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Preface

This book aims to integrate mainstream modeling approaches in time series
with a range of significant recent developments in methodology and appli-
cations of time series analysis. We present overviews of several classes of
models and related methodology for inference, statistical computation for
model fitting and assessment, and forecasting. The book focuses mainly on
time domain approaches while covering core topics and theory in the fre-
quency domain, and connections between the two are often explored. Statis-
tical analysis and inference involves likelihood and Bayesian methodologies,
with a strong emphasis on using modern, simulation-based approaches for
statistical parameter estimation, model fitting, and prediction; ranges of
models and analyses are developed using Bayesian approaches and tools
including Markov chain Monte Carlo and sequential Monte Carlo methods
that define nowadays standard methodology.

Time series model theory and methods are illustrated with examples and
case studies involving problems and data arising from a variety of applied
fields, including signal processing, biomedical studies, finance, economet-
rics, and the environmental sciences. The book has three major aims: (1)
to serve as a graduate textbook on Bayesian time series modeling and
analysis; (2) to provide a broad range of references on state-of-the-art ap-
proaches to univariate and multivariate time series analysis, serving as an
informed guide to the recent literature and a handbook for researchers and
practitioners in applied areas that require sophisticated tools for analyzing
challenging time series problems; and (3) to contact ranges of traditional
as well as new and emerging topics that lie at research frontiers. Most of
the material presented in Chapters 1 to 5, as well as selected topics from
Chapters 6 to 11, are suitable as the core material for a one-term/semester
or a one-quarter graduate course in time series analysis. Alternatively, a
course might be structured to cover material on models and methods for
univariate time series analysis based on Chapters 1 to 7 at greater depth in

xv



xvi PREFACE

one course, with material and supplements related to the multivariate time
series models and methods of Chapters 8 to 11 as a second course. Then,
most chapters also contact more advanced topics and link to research areas
with open questions.

Contents

The book presents a selective coverage of core and more advanced and re-
cent topics in the very broad field of time series analysis. As one of the oldest
and richest areas of statistical science, and a field that contacts applied in-
terests across a huge spectrum of science, social science, and engineering
applications, “time series” simply cannot be comprehensively covered in
any single text. Our aim, to the contrary, is to present, summarize, and
overview core models and methods, complementing the pedagogical devel-
opment with a selective range of recent research developments and applica-
tions that exemplify the growth of time series analysis into new areas based
on these core foundations. The flavor of examples and case studies reflects
our own interests and experiences in time series research and applications
in collaborations with researchers from other fields, and we aim to convey
some of the interest in, and utility of, the modeling approaches through
these examples. Readers and students with backgrounds in statistical in-
ference and some exposure to applied statistics and computation should
find the book accessible.

Chapter 1 offers an introduction and a brief review of Bayesian inference, in-
cluding Markov chain Monte Carlo (MCMC) methods. Chapter 2 presents
autoregressive moving average models (ARMA) from a Bayesian perspec-
tive and illustrates these models with several examples. Chapter 3 discusses
some theory and methods of frequency domain approaches, including har-
monic regression models and their relationships with the periodogram and
Bayesian spectral analysis. Some multivariate extensions are explored later
in Chapters 8 and 9 in contexts of analyzing multiple and multivariate
time series. Chapter 4 reviews dynamic models and methods for inference
and forecasting for this broad and flexible class of models. More specifi-
cally, this chapter includes a review of the dynamic linear models (DLMs)
of West and Harrison (1997), discusses extensions to nonlinear and non-
Gaussian dynamic models, and reviews key developments of MCMC for
filtering, parameter learning, and smoothing. Chapter 5 concerns issues of
model specification and posterior inference in a particular class of DLMs:
the broadly useful and widely applied class of time-varying autoregressive
models. Theory and methods related to time series decompositions into
interpretable latent processes, and examples in which real data sets are
analyzed, are included. Chapter 6 covers recent developments of sequential
Monte Carlo methods for general state-space models. Chapter 7 reviews a
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selection of topics involving statistical mixture models in time series anal-
ysis, focusing on multiprocess models and univariate stochastic volatility
models. Chapter 8 illustrates the analysis of multiple time series with com-
mon underlying structure and motivates some of the multivariate models
that are developed later in Chapters 9 and 10. Chapter 9 discusses mul-
tivariate ARMA models, focusing on vector autoregressive (VAR) models,
time series decompositions within this class of models, and mixtures of VAR
models. Chapter 10 discusses a range of multivariate dynamic linear mod-
els, models and methods for time-varying, stochastic covariance matrices
related to stochastic volatility, and contacts research frontiers in discussion
of multivariate dynamic graphical models and other recent developments.
The latter include contact with models and perspectives on problems of
modeling and forecasting for increasingly large, complex, and hierarchically
structured time series in commercial and other areas. Chapter 11 details
developments of dynamic modeling with latent factor structures, a central
area of time series methodology that has been heavily driven by advances
in Bayesian methodology for dynamic models.

A collection of problems is included at the end of each chapter. Some of
the chapters also include appendices that provide relevant supplements on
statistical distribution theory and other mathematical aspects.

Acknowledgments
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Chapter 1

Notation, definitions, and basic
inference

This chapter discusses key goals of time series analysis with motivating ex-
amples from different applied areas. Notation and key concepts related to
time series processes are introduced, including the characterization
of stationary processes. This is followed by a brief review on likelihood
and Bayesian modeling and inference tools, which includes a primer on
simulation-based methods for posterior inference within the Bayesian frame-
work. The modeling and inference tools are illustrated for the class of
first-order autoregressive processes.

1.1 Problem Areas and Objectives

The expression time series data, or time series, usually refers to a set of
observations collected sequentially in time. These observations could have
been collected at equally spaced time points. In this case we use the notation
yt with (t = . . . ,−1, 0, 1, 2, . . .); i.e., the set of observations is indexed by
t, the time at which each observation was taken. If the observations were
not taken at equally spaced points, then we use the notation yti , with
i = 1, 2, . . ..

A time series process is a stochastic process or a collection of random
variables yt indexed in time. Note that yt will be used throughout the book
to denote a random variable or an actual realization of the time series
process at time t. We use the notation {yt, t ∈ T }, or simply {yt}, to refer
to the time series process. If T is of the form {ti, i ∈ N}, with N the natural
numbers, then the process is a discrete-time random process, and if T is
an interval in the real line, or a collection of intervals in the real line, then
the process is a continuous-time random process. In this framework, a time

1
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Time
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Figure 1.1 EEG series (units in millivolts). The EEG was recorded at channel
F3 from a subject who received ECT.

series data set yt, (t = 1, . . . , T ), also denoted by y1:T , is just a collection
of T equally spaced realizations of some time series process.

In many statistical models the assumption that the observations are re-
alizations of independent random variables is key. In contrast, time series
analysis is concerned with describing the dependence among the elements
of a sequence of random variables.

At each time t, yt can be a scalar quantity, such as the total amount
of rainfall collected at a certain location in a given day t, or it can be
a k-dimensional vector containing k scalar quantities that were recorded
simultaneously. For instance, if the total amount of rainfall and the average
temperature at a given location are measured in day t, we have k = 2 scalar
quantities and a two-dimensional vector of observations yt = (y1,t, y2,t)

′.
In general, for k scalar quantities recorded at time t, we have a realization
yt of a vector process {yt, t ∈ T }, with yt = (y1,t, . . . , yk,t)

′.

