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There is no royal road to geometry.
– Euclid

Geometry is not true, it is advantageous.
– Henri Poincare

Geometry, inasmuch as it is concerned with real space, is no longer considered a part of pure
mathematics; like mechanics and physics, it belongs among the applications of mathematics.
– Hermann Weyl

Think geometrically, prove algebraically.
– John Tate
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Foreword

Geometric constraint systems arise in a diverse range of applications including: computer aided
engineering and architectural design, molecular and materials modeling, robotics and animation,
sensor networks, machine learning, and dimension reduction. Broadly, a geometric constraint sys-
tem (GCS) is defined on a set of geometric primitives (e.g., points, lines, rigid bodies) by specifying
geometric relationships (such as distances, angles, or incidences). The core GCS foundations come
from at least four interwoven topic areas and research communities: (i) combinatorial and geomet-
ric rigidity, (ii) automated geometric theorem proving, (iii) geometrically constrained configuration
spaces and, (iv) distance geometry. Indeed, the principles, tools, and techniques rely on invariant
theory, combinatorial and discrete geometry, algebraic geometry and topology, convex/semidefinite
analysis, with algorithmic foundations and complexity going back to Cauchy, Cayley, Hilbert, Klein,
and Maxwell.

With such a rich array of communities working on GCS research, this handbook is intended as
an entry point to the principal mathematical and computational tools, techniques and results cur-
rently in use. It was born out of continued requests for a single source containing the core principles
and results that would be accessible to beginners and experts alike (from the graduate student start-
ing research to the algebraic geometer interested in applications to the roboticist seeking to engineer
a swarm of autonomous agents). Recognizing that readers may come from a wide variety of back-
grounds, we hope that this book will be a useful tool for navigating the concepts, approaches, and
results found in GCS research.

We are grateful to the authors of the chapters that follow; their expertise provides the roadmap
for developing a unified view of the varied perspectives. We pledge any royalties toward supporting
the activities of the four research communities represented by the four parts of this handbook, es-
pecially the activities of young researchers. We would like to thank Louis Theran for his feedback.
We thank Rahul Prabhu for his kind and timely expert help with LATEX. And, finally, we cannot put
into words the debt of gratitude owed to our families for their unconditional support and patience
during this process.

Meera Sitharam
Audrey St. John
Jessica Sidman
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Preface

The goal of this book is to provide a resource for those aiming to become acquainted with the
fundamentals as well as experts looking to pinpoint specific results or approaches in the broad
landscape. The flow of the handbook is intended to take readers from the general algebro-geometric
approaches to more specialized contexts permitting combinatorial analysis and efficient algorithms.
Chapters are grouped by the main techniques being deployed, in the hopes that readers can find
the material best-suited to their expertise. Of course, the overlapping nature of the material being
presented prevents a neat partitioning of chapters by topic area, but we hope the juxtapositioning of
the chapters helps the reader to see how the subject is connected.

Chapter 1 provides an overview of the book as a more detailed starting point and is expected to
help the reader navigate the book effectively. It includes a basic introduction, some preliminaries,
and an overview of the various topics and methods. We also give an alternative pathway through the
book, intended to help a newcomer become acquainted with the domain. We hope this is a first step
toward a unifying foundation for the rich set of GCS problems.
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1.1 Introduction
A geometric constraint system is generally defined on a finite collection of geometric primitives
(e.g., 0-dimensional points, 1-dimensional lines, general d-dimensional hyperplanes, d-dimensional
rigid bodies, conics, cylinders). The setting is a given Euclidean or non-Euclidean geometry over the
reals, generally of fixed dimension, and constraints specify geometric n-ary relationships among the
primitives. These constraints can be logical (e.g., incidence, perpendicularity, tangency) or metric
(e.g., distance, angle, orientation) and may be either equalities or inequalities. Typically, a con-
straint can be expressed as a set of quadratic polynomials with real (often rational or even integer)
coefficients. The combinatorics of a GCS are usually captured separately in a constraint graph: a
(hyper)graph where each vertex represents a geometric primitive and each (hyper)edge represents a
constraint on the corresponding primitives.

A realization (or solution) of a GCS is a placement (or configuration) of the geometric primitives
that satisfies the constraints. The realizations of a GCS can be found algebraically by solving a
system of polynomial equations corresponding to the GCS, where the variables are the coordinates
of the geometric primitives. Thus, the set of realizations of such a system consists of the solutions
to a finite collection of polynomial equations and is hence a variety. Typically, our primary interest
is in the real points of this variety, but if we consider solutions over C, then the full power of
algebro-geometric methods may be brought to bear.

