axis). The other two com-
ponents are zero. The angular velocities of links 2 and 3 are determined from the components 
of the angular velocity in the Euler angle frames. Using the 32 Euler angle sequence, the body 
angular velocity components of link 2 are 
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