Figure 1.1 displays a portion of an electroencephalogram (EEG) recorded
on a patient’s scalp under certain electroconvulsive therapy (ECT) con-
ditions. ECT is a treatment for patients under major clinical depression
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Time
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Figure 1.2 Sections of the EEG trace displayed in Figure 1.1.

(Krystal, Prado, and West 1999). When ECT is applied to a patient, seizure
activity appears and can be recorded via electroencephalograms. The data
correspond to one of 19 EEG series recorded simultaneously at different
locations over the scalp. The main objective in analyzing these signals is
the characterization of the clinical efficacy of ECT in terms of particular
features that can be inferred from the recorded EEG traces. The data are
fluctuations in electrical potential taken at a sampling rate of 256 Hz (i.e.,
256 observations per second). For a more detailed description of these data
and a full statistical analysis, see West, Prado, and Krystal (1999), Krystal,
Prado, and West (1999), and Prado, West, and Krystal (2001).

From the time series analysis viewpoint, the objective here is modeling
the data to provide useful insight about the underlying processes driving
the multiple series during a seizure episode. Studying the differences and
commonalities among the 19 EEG channels is also key. Univariate time
series models for each individual EEG series could be explored and used
to investigate relationships across the 19 channels (Chapters 2, 5, and 8).
Multivariate time series analyses (Chapters 9 and 10)—in which the ob-
served series, yt, is a 19-dimensional vector whose elements are the observed
voltage levels measured at the 19 scalp locations at each time t—can also
be considered. Uncovering the common latent structure that may underlie
the 19 EEG time series over time can be achieved by decomposing these
observed EEGs into simpler latent non observable components. Such latent
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Figure 1.3 International annual GDP time series.

components can be obtained via time series decompositions derived from a
specific state-space modeling framework (Chapters 5 and 8), or by explic-
itly modeling them as latent factors in a dynamic factor model (Chapter
11).

These EEG series display a quasiperiodic behavior that changes dynami-
cally in time, as shown in Figure 1.2, where different portions of the EEG
trace shown in Figure 1.1 are displayed. In particular, it is clear that the
relatively high-frequency components that appear initially are slowly de-
creasing toward the end of the series. Any time series model used to describe
these data should take into account their nonstationary and quasiperiodic
structure. We discuss various modeling alternatives for analyzing these data
in the subsequent chapters, including the class of time-varying autoregres-
sions and some multichannel models.

Figure 1.3 shows the annual per capita GDP (gross domestic product) time
series for Austria, Canada, France, Germany, Greece, Italy, Sweden, UK,
and USA from 1950 to 1983. Goals of the analysis include forecasting turn-
ing points and comparing characteristics of the series across the national
economies. Univariate and multivariate analyses of the GDP data can be
considered.
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Figure 1.4 (a): Simulated time series yt; (b) Indicator variable δt with δt = 1 if
yt was sampled from M1 and δt = 2 if yt was sampled from M2.

One of the main differences between any time series analysis of the GDP
series and any time series analysis of the EEG series, regardless of the type
of models used in such analyses, lies in the objectives. As mentioned above,
one of the goals in analyzing the GDP data is forecasting future outcomes
of the series for the several countries given the observed values. In the EEG
study previously described, there is no interest in forecasting future values
of the series given the observed traces; instead, the objective is finding an
appropriate model that describes the structure of the series and its latent
components.

Other objectives of time series analysis include monitoring a time series in
order to detect possible “on-line” (real time) changes. This is important for
control purposes in engineering, industrial, and medical applications. For
instance, consider a time series generated from the process {yt} with

yt =

{
0.9yt−1 + ε

(1)
t , yt−1 > 1.5 (M1)

−0.3yt−1 + ε
(2)
t , yt−1 ≤ 1.5 (M2),

(1.1)

where ε
(1)
t ∼ N(0, v1), ε

(2)
t ∼ N(0, v2), and v1 = v2 = 1. Figure 1.4 (a)

shows a time series plot of 1,500 observations simulated according to (1.1).
Figure 1.4 (b) displays the values of an indicator variable, δt, with δt = 1
if yt was generated from M1, and δt = 2 if yt was generated from M2.
Model (1.1) is a threshold autoregressive (TAR) model with two regimes
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that belongs to the broader class of mixture models (see Chapter 7). TAR
models were initially developed by H. Tong (Tong 1983; Tong 1990). In
particular, (1.1) can be written in the following, more general, form

yt =

{
φ(1)yt−1 + ε

(1)
t , θ + yt−d > 0 (M1)

φ(2)yt−1 + ε
(2)
t , θ + yt−d ≤ 0 (M2),

(1.2)

with ε
(1)
t ∼ N(0, v1) and ε

(2)
t ∼ N(0, v2). These are nonlinear models

and the interest lies in making inferences on d, θ, and the parameters
φ(1), φ(2), v1, and v2.

The TAR model (1.2) serves the purpose of illustrating, at least for a very
simple case, a situation that arises in many engineering applications, par-
ticularly in the area of control theory. From a control theory viewpoint,
we can think of (1.2) as a bimodal process in which two scenarios of op-
eration are handled by two control modes (M1 and M2). In each mode
the evolution is governed by a stochastic process. Autoregressions of order
one, or AR(1) models (a formal definition of this type of process is given
later in this chapter), were chosen in this example, but more sophisticated
structures can be considered. The transitions between the modes occur
when the series crosses a specific threshold and so, we can talk about an
internally triggered mode switch. In an externally triggered mode switch,
the moves are defined by external variables. In terms of the goals of time
series analysis in this case we can consider two possible scenarios. In many
control settings where the transitions between modes occur in response to a
controller’s actions, the current state is always known, and so, the learning
process can be split into two: learning the stochastic models that control
each mode conditional on the fact that we know in which mode we are—
i.e., inferring φ(1), φ(2), v1, and v2—and learning the transition rule, that is,
making inferences about d and θ assuming we know the values δ1:T . In other
control settings for which the mode transitions do not occur in response to
a controller’s actions, it is necessary to simultaneously infer the parame-
ters associated to the stochastic models that describe each mode and the
transition rule. In this case we want to estimate φ(1), φ(2), v1, v2, θ, and d
conditioning only on the observed data y1:T . Depending on the application,
it may also be necessary to achieve parameter learning from the time series
sequentially in time. Methods for sequential state and parameter learning
in time series models are discussed throughout this book.

Clustering also arises as the primary goal in many applications. For exam-
ple, a common scenario is one in which a collection of N time series gen-
erated from a relatively small number of processes, say K, with K << N ,
are available. It is not known a priori which time series are generated
from which processes, and so the main objective of the analysis consists
on grouping the time series into K clusters according to their spectral
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characteristics. Some references in this area include Kakizawa, Shumway,
and Taniguchi (1998), Huan, Ombao, and Stoffer (2004), Gao, Ombao, and
Ho (2009), Pamminger and Frühwirth-Schnatter (2010), and Nieto-Barajas
and Contreras-Cristán (2014).