In the geometric setting it is generally implied (as it is implied throughout this chapter, unless
explicitly stated otherwise) that we are concerned with the realization space modulo some group of
trivial motions that is designated a priori. For example, in Euclidean space the trivial motions are
comprised of translation and rotation; in d-dimensional Euclidean space, there is a d-dimensional
space of translations and

(d
2

)
-dimensional space of rotations giving a

(d+1
2

)
-dimensional space of

trivial motions. Embedding Rd into projective space can help us to see unifying principles in in-
cidence and other constraint systems. Sometimes, the realization is pinned (or grounded), i.e., the
trivial group is chosen to be the empty group.

1.1.1 Specifying a GCS

To illustrate these core concepts, consider specifying the most common GCS for classical rigid-
ity theory: the Euclidean bar-and-joint, or Euclidean distance constraint system. The geometric
primitives are 0-dimensional points (called “joints”), the constraints are specified distances between
points (called “bars”) and the ambient space is Rd . G = (V,E) associates a vertex to each joint and
an edge (u,v) to each bar constraining the joints represented by vertices u and v. Then a bar-and-
joint constraint system of G can be defined as a tuple (G,δ ) where δ : E → R assigns distance
values to the bars. A bar-and-joint constraint system is also called a linkage. A configuration of the
joints in Rd is given by a map p : V → Rd and is a realization of (G,δ ) if the distance between
p(u) and p(v) is δ (u,v) for all (u,v)∈ E. For example, let (G = ({1,2},{(1,2)}),δ ) be a Euclidean
bar-and-joint system consisting of two joints with one bar between them specifying a distance of 4;
i.e., δ ((1,2)) = 4. Then, if (x1,y1) and (x2,y2) are the variables for the coordinates of joints 1 and
2, respectively, realizations of this linkage are the solutions to the single constraint equation

(x1− x2)
2 +(y1− y2)

2 = δ
2.

Notice that some geometric constraints may lead to multiple equations; if we were to place an
incidence constraint between two points, it would give the equations:

x1 = x2 and y1 = y2.
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Now consider specifying a GCS whose geometric primitives are rigid bodies in Euclidean space;
a “bar” constraint can be placed between two bodies by picking a point on each and constraining
the distance between them. Such a system describes a Euclidean body-and-bar constraint system.
Realizations are solutions to the quadratic system of distance equations, i.e., placements of the
bodies (e.g., by assigning elements of the special Euclidean group SE(d)) that satisfy the bar lengths.

1.1.2 Fundamental GCS Questions

Given a GCS C with n equality constraints, we seek approaches for finding realizations and/or
giving structural characterization of C based on properties of the resulting set S of geometrically
constrained configurations or realizations. That is, when the solution space S has co-dimension
n (independent C); is finite (locally rigid C); has the singleton property (globally rigid C). Other
properties of S such as dimension (degrees of freedom), connectedness, singularities (deformation
paths and extreme configurations) are also of interest. More generally, many of these properties
can be deduced by deriving dependent (often inconsistent) constraints that are locally or globally
implied by the given GCS, or by ascertaining its independence.

1.1.3 Tractability and Computational Complexity

In its full generality, the fundamental questions encompass the first order theory of the real closed
fields. This theory is complete, and automated theorem proving over the reals (RCF) is decidable
as shown by Tarski [36] (i.e., does not suffer from Gödel’s incompleteness of Peano’s first order
theory of natural numbers). That said, its algorithmic complexity is essentially that of polynomial
ideal membership, commonly using Gröbner bases or cylindrical algebraic decomposition [4, 2],
which is prohibitive, being complete for the class EXPSPACE [25]. Even the existential theory of
the reals is NP-hard, with the best-known algorithms requiring doubly exponential time [25].

1.2 Parts and Chapters of the Handbook
This handbook contains a sampling of a wide range of theories and methods that attempt to cir-
cumvent the above intractability by taking advantage of properties specific to various types of geo-
metric constraint systems. We have organized it into parts based on the main techniques underlying
each chapter, starting with the algebro-geometric techniques and concluding with combinatorial
approaches. This essentially provides a flow from approaches that address the general (generic and
non-generic) GCS setting to those that work under restricted (generic) settings. Indeed, assumptions
of genericity appear throughout Part IV, while Part I contains approaches to address non-generic sit-
uations.

Part I Geometric Reasoning Techniques: Chapters 2–7 address more general geometric constraint
systems, with many of the approaches based on algebraic methods.

Part II Distance Geometry, Configuration Space, and Real Algebraic Geometry Techniques:
Chapters 8–12 span the underlying topics of distance geometry, configuration spaces, and
(real) algebraic geometry.

Part III Geometric Rigidity Techniques: Chapters 13–17 (mostly based in Rigidity Theory), while
often restricted to generic assumptions, require geometric analyses.
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Part IV Combinatorial Rigidity Techniques: Chapters 18–25 conclude the book with the Rigidity
Theory settings that permit combinatorial approaches.

1.2.1 Part I: Geometric Reasoning Techniques

For the specific case of deriving dependent geometric constraints from a GCS, i.e., automated geom-
etry theorem proving, an algorithm that is significantly more efficient than either of the previously
mentioned (exponential time and polynomial space) approaches is the Wu-Ritt characteristic set or
triangle decomposition method [9, 35]. This and other techniques for automated geometric theorem
proving are discussed in Chapter 2.

Since we are restricting ourselves to geometric constraints, the relevant polynomials are typi-
cally invariants of transformation or trivial motion groups that define the underlying geometry (Eu-
clidean, Projective, etc.). Invariant polynomials permit synthetic, coordinate-free, and even metric-
free computational approaches to deriving dependent constraints, e.g., using bracket algebras. For
example, the Grassman-Cayley algebra [40] yields a synthetic computational approach to deriving
dependent constraints in projective and incidence geometry. In fact, such invariant theoretic methods
even extend to finite geometries [33, 32].

Chapter 5 introduces the bracket algebra and Grassmann-Cayley algebra for the plane with
a view toward proving theorems in Projective and Euclidean geometry. The bracket algebra and
Grassmann-Cayley algebra appear again in Chapter 4, this time in the context of nongeneric or
special realizations of a GCS. The goal is to provide a geometric meaning to the algebraic condi-
tion (so-called pure condition) that makes the realization special, and this involves the technique
of multilinear Cayley factorization. The chapter includes introductions to projective space, homo-
geneous coordinates, the Grassmannian, and Plücker coordinates and ends with examples applying
the theory to body-and-bar GCS.

As another example of a similar approach, Chapter 3 develops the theory and applications of
a variety of types of Euclidean invariants in deriving constraint dependences. The

(n
2

)
pairwise

distance polynomials between n points in real Euclidean space are Euclidean invariants that are
related by the Cayley-Menger syzygies. These are described in the following classical theorem on
Euclidean distance matrices.

A Euclidean distance matrix (EDM) for Rd is an n× n square matrix of pairwise (squared)
distances between n points in Rd . It is denoted ∆[n] with distance entries δi j for 1≤ i, j ≤ n. For
S ⊆ [n], the submatrix ∆S has entries δi j for i, j ∈ S. The volume matrix ∆̂S is the |S|+ 1×|S|+ 1
matrix obtained from ∆S by bordering ∆S with a top row (0,1, . . . ,1) and a left column (0,1, . . . ,1)T .
Now det(∆̂S) computes the volume of the simplex with points in S, and is called a Cayley-Menger
determinant [34]. The next theorem effectively says that the volumes of simplices formed by d +2
points in Rd is 0.

Theorem 1.1 (Cayley-Menger Relations) A real symmetric matrix ∆[n] with 0 diagonal and posi-
tive entries is a Euclidean distance matrix for Rd only if det(∆̂S) = 0 for all S⊆ [n] with |S| ≥ d+2.

A more direct approach for both Euclidean distance or Projective constraint systems is to simply
solve for the set of realizations of the constraint system to determine (in)dependent constraints. For
example, some GCS permit a ruler and compass type construction of the (finite set of) solutions,
which is equivalent to solving a recursive triangular block decomposition of the constraint system.
A broad class of GCS occurring in computer aided design are of this type, i.e., their underlying
combinatorial structure, or constraint graph is triangle-decomposable or tree-decomposable [7].

It is known that such GCS are Quadratically Radically Solvable (QRS), i.e., the coordinates
of the solutions are in nested quadratic extensions of the coefficient field. As to whether all generic
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QRS systems have triangle-decomposable constraint graphs is still an open problem, with the equiv-
alence being shown only when the constraint graph is topologically planar [26]. Solving these sys-
tems entails two stages: the recursive triangle decomposition stage, a combinatorial procedure on
the constraint graph, and a solution or realization stage, that obtains the solution of the correspond-
ing recursively decomposed system through a bottom-up process of assembling or recombining the
(generically finitely many) solutions of subsystems.

Chapter 6 gives many natural examples of triangle-decomposable constraint systems and for-
mal algorithms for recursive decomposition and recombination. In general, the time complexity
of solving or realization is bottle-necked by the largest subsystem that must be solved simultane-
ously and a polynomial time preprocessing algorithm to identify the subsystems can be beneficial.
For non-triangle-decomposable GCS, the above method can be generalized to obtain recursive de-
compositions into subgraphs that approximate generically rigid subsystems that have finitely many
isolated solutions or realizations (see Section 1.3 for Terminology and Basic Concepts).