Finally, we may use time series techniques to describe serial dependen-
cies between parameters of a given model with additional structure. For
example, we could have a linear regression model of the form yt = β0 +
β1xt + εt, for which εt does not exhibit the usual independent structure
εt ∼ N(0, v) for all t, but instead, the probability distribution of εt de-
pends on εt−1, . . . , εt−k for some integer k > 0.

1.2 Stochastic Processes and Stationarity

Many time series models are based on the assumption of stationarity. Intu-
itively, a stationary time series process is a process whose behavior does not
depend on when we start to observe it. In other words, different sections of
the series will look roughly the same at intervals of the same length. Here
we provide two widely used definitions of stationarity.

A time series process {yt, t ∈ T } is completely or strongly stationary if, for
any sequence of times t1, t2, . . . , tn, and any lag h with h = 0,±1,±2, . . . ,
the probability distribution of the vector (yt1 , . . . , ytn)′ is identical to the
probability distribution of the vector (yt1+h, . . . , ytn+h)′.

In practice it is very difficult to verify that a process is strongly stationary
and so, the notion of weak or second-order stationarity arises. A process is
said to be weakly stationary, or second-order stationary if, for any sequence
of times t1, . . . , tn, and any integer lag h, all the first and second joint
moments of (yt1 , . . . , ytn)′ exist and are equal to the first and second joint
moments of (yt1+h, . . . , ytn+h)′. If {yt} is second-order stationary, we have
that

E(yt) = µ, V (yt) = v, Cov(yt, ys) = γ(t− s), (1.3)

where µ, v are constant, independent of t and γ(t−s) is also independent of
t and s, depending only on the length of the interval between time points.
It is also possible to define stationarity up to order m in terms of the m
joint moments (see for example Priestley 1994).

If the first two moments exist, complete stationarity implies second-order
stationarity, but the converse is not necessarily true. If {yt} is a Gaus-
sian process, i.e., if for any sequence of time points t1, . . . , tn the vector
(yt1 , . . . , ytn)′ follows a multivariate normal distribution, strong and weak
stationarity are equivalent (see Shumway and Stoffer 2017 for a proof).
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1.3 Autocorrelation and Cross-correlation

The first step in a statistical analysis often consists on performing a de-
scriptive study of the data in order to summarize their main features. One
of the most widely used descriptive techniques in time series data analy-
sis is that of exploring the correlation patterns displayed by a series, or
a couple of series, at different time points. This is done by plotting the
sample autocorrelation and cross-correlation values, which are estimates of
the autocorrelation and cross-correlation functions.

We begin by defining the concepts of autocovariance, autocorrelation, and
cross-correlation functions. We then show how to estimate these functions
from data. Let {yt, t ∈ T } be a time series process. The autocovariance
function of {yt} is defined as follows:

γ(s, t) = Cov{yt, ys} = E{(yt − µt)(ys − µs)}, (1.4)

for all s, t, with µt = E(yt). For stationary processes µt = µ for all t and
the covariance function depends on |t − s| only. In this case we can write
the autocovariance as a function of a particular time lag h, i.e.,

γ(h) = Cov{yt, yt−h}. (1.5)

The autocorrelation function (ACF) is then given by

ρ(s, t) =
γ(s, t)√

γ(t, t)γ(s, s)
. (1.6)

For stationary processes, the ACF can be written in terms of a lag h:

ρ(h) =
γ(h)

γ(0)
. (1.7)

The ACF measures the linear dependence between a value of the time series
process at time t and past or future values of such process. It inherits the
properties of any correlation function–ρ(h) always takes values in the inter-
val [−1, 1]. In addition, ρ(h) = ρ(−h) and, if yt and yt−h are independent,
then ρ(h) = 0.

It is also possible to define the cross-covariance and cross-correlation func-
tions of two univariate time series. If {yt} and {zt} are two time series
processes, the cross-covariance is defined as

γy,z(s, t) = E{(yt − µyt)(zs − µzs)}, (1.8)

for all s, t, and the cross-correlation is then given by

ρy,z(s, t) =
γy,z(s, t)√

γy,y(t, t)γz,z(s, s)
. (1.9)
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Figure 1.5 Autocorrelation functions for AR(1) processes with parameters 0.9,
−0.9, and 0.3.

If both processes are stationary, we can write the cross-covariance and
cross-correlation functions in terms of a lag value h. This is

γy,z(h) = E{(yt − µy)(zt−h − µz)} (1.10)

and

ρy,z(h) =
γy,z(h)√
γy(0)γz(0)

. (1.11)

Example 1.1 White noise. Consider a process such that yt ∼ N(0, v) for
all t, with Cov(yt, ys) = 0 if t 6= s. In this case γ(0) = v, γ(h) = 0 for all
h 6= 0, and so, ρ(0) = 1 and ρ(h) = 0 for all h 6= 0.

Example 1.2 First-order autoregression or AR(1). In Chapter 2 we for-
mally define and study the properties of general autoregressions of order
p, or AR(p) processes. Here, we illustrate some properties of the simplest
AR process, the AR(1). Consider a process such that yt = φyt−1 + εt with
εt ∼ N(0, v) for all t. It is possible to show (see Problem 1 in this chapter)
that, if |φ| < 1, γ(h) = φ|h|γ(0) for h = 0,±1,±2, . . ., with γ(0) = v

(1−φ2) ,

and ρ(h) = φ|h|. Figure 1.5 displays the ACFs of AR(1) processes with
parameters φ = 0.9, φ = −0.9 and φ = 0.3, for lag values h = 1 : 50.
For negative values of φ the ACF has an oscillatory behavior. In addition,
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Figure 1.6 Sample autocorrelations for AR processes with parameters 0.9, −0.9,
and 0.3 (graphs (a), (b), and (c), respectively).

the rate of decay of the ACF is a function of φ. The closer |φ| gets to the
unity the lower the rate of decay is (e.g., compare the ACFs for φ = 0.9
and φ = 0.3). This is related to the characterization of stationary AR(1)
processes as discussed in Chapter 2. An AR(1) process is stationary if and
only if |φ| < 1. This condition can also be written as a function of the
characteristic root of the process. An AR(1) is stationary if and only if the
root of the characteristic polynomial, Φ(u) with Φ(u) = 1−φu, lies outside
the unit circle. This happens if and only if |φ| < 1.

We now show how to estimate the autocovariance, autocorrelation,
cross-covariance, and cross-correlation functions from data. Assume we
have data y1:T . The usual estimate of the autocovariance function is the
sample autocovariance, which, for h > 0, is given by

γ̂(h) =
1

T

T−h∑
t=1

(yt+h − ȳ)(yt − ȳ), (1.12)

where ȳ =
∑T
t=1 yt/T is the sample mean. We can then obtain estimates

of the autocorrelation function as ρ̂(h) = γ̂(h)
γ̂(0) , for h = 0, 1, . . .. Similarly,
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estimates of the cross-covariance and cross-correlation functions can be
obtained. The sample cross-covariance is given by

γ̂y,z(h) =
1

T

T−h∑
t=1

(yt+h − ȳ)(zt − z̄), (1.13)

and so, the sample cross-correlation is given by

ρ̂y,z(h) = γ̂y,z(h)

/√
γ̂y(0)γ̂z(0) .