The process of identifying these subsystems and finding a partial order in which to solve them is
called decomposition-recombination (DR-) planning, the topic of Chapter 7. Such algorithms vary
in their generality but often leverage geometric properties of specific constraint and primitive types
or use a priori knowledge of patterns in their arrangement. However, in general, at some point an
algebraic system must be solved for recombination of the decomposed subsystem solutions. Chapter
7 surveys several such methods for decomposition and recombination of more general constraint
systems.

However, most of the above-mentioned approaches (including those that rely on generic rigidity
or finiteness of the solution set for decomposition) do not differentiate between real and complex
solution spaces. In particular to specialize the invariant-theoretic approach to the reals requires im-
posing additional inequality constraints beyond the Cayley-Menger conditions in the previous theo-
rem, by asserting that all simplices have positive volumes. For 1- and 2-dimensional simplices (line
segments and triangles), this gives exactly the metric condition on real Euclidean distances.

Theorem 1.2 (Cayley-Menger Inequalities) A real symmetric matrix with 0 diagonal and positive
entries ∆[n] is a Euclidean distance matrix for Rd if and only if det(∆̂S)≥ 0 for all S ⊆ [n], |S| ≥ 2;
and det(∆̂S) = 0 for all S⊆ [n] with |S| ≥ d +2.

Note that the Euclidean invariant approaches described in Chapter 5 use all the Cayley-Menger
conditions including the above inequalities.

1.2.2 Part II: Distance Geometry, Configuration Space, and Real Algebraic Geom-
etry Techniques

The inequalitites in Theorem 1.2 can be viewed as partly arising from the metric property of real
Euclidean space. This leads to another tool for dealing with geometric constraints with an underlying
metric, namely distance or metric geometry. The classical theorem of Schoenberg [30, 31] (which
generalizes to infinite dimensional Hilbert spaces) is stated for finite dimensional real Euclidean
distance matrices below. It is equivalent to the conjunction of the two Cayley-Menger theorems
above.

Theorem 1.3 (Schoenberg’s Theorem) A real symmetric matrix with 0 diagonal and positive en-
tries ∆[n] is a Euclidean distance matrix for Rd if and only if it is negative semidefinite on the
subspace of all vectors orthogonal to the all 1’s vector and rank(∆[n])≤ d +1.

The convexity and face structure of the Euclidean distance cone yield powerful techniques for
understanding distance constraint systems, including implied or dependent constraints, and differ-
ent types of rigidity. Chapter 8 surveys some of these techniques. Chapter 12 introduces the tools
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of real algebraic geometry, specifically semialgebraic sets that involve polynomial equalities and
inequalities (such as the Cayley-Menger determinantal equalities and inequalities above) and the
positivenstellensatz as tools for defining generic realizations and dealing with distance constraint
systems. It starts with a brief introduction to the correspondence between ideals and varieties over
C, and then turns to a discussion of varieties defined by polynomials with real coefficients, which
may be viewed as either real or complex varieties. It culminates with a view of the projection of
the d-dimensional stratum of the Euclidean (squared) distance cone as a semialgebraic set and its
application to rigidity.

Chapter 9 explores the structure of general metric cones. Chapter 10 employs properties of pro-
jections and fibers of rank d strata of the Euclidean distance cones to characterize distance constraint
systems (their underlying graphs) whose configuration spaces generically map finitely-many-to-one
to a convex set and whose singular configurations have a simple description. These characterizations
extend to when the distance constraints are inequalities and the distances are lp

p norms. The tech-
niques yield interesting configuration space properties of a common class of plane linkage mecha-
nisms (Euclidean distance constraint systems with one degree of freedom in R2) arising from the
QRS or triangle decomposable constraint graphs mentioned above.

However, questions about linkage mechanisms in general are inherently difficult: Kempe’s uni-
versality theorem [20] states that the space of configurations can trace out any desired algebraic
curve. Chapter 11 explores constraint varieties of mechanisms and describes how so-called study
parameters and dual quaternions are used in kinematics.

1.2.3 Part III: Geometric Rigidity Techniques

The question of local and global uniqueness of polyhedra whose faces have a given combinatorics
has been studied by a long line of researchers starting from Cauchy in the early 1800s to Alexandrov
in the 1950s. These results concern the geometric rigidity of polyhedral frameworks, or just poly-
hedra, namely 3-dimensional polytopes that are composed of planar rigid panel faces; face panels
can rotate about the edge or hinge on which they are incident with another panel. A triangulated
polyhedron’s faces are all triangular.

Although these results concern the rigidity-related properties of frameworks, i.e., specific re-
alizations of a combinatorial structure of constraints (from which the GCS can be extracted), as
opposed to rigidity-related properties of GCSs (as discussed so far), in the latter part of this chapter
we will reconcile the slight differences in these two ways of thinking.