Example 1.3 Sample ACFs of AR(1) processes. Figure 1.6 displays the
sample autocorrelation functions of simulated AR(1) processes with param-
eters φ = 0.9, φ = −0.9, and φ = 0.3. The sample ACFs were computed
based on a sample of T = 200 data points. For φ = 0.9 and φ = 0.3, the
corresponding sample ACFs decay with the lag. The oscillatory form of
the ACF for the process with φ = −0.9 is captured by the corresponding
sample ACF.

The estimates given in (1.12) and (1.13) are not unbiased estimates of
the autocovariance and cross-covariance functions. Results related to the
distributions of the sample autocorrelation and the sample cross-correlation
functions appear, for example, in Shumway and Stoffer (2017).

1.4 Smoothing and Differencing

As mentioned before, many time series models are built under the sta-
tionarity assumption. Several descriptive techniques have been developed
to study the stationary properties of a time series so that an appropriate
model can then be applied to the data. For instance, looking at the sample
autocorrelation function may be helpful in identifying some features of the
data. However, in many practical scenarios the data are realizations from
one or several nonstationary processes. In this case, methods that aim to
eliminate the nonstationary components are often used. The idea is to sep-
arate the nonstationary components from the stationary ones so that the
latter can be carefully studied via traditional time series models such as,
for example, the ARMA (autoregressive moving average) models that will
be discussed in subsequent chapters.

We review some commonly used methods for extracting nonstationary com-
ponents from a time series. We do not attempt to provide a comprehensive
list of such methods. Instead, we just list and summarize a few of them.
We view these techniques as purely descriptive.
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Many descriptive time series methods are based on the notion of smoothing
the data, that is, decomposing the series as a sum of two components: a so
called “smooth” component, plus another component that includes all the
features of the data that are left unexplained by the smooth component.
This is similar to the “signal plus noise” concept used in signal processing.
The main difficulty with this approach lies in deciding which features of
the data are part of the signal or the smooth component, and which ones
are part of the noise.

One way of smoothing a time series is by moving averages (see Kendall,
Stuart, and Ord 1983; Kendall and Ord 1990; Chatfield 1996; and Diggle
1990 for detailed discussions and examples). If we have data y1:T , we can
smooth them by applying an operation of the form

zt =

p∑
j=−q

ajyt+j , t = (q + 1) : (T − p), (1.14)

with p and q nonnegative integers, and where the ajs are weights such that∑p
j=−q aj = 1. It is generally assumed that p = q, aj ≥ 0 for all j and

aj = a−j . The order of the moving average in this case is 2p+ 1. The first
question that arises when applying a moving average to a series is how
to choose p and the weights. The simplest alternative is choosing a low
value of p and equal weights. The higher the value of p, the smoother zt
is going to be. Other alternatives include successively applying a simple
moving average with equal weights, or choosing the weights in such a way
that a particular feature of the data is highlighted. For example, if a given
time series recorded monthly displays a trend plus a yearly cycle, choos-
ing a moving average with p = 6, a6 = a−6 = 1/24, and aj = 1/12 for
j = 0,±1, . . . ,±5 would diminish the impact of the periodic component,
emphasizing the trend (see Diggle 1990 for an example).

Figure 1.7 (a) shows monthly values of a Southern Oscillation Index (SOI)
time series during 1950–1995. This series consists of 540 observations of
the SOI computed as the difference of the departure from the long term
monthly mean sea level pressures at Tahiti in the South Pacific and Dar-
win in Northern Australia. The index is one measure of the so called “El
Niño-Southern Oscillation”—an event of critical importance and interest in
climatological studies in recent decades. The fact that most of the observa-
tions in the last part of the series take negative values is related to a recent
warming in the tropical Pacific. Figures 1.7 (b) and (c) show two smoothed
series obtained via moving averages of orders 3 and 9, respectively, with
equal weights. As explained before, we can see that the higher the order of
the moving average the smoother the resulting series is.

Other ways to smooth a time series include fitting a linear regression to
remove a trend or, more generally, fitting a polynomial regression; fitting a
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Figure 1.7 (a): Southern oscillation index (SOI) time series; (b): Smoothed series
obtained using a moving average of order 3 with equal weights; (c): Smoothed
series obtained using a moving average of order 9 with equal weights.

harmonic regression to remove periodic components; and performing kernel
or spline smoothing.

Smoothing by polynomial regression consists on fitting a polynomial to the
series. In other words, we want to estimate the parameters of the model

yt = β0 + β1t+ · · ·+ βpt
p + εt,

where εt is usually assumed as a sequence of zero mean, independent
Gaussian random variables. Similarly, fitting harmonic regressions pro-
vides a way to remove cycles from a time series. So, if we want to re-
move periodic components with frequencies w1, . . . , wp, we need to estimate
a1, b1, . . . , ap, bp in the model

yt = a1 cos(2πw1t) + b1 sin(2πw1t) + · · ·
+ap cos(2πwpt) + bp sin(2πwpt) + εt.

In both cases the smoothed series would then be obtained as ŷt, with
ŷt = β̂0 + β̂1t+ · · ·+ β̂pt

p, and ŷt = â1 cos(2πw1t) + b̂1 sin(2πw1t) + · · ·+
âp cos(2πwpt) + b̂p sin(2πwpt), respectively, where β̂i, âi, and b̂i are point
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estimates of the parameters. Usually β̂i and âi, b̂i are obtained by least
squares estimation.

In kernel smoothing a smoothed version, zt, of the original series yt is
obtained as follows:

zt =
T∑
i=1

wt(i)yt, wi(t) = K

(
t− i
b

)/ T∑
j=1

K

(
t− j
b

)
,

where K(·) is a kernel function, such as a normal kernel. The parameter b
is a bandwidth. The larger the value of b, the smoother zt is.

Cubic and smoothing splines, as well as the lowess smoother (Cleveland
1979; Cleveland and Devlin 1988; lowess stands for locally weighted scat-
terplot smoothing) are also commonly used smoothing techniques. See
Shumway and Stoffer (2017) for details and illustrations on these smoothing
techniques.

Another way of smoothing a time series is by taking its differences. Dif-
ferencing provides a way to remove trends. The first difference of a series
yt is defined in terms of an operator D that produces the transformation
Dyt = yt−yt−1. Higher-order differences are defined by successively apply-
ing the operator D. Differences can also be defined in terms of the backshift
operator B, with Byt = yt−1, and so Dyt = (1−B)yt. Higher-order differ-
ences can be written as Ddyt = (1−B)dyt.

In connection with the methods presented here, it is worth mentioning that
wavelet decompositions have been widely used in recent years for smooth-
ing time series. Vidakovic (1999) and Percival and Walden (2006) present
statistical approaches to modeling by wavelets. Wavelets are basis func-
tions that are used to represent other functions. They are analogous to the
sines and cosines in the Fourier transformation. One of the advantages of
using wavelets bases, as opposed to Fourier representations, is that they
are localized in frequency and time, and so, they are suitable for dealing
with nonstationary signals that display jumps and other abrupt changes.