Cauchy [5] showed that all convex polyhedra are rigid and in fact globally rigid if convexity
is stipulated. (Mistakes in Cauchy’s proof were fixed and the result extended by a series of subse-
quent researchers.) Despite a long standing conjecture that the result extended to all triangulated
polyhedra (convex or not), verified for many subclasses [10], the general statement was disproven
by counterexample [6]. These results and further developments are discussed in Chapter 13.

Let G = (V,E) be the graph associated to the edge skeleton (or 1-skeleton) of a triangulated
polyhedron and let p : V → R3 be the map that assigns the coordinates of each vertex of the poly-
hedron to a vertex of G. Then (G, p) is a bar-joint framework that is a realization of a bar-joint
constraint system in 3D, with a distance constraint graph G. Thus, Cauchy’s theorem shows that
bar-joint frameworks arising from convex triangulated polyhedra are rigid (and globally rigid if
convexity of the framework is stipulated).

Chapter 16 discusses geometric conditions for global rigidity of generic bar-joint frameworks in
arbitrary dimensions [11]. Recall that a framework is globally rigid if it is the unique realization of
its underlying GCS. A framework (G, p) is generic w.r.t. a property P (such as global rigidity) if for
some neighborhood N (p), for all frameworks (G,q) with q ∈N (p) (G,q) satisfies P if and only if
(G, p) satisfies P. When the context, namely the property P is clear, we simply say the framework
is generic.
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The result employs a feature of the framework’s equilibrium self-stress (defined in Section 1.3)
and further shows that global rigidity is in fact a generic property, i.e., either all generic frameworks
(G, p) of a graph G are globally rigid or none are. In other words, the property of the framework
only depends on the graph G, but is given a geometric characterization in Chapter 16. Chapters that
additionally give combinatorial as opposed to geometric characterizations of such properties that
depend only on the constraint graph are described in the next section on combinatorial rigidity.

Chapter 14 considers tensegrity frameworks [28] in which the underlying GCS involves in-
equality as opposed to equality constraints. Some edges of the constraint graph, called struts, have
distance lower bounds and others, called ties have distance upper bounds which restrict the sign of
the equilibrium self-stress they can carry. Tensegrity frameworks that represent packed incompress-
ible spheres contain only struts. Bar-joint frameworks are special cases of tensegrity frameworks
where all edges have both distance upper and lower bounds (fixed distances).

Chapter 14 gives geometric, equilibrium self-stress based characterizations for rigidity and other
related properties of tensegrity frameworks both in general and generic settings, and connects them
to rigidity properties of bar frameworks.

Chapter 15 specifically considers nongeneric tensegrity frameworks and uses extended Cayley
algebra (discussed earlier under the Geometric Reasoning Section of the handbook) to give geomet-
ric conditions for rigidity related properties.

Chapter 17 deals with properties related to rigidity that are invariant under various transfor-
mations (beyond the trivial motion group of the underlying geometry). Using characterizations of
properties related to rigidity theory, techniques (such as Coning or Maxwell-Cremona diagrams for
understanding stresses) for GCSs and frameworks in one geometry can be extended to another. For
example, techniques and characterizations from Euclidean geometry can be extended to say Affine,
Projective, Spherical, Minkowski, and Hyperbolic geometries that are defined using Cayley-Klein
metrics or using the trivial motion groups under which the metrics are invariant.

1.2.4 Part IV: Combinatorial Rigidity Techniques

As mentioned earlier, (in)dependence and other properties related to rigidity are often generic (under
appropriate, careful definitions of genericity), i.e., they hold for all generic frameworks and/or GCSs
with a given constraint graph G, or for none of them. They depend only on the underlying constraint
graph G; (in)dependence is captured by a geometric or algebraic matroid such as the (generic)
rigidity matroid defined formally in the second part of this chapter, whose ground set is related to
the algebraic constraints represented by the edges (and nonedges) of G.

This section of the handbook deals with such (in)dependence properties that are equivalently
characterized by purely combinatorial sparsity or graphic matroids, which do not use the algebraic
structure of the constraint polynomials or brackets over the reals (or of the coefficient field of the
constraint polynomials). The book [12] has so far been the trusted source on combinatorial rigidity,
but significant progress has been made since it was published.

A classic example of a purely combinatorial rigidity characterization is a celebrated result of
Laman [21] published in 1970, though recently it has also been found in a forgotten work of Hilda
Pollaczek-Beiringer [27] from 1927.

Theorem 1.4 ([27, 21]) A 2D bar-joint graph G = (V,E) is rigid (all its generic frameworks/GCSs
are rigid) if and only if |E| = 2|V |−3 and for any subsystem G′ = (V ′,E′) where |V ′| > 1, |E′| ≤
2|V ′|−3.