1.5 A Primer on Likelihood and Bayesian Inference

Assume that we have collected T observations, y1:T , of a scalar time series
process {yt}. Suppose that for each yt we have a probability distribution
that can be written as a function of some parameter, or collection of param-
eters, namely θ, in such a way that the dependence of yt on θ is described
in terms of a probability density function p(yt|θ). If we think of p(yt|θ) as
a function of θ, rather than a function of yt, we refer to it as the likelihood
function. Using Bayes’ theorem it is possible to obtain the posterior den-
sity function of θ given yt, p(θ|yt), as the product of the likelihood and the
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prior density p(θ), i.e.,

p(θ|yt) =
p(θ)p(yt|θ)

p(yt)
, (1.15)

with p(yt) =
∫
p(θ)p(yt|θ)dθ. p(yt) defines the so-called predictive density

function. The prior distribution offers a way to incorporate our prior beliefs
about θ and Bayes’ theorem allows us to update such beliefs after observing
the data.

Bayes’ theorem can also be used in a sequential way as follows: Before
collecting any data, prior beliefs about θ are expressed in a probabilistic
form via p(θ). Assume that we then collect our first observation at time t =
1, y1, and we obtain p(θ|y1) using Bayes’ theorem. Once y2 is observed we
can obtain p(θ|y1:2) via Bayes’ theorem as p(θ|y1:2) ∝ p(θ)p(y1:2|θ). Now,
if y1 and y2 are conditionally independent on θ, we can write p(θ|y1:2) ∝
p(θ|y1)p(y2|θ), i.e., the posterior of θ given y1 becomes a prior distribution
before observing y2. Similarly, p(θ|y1:T ) can be obtained in a sequential way,
if all the observations are independent. However, in time series analysis the
observations are not independent. For example, a common assumption is
that each observation at time t depends only on θ and the observation
taken at time t− 1. In this case we have

p(θ|y1:T ) ∝ p(θ)p(y1|θ)
T∏
t=2

p(yt|yt−1,θ). (1.16)

General models in which yt depends on an arbitrary number of past obser-
vations will be studied in subsequent chapters. We now consider an example
in which the posterior distribution has the form (1.16).

Example 1.4 The AR(1) model. We consider again the AR(1) process.
The model parameters in this case are given by θ = (φ, v)′. Now, for each
time t > 1, the conditional likelihood is p(yt|yt−1,θ) = N(yt|φyt−1, v).
In addition, it can be shown that y1 ∼ N(0, v/(1 − φ2)) if the process is
stationary (see Problem 1 in Chapter 2) and so, the likelihood is given by

p(y1:T |θ) =
(1− φ2)1/2

(2πv)T/2
exp

{
−Q

∗(φ)

2v

}
, (1.17)

with

Q∗(φ) = y21(1− φ2) +
T∑
t=2

(yt − φyt−1)2. (1.18)

The posterior density is obtained via Bayes’ rule and so

p(θ|y1:T ) ∝ p(θ)
(1− φ2)1/2

(2πv)T/2
exp

{
−Q∗(φ)

2v

}
.
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We can also use the conditional likelihood p(y2:T |θ, y1) as an approximation
to the likelihood (see Box, Jenkins, Reinsel, and Ljung 2015 A7.4 for a
justification), which leads to the following posterior density,

p(θ|y1:T ) ∝ p(θ)v−(T−1)/2 exp

{
−Q(φ)

2v

}
, (1.19)

with Q(φ) =
∑T
t=2(yt − φyt−1)2. Several choices of p(θ) can be considered

and will be discussed later. In particular, it is common to assume a prior
structure such that p(θ) = p(v)p(φ|v), or p(θ) = p(v)p(φ).

Another important class of time series models is that in which parameters
are indexed in time. In this case each observation is related to a parameter,
or a set of parameters, say θt, that evolve over time. The so-called class
of Dynamic Linear Models (DLMs) considered in Chapter 4 deals with
models of this type. In such framework it is necessary to define a process
that describes the evolution of θt over time. As an example, consider the
time-varying AR model of order one, or TVAR(1), given by

yt = φtyt−1 + εt,

φt = φt−1 + νt,

where εt and νt are independent in time and mutually independent, with
εt ∼ N(0, v) and νt ∼ N(0, w). Some distributions of interest are the pos-
terior distributions at time t, p(φt|y1:t) and p(v|y1:t), the backward filtering
or smoothing distributions p(φt|y1:T ), and the h-steps ahead forecast dis-
tribution p(yt+h|y1:t). Details on how to find these distributions for rather
general DLMs are given in Chapter 4.

1.5.1 ML, MAP, and LS Estimation

It is possible to obtain point estimates of the model parameters by maxi-
mizing the likelihood function or the full posterior distribution. A variety
of methods and algorithms have been developed to achieve this goal. We
briefly discuss some of these methods. In addition, we illustrate how these
methods work in the simple AR(1) case.

A point estimate of θ, θ̂ can be obtained by maximizing the likelihood func-
tion p(y1:T |θ) with respect to θ. In this case we use the notation θ̂ = θML.
Similarly, if instead of maximizing the likelihood function we maximize
the posterior distribution p(θ|y1:T ), we obtain the maximum a posteriori

estimate for θ, θ̂ = θMAP.

Often, the likelihood function and the posterior distribution are compli-
cated nonlinear functions of θ and so it is necessary to use methods such as
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the Newton–Raphson algorithm or the scoring method to obtain the max-
imum likelihood estimator (MLE) or the maximum a posteriori (MAP)
estimator. In general, the Newton–Raphson algorithm can be summarized
as follows. Let g(θ) be the function of θ = (θ1, . . . , θk)′ that we want to

maximize, and θ̂ be the maximum. At iteration m of the Newton–Raphson
algorithm we obtain θ(m), an approximation to θ̂, as follows:

θ(m) = θ(m−1) −
[
g′′(θ(m−1))

]−1
×
[
g′(θ(m−1))

]
, (1.20)

where g′(θ) and g′′(θ) denote the first- and second-order partial derivatives
of the function g, i.e., g′(θ) is a k-dimensional vector given by g′(θ) =(
∂g(θ)
∂θ1

, . . . , ∂g(θ)∂θk

)′
, and g′′(θ) is a k × k matrix of second-order partial

derivatives whose ij-th element is given by
[
∂g2(θ)
∂θi∂θj

]
, for i, j = 1 : k. Under

certain conditions this algorithm produces a sequence θ(1),θ(2), . . . , that
will converge to θ̂. In particular, it is important to begin with a good start-
ing value θ(0), since the algorithm does not necessarily converge for values
in regions where −g′′(·) is not positive definite. An alternative method is
the scoring method, which involves replacing g′′(θ) in (1.20) by the matrix
of expected values E(g′′(θ)).

In many practical scenarios, especially when dealing with models that have
very many parameters, it is not useful to summarize the inferences in
terms of the joint posterior mode. Instead, summaries are made in terms
of marginal posterior modes, that is, the posterior modes for subsets of
model parameters. Let us say that we can partition our model parameters
in two sets, θ1 and θ2, so that θ = (θ′1,θ

′
2)′, and assume we are interested

in p(θ2|y1:T ). The EM (Expectation-Maximization) algorithm proposed in
Dempster, Laird, and Rubin (1977) is useful when dealing with models
for which p(θ2|y1:T ) is hard to maximize directly, but it is relatively easy
to work with p(θ1|θ2, y1:T ) and p(θ2|θ1, y1:T ). The EM algorithm can be
described as follows:

1. Start with some initial value θ
(0)
2 .

2. For m = 1, 2, . . .
• Compute E(m−1)[log p(θ1,θ2|y1:T )] given by the expression∫

log p(θ1,θ2|y1:T )p(θ1|θ(m−1)2 , y1:T )dθ1. (1.21)

This is the E-step.