Graphs satisfying such counting conditions – which keep track of the internal degrees of freedom
(dof) of the system – are often referred to as Laman graphs. This combinatorial characterization of
bar-joint rigidity in 2D led to a series of increasingly refined algorithms to detect rigidity, as well
as maximal rigid subgraphs in flexible constraint graphs. Chronologically, there was a network flow
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based algorithm [16], a matroid sums algorithm [8], a bipartite matching algorithm [14], and finally
what is known as the pebble game [18]. A version of the pebble game (a special case of network
flow) is used for recursive decomposition into approximately rigid subgraphs in the DR-planning
algorithms mentioned earlier. The idea of pebble games has since been extended to the class (k, l)-
sparse graphs [22] where l < 2k, as discussed in Section 1.3.4.

It turns out that the latter condition in the above theorem defines independence in a sparsity
matroid on V ×V . The analogous condition d|V |−

(d+1
2

)
formulated by Maxwell in the nineteenth

century [24] is necessary but not sufficient for d ≥ 3 as discussed later in this chapter, see the famous
“double banana” graph, Figure 1.4. Typically, the so-called “Maxwell direction” is showing that
independence in the combinatorial matroid is necessary for independence in the algebraic rigidity
matroid, and is the easier one. The converse direction – that completes the equivalence of the two
types of matroids – is the challenging one.

However, there are combinatorial characterizations of independence and local rigidity of bar-
joint frameworks in 2D which extend to other types of 2D frameworks such as body-bar, body-
hyperpin, 2D bar-joint on the sphere (or 3D line-angle), 2D point-line-incidence-direction, etc. Of-
ten there are more than one equivalent characterization. For example, Lovász and Yemini [23] found
an alternate characterization of 2D bar-joint rigidity that is superficially quite different from Laman-
Pollaczek-Beiringer’s characterization. Chapter 18 and Chapter 21 discuss, respectively, such local
and global rigidity characterizations. The latter chapter begins with the first combinatorial charac-
terization of generic global rigidity, namely that of 2D bar-joint frameworks [17]. Chapter 22 gives
a combinatorial matroid that captures the rigidity matroid of more challenging frameworks in 2D
involving angles between lines with distances between points and lines.

1.2.4.1 Inductive Constructions

In 1911, Henneberg [15] gave the following constructive definition of the class of what later became
Laman-Pollaczek-Beiringer graphs.

Definition 1.1 Henneberg Construction A Henneberg construction of a graph G is a sequence
of the following operations which, beginning with a single edge, results in G.

(a) Add a new vertex and two edges connecting it to two existing vertices.

(b) Subdivide an existing edge and add an additional edge from the new vertex to another existing
vertex.

Laman [21] used this class in the proof of Theorem 1.4. The basic structure of the proof was to
show that the class described in the theorem was exactly the class of graphs with Henneberg con-
structions. Then he proved that for any Henneberg construction there is a positioning of the vertices
that will have no infinitesimal motions. The earlier proof of Pollaczek-Beiringer was stronger, point-
ing out that almost all (or generic positionings) that avoid certain algebraic conditions will have no
infinitesimal motions.

Inductive constructions are one of the mainstays of results that show equivalence between an
algebraic rigidity matroid and a combinatorial or graphic matroid, specifically for the difficult di-
rection, i.e., showing that independence in the combinatorial matroid implies independence in the
algebraic rigidity matroid. Chapter 19 systematically surveys such inductive constructions in many
proofs of combinatorial rigidity characterizations.

1.2.4.2 Body Frameworks

A body geometric primitive is a finite n-dimensional rigid object; this is rather general, including
points, line segments, plane segments, etc. but also any other rigid free-form shape of the same
dimension as the space. A body-hinge system has body primitives and hinge constraints, which are
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incidences between two primitives in d-dimensions where d is less than the dimension of either
object about which the primitives can rotate. In 2D, this must be a bar-joint system. A body-bar
system also has body primitives (as discussed in Section 1.2.4.2), but the constraints are distances
between generic points on the body. Unlike the higher dimensional bar-joint systems, body-bar-
hinge systems have a combinatorial characterization of independence and local rigidity in arbitrary
dimensions, first proved in [38, 39] who pioneered the use of so-called pure conditions (where
certain determinants vanish) to describe genericity. The characterizations extend to special classes
of bar-joint systems that can be cast as body-bar-hinge systems. Combinatorial characterizations of
global rigidity also exist.