• Set θ
(m)
2 to the value that maximizes (1.21). This is the M-step.

At each iteration the algorithm satisfies that p(θ
(m)
2 |y1:T ) ≥ p(θ(m−1)2 |y1:T ).

There is no guarantee that the EM algorithm converges to the mode; in
the case of multimodal distributions the algorithm may converge to a local
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mode. Various alternatives have been considered to avoid getting stuck in
a local mode, such as running the algorithm with several different random
initial points, or using simulated annealing methods. Some extensions of the
EM algorithm include the ECM (expectation-conditional-maximization) al-
gorithm, the ECME (expectation-conditional-maximization-either, a vari-
ant of the ECM in which either the log-posterior density or the expected
log-posterior density is maximized) and the SEM (supplemented EM) algo-
rithms (see Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2014 and
references therein) and stochastic versions of the EM algorithm such as the
MCEM (Monte Carlo EM, see Wei and Tanner 1990).

Example 1.5 ML, MAP, and LS estimators for the AR(1) model. Con-
sider the AR(1) model yt = φyt−1 +εt, with εt ∼ N(0, 1). In this case v = 1
and θ = φ. The conditional MLE is found by maximizing exp{−Q(φ)/2}
or, equivalently, by minimizing Q(φ). Therefore, we obtain φ̂ = φML =∑T
t=2 ytyt−1/

∑T
t=2 y

2
t−1. Similarly, the MLE for the unconditional likeli-

hood function is obtained by maximizing p(y1:T |φ) or, equivalently, by
minimizing the expression

−0.5[log(1− φ2)−Q∗(φ)].

Newton–Raphson or scoring methods can be used to find φ̂. As an illustra-
tion, the conditional and unconditional ML estimators were found for

100 samples from an AR(1) with φ = 0.9. Figure 1.8 shows a graph with
the conditional and unconditional log-likelihood functions (solid and dot-
ted lines respectively). The points correspond to the maximum likelihood

estimators with φ̂ = 0.9069 and φ̂ = 0.8979 being the MLEs for the con-
ditional and unconditional likelihoods, respectively. For the unconditional
case, a Newton–Raphson algorithm was used to find the maximum. The
algorithm converged after five iterations with a starting value of 0.1.

Figure 1.9 shows the log-posterior densities of φ under Gaussian priors of
the form φ ∼ N(µ, c), for µ = 0, c = 1.0 (left panel) and c = 0.01 (right
panel). Note that this prior does not impose any restriction on φ and so it
gives nonnegative probability to values of φ that lie in the nonstationary
region. It is possible to choose priors on φ whose support is the stationary
region. This will be considered in Chapter 2. Figure 1.9 illustrates the ef-
fect of the prior on the MAP estimators. For a prior φ ∼ N(0, 1), the MAP

estimators are φ̂MAP = 0.9051 and φ̂MAP = 0.8963 for the conditional
and unconditional likelihoods, respectively. When a smaller value of c is
considered, or in other words, when the prior distribution is more concen-
trated around zero, then the MAP estimates shift toward the prior mean.
For a prior φ ∼ N(0, 0.01), the MAP estimators are φ̂MAP = 0.7588 and

φ̂MAP = 0.7550 for the conditional and unconditional likelihoods, respec-
tively.
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Figure 1.8 Conditional and unconditional log-likelihoods (solid and dashed lines,
respectively) based on 100 observations simulated from an AR(1) with φ = 0.9.

It is also possible to obtain the least squares estimators for the conditional
and unconditional likelihoods. For the conditional case, the least squares
(LS) estimator is obtained by minimizing the conditional sum of squares
Q(φ), and so in this case φML = φLS. In the unconditional case, the LS
estimator is found by minimizing the unconditional sum of squares Q∗(φ),
and so the LS and the ML estimators do not coincide.

1.5.2 Traditional Least Squares

Likelihood and Bayesian approaches for fitting linear autoregressions rely
on very standard methods of linear regression analysis. Therefore, some re-
view of the central ideas and results in regression is in order and given here.
This introduces notation and terminology that will be used throughout the
book.

A linear model with a univariate response variable and p > 0 regression
variables (otherwise predictors or covariates) has the form

yi = f′iβ + εi,

for i = 1, 2, . . . , where yi is the i-th observation on the response variable,
and has corresponding values of the regressors in the design vector f′i =
(fi1, . . . , fip). The design vectors are assumed known and fixed prior to
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Figure 1.9 Conditional and unconditional log-posterior densities (solid and
dashed lines, respectively) based on 100 observations simulated from an AR(1)
with φ = 0.9. The posterior densities were obtained with priors of the form
φ ∼ N(0, c), for c = 1 (left panel) and c = 0.01 (right panel).

observing the corresponding responses. The error terms εi are assumed
independent and normal, distributed as N(εi|0, v) with some variance v.
The regression parameter vector β = (β1, . . . , βp)

′ is to be estimated, along
with the error variance. Now assume we have a set of n responses denoted
as y = (y1, . . . , yn)′. We note that this notation is general and so, the
responses are not necessarily temporally indexed and n is not necessarily
equal to T. The model for y is

y = F′β + ε, (1.22)

where F is the known p×n design matrix with i-th column fi. In addition,
ε = (ε1, . . . , εn)′, with ε ∼ N(ε|0, vIn), and In the n × n identity matrix.
The sampling distribution is defined as

p(y|F,β, v) =
n∏
i=1

N(yi|f′iβ, v) = (2πv)−n/2 exp(−Q(y,β)/2v),

where Q(y,β) = (y − F′β)′(y − F′β) =
∑n
i=1(yi − f′iβ)2. This gives a

likelihood function for (β, v). We can also write Q(y,β) as

Q(y,β) = (β − β̂)′FF′(β − β̂) +R,
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where β̂ = (FF′)−1Fy and R = (y − F′β̂)′(y − F′β̂). This assumes that
F is of full rank p, otherwise an appropriate linear transformation of the
design vectors can be used to reduce F to a full rank matrix and the model
decreases in dimension. Here β̂ is the MLE of β and the residual sum
of squares R gives the MLE of v as R/n; a more usual estimate of v is
s2 = R/(n− p), with n− p being the associated degrees of freedom.

1.5.3 Full Bayesian Analysis

We summarize some aspects of various Bayesian approaches for fitting lin-
ear models, including reference and conjugate analyses. Nonconjugate anal-
yses may lead to posterior distributions that are not available in closed
form. Therefore, nonconjugate inferential approaches often rely on ob-
taining random draws from the posterior distribution using Markov chain
Monte Carlo methods, which will be used a good deal later in this book.
Some key references are the books of Box and Tiao (1973) and Zellner
(1996). The book of Greenberg (2008) provides an excellent introduction
to Bayesian statistics and econometrics using a simulation-based approach.

1.5.3.1 Reference Bayesian Analysis

Reference Bayesian analysis is based on the traditional reference (improper)
prior p(β, v) ∝ 1/v. The corresponding posterior density is p(β, v|y,F) ∝
p(y|F,β, v)/v and has the following features:

• The marginal posterior for β is a multivariate Student-t with n − p
degrees of freedom. It has mode β̂, scale matrix s2(FF′)−1, and density

p(β|y,F) = c(n, p)|FF′|1/2{1 + (β − β̂)′FF′(β − β̂)/(n− p)s2}−n/2

with c(n, p) = Γ(n/2)/[Γ((n − p)/2)(s2π(n − p))p/2], where Γ(·) is the
gamma function. When n is large, the posterior is approximately normal,
N(β|β̂, s2(FF′)−1). Note also that, given v, the conditional posterior for

β is exactly normal, namely N(β|β̂, v(FF′)−1).

• The marginal posterior for v is inverse gamma with parameters (n−p)/2
and (n− p)s2/2, or (v|y,F) ∼ IG((n− p)/2, (n− p)s2/2).

• The total sum of squares of the responses y′y =
∑n
i=1 y

2
i factorizes as

y′y = R + β̂
′
FF′β̂. The sum of squares explained by the regression is

y′y − R = β̂
′
FF′β̂; this is also called the fitted sum of squares, and a

larger value implies a smaller residual sum of squares and, in this sense,
a closer fit to the data.

• Under a proper prior distribution for (β, v) the marginal density of (y|F)
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can be obtained as

p(y|F) =

∫
p(y|F,β, v)p(β, v)dβdv.

Note that the reference prior used here is improper, invalidating the
calculation of a proper marginal density for (y|F). However, one can
still obtain an expression for p(y|F) up to a proportionality constant as

p(y|F) =

∫
p(y|F,β, v)

v
dβdv ∝ Γ((n− p)/2)

π(n−p)/2 |FF′|−1/2R−(n−p)/2.

This can also be written as

p(y|F) ∝ Γ((n− p)/2)

π(n−p)/2 |FF′|−1/2(y′y)(p−n)/2{1− β̂
′
FF′β̂/(y′y)}(p−n)/2.

For large n, the term {1−β̂
′
FF′β̂/(y′y)}(p−n)/2 in the above expression

is approximately exp (β̂
′
FF′β̂/2r) where r = y′y/(n− p).

Some additional comments:

• For models with the same number of parameters that differ only through
F, the corresponding observed data densities will tend to be larger for

those models with larger values of the explained sum of squares β̂
′
FF′β̂

(though the determinant term plays a role too). Otherwise, p(y|F) also
depends on the parameter dimension p.

• Orthogonal regression. If FF′ = kIp for some k, then everything sim-
plifies. Write f∗j for the j-th column of F′, and βj for the corresponding

component of the parameter vector β. Then β̂ = (β̂1, . . . , β̂p)
′ where each

β̂j is the individual MLE from a model on f∗j alone, i.e., y = f∗jβj+ε, and
the elements of β are uncorrelated under the posterior T distribution.
The explained sum of squares partitions into a sum of individual pieces

too, namely β̂
′
FF′β̂ =

∑p
j=1 f∗

′

j f∗j β̂
2
j , and so calculations and interpreta-

tions are easy.

Example 1.6 Reference analysis in the AR(1) model. For the condi-
tional likelihood using the notation above we have y = (y2, . . . , yT )′, F =
(y1, . . . , yT−1) and the reference prior p(φ, v) ∝ 1/v. The MLE for φ is

φML =
∑T
t=2 yt−1yt/

∑T−1
t=1 y

2
t . Under the reference prior φMAP = φML.

The residual sum of squares is given by

R =
T∑
t=2

y2t −
(
∑T
t=2 ytyt−1)2∑T−1
t=1 y

2
t

,

and so s2 = R/(T − 2) estimates v. The marginal posterior distribution
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Figure 1.10 (a) p(φ|y,F); (b) p(v|y,F).

of φ is a univariate Student-t distribution with T − 2 degrees of freedom,
centered at φML with scale s2(FF′)−1, i.e.,

(φ|y,F) ∼ t(T−2)
(
m,

C

T − 2

)
,

where

m =

∑T
t=2 yt−1yt∑T−1
t=1 y

2
t

and

C =

∑T
t=2 y

2
t

∑T
t=2 y

2
t−1 − (

∑T
t=2 ytyt−1)2(∑T−1

t=1 y
2
t

)2 .

Finally, the posterior for v is a scaled inverse chi-squared with T−2 degrees
of freedom and scale s2, i.e., Inv−χ2(v|T−2, s2) or, equivalently, an inverse
gamma with parameters (T − 2)/2 and (T − 2)s2/2, IG(v|(T − 2)/2, (T −
2)s2/2).

As an illustration, a reference analysis was performed for a time series of
500 points simulated from an AR(1) model with φ = 0.9 and v = 100.
Figures 1.10 (a) and (b) display the marginal posterior densities of (φ|y,F)
and (v|y,F) based on 5,000 samples from the joint posterior of φ and v.
The circles in the histogram indicate φML and s2, respectively.
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1.5.3.2 Conjugate Bayesian Analysis

Let p(yt|θ) be a likelihood function. A class Π of prior distributions forms
a conjugate family if the posterior p(θ|yt) belongs to the class Π for every
prior p(θ) in Π.

Consider again the model y = F′β+ε, with F a known p×n design matrix
and ε ∼ N(ε|0, vIn). In a conjugate Bayesian analysis for this model priors
of the form

p(β, v) = p(β|v)p(v) = N(β|m0, vC0)× IG(v|n0/2, d0/2) (1.23)

are taken with m0 a vector of dimension p and C0 a p × p matrix. Both
m0 and C0 are known quantities. The corresponding posterior distribution
has the following form:

p(β, v|y,F) ∝ v−[(p+n+n0)/2+1] ×

e−[(β−m0)
′C−1

0 (β−m0)+(y−F′β)′(y−F′β)+d0]/2v.

This analysis has the following features:

• (y|F, v) ∼ N(F′m0, v(F′C0F + In)) and (y|F) follows a multivariate
Student-t distribution, i.e., (y|F) ∼ Tn0

[F′m0, d0(F′C0F + In)/n0].

• The posterior distribution of β given v is Gaussian, (β|y,F, v) ∼ N(m, vC),
with

m = m0 + C0F[F′C0F + In]−1(y− F′m0)

C = C0 −C0F[F′C0F + In]−1F′C0,

or, defining e = y− F′m0,Q = F′C0F + In, and A = C0FQ−1 we can
also write m = m0 + Ae and C = C0 −AQA′.

• (v|y,F) ∼ IG(n∗/2, d∗/2) with n∗ = n+ n0 and

d∗ = (y− F′m0)′Q−1(y− F′m0) + d0.

• (β|y,F) ∼ Tn∗ [m, d∗C/n∗].