Polyhedra (see Section 1.2.3) are a subclass of body-hinge structures. The bodies are panels
(polygonal faces) and the hinges connect the panels; moreover, the system must completely en-
close a volume. The so-called molecular conjecture [37] (referring to the ability to model pro-
tein backbones as body-hinge structures) stated that the rigidity of coplanar hinge and panel hinge
frameworks obeyed the same combinatorial characterization as generic body-hinge structures. It
was proven for general dimension in [19].

Chapter 20 surveys combinatorial characterizations of both local and global rigidity for body-
hinge structures in arbitrary dimensions.

1.2.4.3 Body-Cad, and Point-Line Frameworks

The set of body-cad frameworks is a catch-all category for 3D constraint systems [13]. Motivated
by CAD design software, it includes many of the common constraints and primitives seen in the
industry. The above-mentioned categories are in fact specializations of this class. Primitives include
points, lines, and planes, and constraints include coincidence, angular (parallel, perpendicular, or
arbitrary fixed angles), and distance (cad). Chapter 23 discusses a combinatorial characterization of
(infinitesimal) rigidity for such systems.

1.2.4.4 Symmetric and Periodic Frameworks and Frameworks under
Polyhedral Norms

Chapter 25 develops the set up and techniques for extending combinatorial rigidity characterizations
to symmetric and periodic frameworks (for different symmetry groups). Chapter 24 does the same
for extending from Euclidean distance to polyhedral norms.

1.2.5 Missing Topics and Chapters

The sampling of topics in this handbook would have been more comprehensive with chapters on (a)
Wu-Ritt’s characteristic set method for automated geometry theorem proving mentioned earlier, (b)
the topology (homology and cohomology) of linkage configuration spaces, related to Walker’s prob-
lem, (c) combinatorial and algorithmic studies on expansive motions of linkages and origami related
to the Carpenter’s rule problem, (d) sphere-packing rigidity with results arising from analytic per-
spectives besides the tensegrity perspective, (e) conjectures and progress on characterizing generic
bar-joint rigidity in 3D, and (f) the exploration of genericity, rigidity, and configuration spaces of
periodic and infinite frameworks. Of these, there is extensive expository literature on (a),(b),(c).
We hope that the next revision of the handbook may include chapters condensing the substantial
amount of work on (d), (e), and (f). Finally the area is rich in subtopics and directions arising from
numerous applications, from computer aided engineering and architectural design, molecular and
materials modeling, machine learning and complexity. These however would be outside the scope
of this handbook on geometric constraint principles, being more appropriate for a handbook on
geometric constraints applications.
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1.3 Terminology Reconciliation and Basic Concepts
In this section we clarify slightly different types of terminology used to talk about GCS and frame-
works, and their relationship. We additionally introduce the overall program of combinatorial char-
acterizations of GCS and frameworks: define notions of genericity, introduce the concept of a rigid-
ity matrix and the notion of infinitesimal rigidity, which is a linearization of local rigidity that is
generically equivalent and is used to define the so-called (generic) rigidity matroid.

1.3.1 Constrainedness

The notion of constrainedness exists to discuss the characteristics of the solution space of a GCS.
An over-constrained system is one that has no solutions. A well-constrained system is one that has
a finite number of solutions. An under-constrained system is one that has infinitely many solutions.
Each variable in a system has an approximate degree-of-freedom (dof). Each constraint contributes
at least one equation.

The definitions above apply to a system of equations with sufficiently general parameters. How-
ever, some specific assignments of values to parameters (e.g., length and angle measures) in the
equations corresponding to the same underlying constraint graph may result in a different classifi-
cation. That is, these properties are not structural (or combinatorial) A system is called generic over
a ground field K (usually Q or R in our setting) if the designated constraint parameters are alge-
braically independent over K, i.e., they are not the solutions of any nontrivial polynomial equation
with coefficients in K. Weaker definitions of genericity of GCS exist, for example, stating that the
parameters are not the zeroes of a given set of polynomials, or some finite but unspecified set of poly-
nomials. In all these cases, the set of nongeneric parameter values is measure-zero, i.e., choosing
the parameters at random will result in a generic system with probability of one. Unless otherwise
specified, the strongest definition of algebraic independence of parameter values is implied.

A generic constraint system being under-, well-, or over-constrained implies that all generic
parameter assignments to the same underlying constraint graph result in an under-, well-, or over-
constrained system, respectively. Therefore, being generically *-constrained is a combinatorial
property. Thus, generic constrainedness terminology can be extended to the underlying constraint
graph. Generic *-constrainedness does not imply *-constrainedness of a nongeneric system, and
similarly the converse does not hold either. Therefore, classifying nongeneric constraint systems is
an intractable problem.