Example 1.7 Conjugate analysis in the AR(1) model using the condi-
tional likelihood. Assume we choose a prior of the form φ|v ∼ N(0, v) and
v ∼ IG(n0/2, d0/2), with n0 and d0 known. Then, p(φ|y,F, v) ∼ N(m, vC)
with

m =

∑T−1
t=1 ytyt+1∑T−1
t=1 y

2
t + 1

, C =
1

1 +
∑T−1
t=1 y

2
t

,

(v|y,F) ∼ IG(n∗/2, d∗/2) with n∗ = T + n0 − 1 and

d∗ =
T∑
t=2

y2t −

(∑T−1
t=1 ytyt+1

)2
∑T−1
t=1 y

2
t + 1

+ d0.
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1.5.4 Nonconjugate Bayesian Analysis

For the general regression model, the reference and conjugate priors pro-
duce joint posterior distributions that have closed analytical forms. How-
ever, in many scenarios it is either not possible or not desirable to work
with a conjugate prior or with a prior that leads to a posterior distribution
that can be written in analytical form. In these cases it might be possible to
use analytical or numerical approximations to the posterior. Another alter-
native consists on summarizing the inference by obtaining random draws
from the posterior distribution. Sometimes it is possible to obtain such
draws by direct simulation, but often this is not the case, and so methods
such as Markov chain Monte Carlo (MCMC) are used.

Consider again the AR(1) model under the full likelihood (1.17). No con-
jugate prior is available in this case. Furthermore, a prior of the form
p(φ, v) ∝ 1/v does not produce a posterior distribution in closed form.
In fact, the joint posterior distribution is such that

p(φ, v|y1:T ) ∝ v−(T/2+1)(1− φ2)1/2 exp

{
−Q∗(φ)

2v

}
. (1.24)

Several approaches could be considered to summarize this posterior distri-
bution. For example, we could use a normal approximation to the distribu-
tion p(φ, v|y1:T ) centered at the ML or MAP estimates of (φ, v). In general,
the normal approximation to a posterior distribution p(θ|y1:T ) is given by

p(θ|y1:T ) ≈ N(θ̂, v(θ̂)), (1.25)

with θ̂ = θMAP and v(θ)−1 = − ∂2

∂θ∂θ
′ log p(θ|y1:T ).

Alternatively, it is possible to use iterative MCMC methods to obtain sam-
ples from p(φ, v|y1:T ). We summarize two of the most widely used MCMC
methods below: the Metropolis algorithm and the Gibbs sampler. For full
consideration of MCMC methods see, for example, Gamerman and Lopes
(2006) and Robert and Casella (2005).

1.5.5 Posterior Sampling

1.5.5.1 The Metropolis-Hastings Algorithm

Assume that our target posterior distribution, p(θ|y1:T ), can be computed
up to a normalizing constant. The Metropolis-Hastings algorithm (Metropo-
lis et al. 1953, Hastings 1970) creates a sequence of random draws θ(1),
θ(2), . . . , whose distributions converge to the target distribution. Each se-
quence can be considered as a Markov chain whose stationary distribution
is p(θ|y1:T ). The sampling algorithm can be summarized as follows:
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• Draw a starting point θ(0) with p(θ(0)|y1:T ) > 0 from a starting distri-
bution p0(θ).

• For m = 1, 2, . . .

1. Sample a candidate θ∗ from a jumping distribution J(θ∗|θ(m−1)).
If the distribution J is symmetric, i.e., if J(θa|θb) = J(θb|θa) for
all θa,θb, and m, then we refer to the algorithm as the Metropolis
algorithm. If Jm is not symmetric, we refer to the algorithm as the
Metropolis-Hastings algorithm.

2. Compute the importance ratio

r =
p(θ∗|y1:T )/J(θ∗|θ(m−1))

p(θ(m−1)|y1:n)/J(θ(m−1)|θ∗)
.

3. Set

θ(m) =

{
θ∗ with probability = min(r, 1)

θ(m−1) otherwise.

An ideal jumping distribution is one that is easy to sample from and makes
the evaluation of the importance ratio easy. In addition, the jumping distri-
butions J(·|·) should be such that each jump moves a reasonable distance
in the parameter space so that the random walk is not too slow, and also,
the jumps should not be rejected too often.

1.5.5.2 Gibbs Sampling

Assume θ has k components, i.e., θ = (θ1, . . . ,θk). The Gibbs sampler
(Geman and Geman 1984) can be viewed as a special case of the Metropolis-
Hastings algorithm for which the jumping distribution at each iteration

m is a function p(θ∗j |θ
(m−1)
−j , y1:T ), where θ−j denotes a vector with all

the components of θ except for component θj . In other words, for each
component of θ we do a Metropolis-Hastings step for which the jumping
distribution is given by

Jj(θ
∗|θ(m−1)) =

{
p(θ∗j |θ

(m−1)
−j , y1:T ) if θ∗−j = θ

(m−1)
−j

0 otherwise,

and so r = 1 and every jump is accepted.

If it is not possible to sample from p(θ∗j |θ
(m)
−j , y1:T ) an approximation, say

g(θ∗j |θ
(m−1)
−j ), can be considered. However, in this case it is necessary to

compute the Metropolis acceptance ratio r.
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1.5.5.3 Convergence

In theory, a value from the posterior distribution of (θ|y1:T ) is obtained
by MCMC when the number of iterations of the chain approaches infinity.
In practice, a value obtained after a sufficiently large number of iterations
is taken as a draw from the target posterior distribution of (θ|y1:T ). How
can we determine how many MCMC iterations are enough to obtain con-
vergence? As pointed out in Gamerman and Lopes (2006), there are two
general approaches to the study of convergence. One is probabilistic and
it consists on measuring distances and bounds on distribution functions
generated from a chain. So, for example, it is possible to measure the to-
tal variation distance between the distribution of the chain at iteration i
and the target distribution of (θ|y1:T ). An alternative approach consists on
studying the convergence of the chain from a statistical perspective. This
approach is easier and more practical than the probabilistic one; however,
it cannot guarantee convergence.

There are several ways of monitoring convergence from a statistical view-
point, ranging from graphical displays of the MCMC traces for all or
some of the model parameters or functions of such parameters, to sophisti-
cated statistical tests. As mentioned before, one of the two main problems
with simulation-based iterative methods is deciding whether the chain has
reached convergence, i.e., if the number of iterations is large enough to
guarantee that the available samples are drawn from the target posterior
distribution. In addition, large within-sequence correlation may lead to in-
ferences that are not precise enough. In other words, if M draws from
a chain with very large within-sequence correlation are used to represent
the posterior distribution, the “effective” number of draws used in such
representation is far smaller than M. Some well-known tests to assess con-
vergence are implemented as R packages (R Core Team 2018), such as
Bayesian Output Analysis (BOA, Smith 2007) and Convergence Diagno-
sis and Output Analysis for MCMC (CODA, Plummer, Best, Cowles, and
Vines 2006). Specifically, these packages include convergence diagnostics
such as the Brooks, Gelman, and Rubin diagnostic for a list of sequences
(Brooks and Gelman 1998; Gelman and Rubin 1992), which monitors the
mixing of the simulated sequences by comparing the within and between
variance of the sequences; the Geweke diagnostic (1992) and Heidelberger
and Welch diagnostic (1983), which are based on sequential testing of por-
tions of the simulated chains to determine if they correspond to samples
from the same distribution; and the Raftery and Lewis method (Raftery
and Lewis 1992), which considers the problem of how many iterations are
needed to estimate a particular posterior quantile from a single MCMC
chain. BOA and CODA also provide the user with some descriptive plots