However, in the generically over-constrained setting, a specific class of non-generic systems
is of interest. Such a system with a generic assignment to the parameters will have no solution,
but those non-generic systems that do have a solution are called consistently over-constrained. The
sets of generically well-over-constrained and generically under-over-constrained systems are dis-
joint, complementary subsets of generically over-constrained. A generically well-over-constrained
system is one with a spanning generically well-constrained subsystem. A generically under-over-
constrained is any other over-constrained system.

Note that traditionally generically under-constrained was taken to mean the union of generically
under-constrained and generically under-over-constrained as defined here. The current definition is
cleaner since it ensures that the sets of generically under-, well-, and over-constrained are disjoint.

1.3.2 Rigidity of Frameworks

Two frameworks (G, p) and (G,q) are congruent if p and q are congruent modulo trivial motions.
They are equivalent if the underlying GCS of (G, p) is identical to that of (G,q).

A framework (G, p) is rigid if there exists a nonempty neighborhood N (p) (in the Euclidean
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Figure 1.1
A 2D bar-joint framework that is rigid but not infinitesimally rigid. A nontrivial infinitesimal motion
is indicated by the dashed arrow.

topology) such that for all p′ ∈N (p), congruence of frameworks (G, p) and (G, p′) implies equiva-
lence. If the framework is not rigid, it is flexible. A rigid framework is minimally rigid (or isostatic)
if the removal of any hyperedge of G results in a flexible framework. The framework is globally
rigid (or strongly rigid) if, for all p′ for which the framework (G, p′) is equivalent to (G, p), it also
holds that they are congruent.

Given a constraint graph G, there is a system of polynomial equations F = { f1, . . . , fm} and
variables X = {x1, . . . ,xn} (as explained in Section 1.1.) The rigidity matrix R(G) is the Jacobian of
this system with respect to X , i.e., the m×n matrix with element (i, j) equal to ∂ fi/∂x j. The rigidity
matrix of a framework (G, p) (written as R(G, p)) is R(G) with all variables xi replaced by p(xi).
When working with most constraint systems, the equations are quadratic and this process is often
referred to as linearization of the polynomial system.

As explained earlier, the solution space of a geometric constraint system is a variety in Kn (where
we may let K =C to make full use of the algebraic theory); it is the set of zeros of the corresponding
polynomial system. The row span of the rigidity matrix R(G, p) is the space of normals to this variety
at point (p(x1), p(x2), . . . , p(xn)). Any infinitesimal movement on the tangent space, orthogonal to
the space of normals (i.e., along the variety), will give another solution. The tangent space is the
right nullspace (or kernel) of R(G, p). Geometrically, any infinitesimal vector in the right nullspace
represents an infinitesimal change to each primitive such that the resulting framework still satisfies
all of the constraints.

The left nullspace of the rigidity matrix also has a geometric interpretation. The left nullspace
only has nonzero vectors if there is a linear dependency in the rigidity matrix, which corresponds to
an equilibrium self-stress of the system.

The degree-of-freedom (dof ) of the framework is the nullity of R(G, p) (i.e., the rank of the right
nullspace.) The framework is infinitesimally rigid if the dof is equal to the number of trivial motions.
Geometrically, this means that all infinitesimal motions arise from trivial motions of the space. By
the rank-nullity theorem, a framework is also infinitesimally rigid exactly when the rank of R(G, p)
is n− k, where n is the number of variables and k is the number of trivial motions. In the case of
d-dimensional Euclidean space, the space of trivial motions has dimension

(d+1
2

)
, which are the d

translations plus
(d

2

)
rotations. If the right nullspace of R(G, p) has dimension greater than

(d+1
2

)
,

then the framework (G, p) is said to have infinitesimal motions (or infinitesimal flexes).
It is clear that infinitesimal rigidity implies rigidity, and we give an example of a bar-joint frame-

work that is rigid but not infinitesimally rigid to show that the converse is false. A comprehensive
introductory treatment of the rigidity of graphs (bar-joint systems) can be found in Ref. [12].

To prove that rigidity does not imply infinitesimal rigidity, consider Figure 1.1. This is a rigid
bar-joint graph that has an infinitesimal motion that is zero at all places except at the single vertex
in the direction of the arrow. A rigid framework with a nontrivial infinitesimal motion is called
degenerate and must be in a nongeneric realization. A combinatorial characterization of rigidity is
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Figure 1.2
Two different 2D frameworks of the same generically flexible bar-joint constraint graph. The de-
generate framework on the left is rigid, whereas the generic configuration on the right is flexible.

only guaranteed to hold for a certain generic class of realizations, and we formalize what we mean
by genericity in the next section.

The rigidity matrix has a natural notion of dependence, based on the linear dependence of the
rows (or columns) of the matrix. As such, the rigidity matroid of a framework [12] is simply the
linear matroid of the rows of its rigidity matrix. That is, the row vectors of the matrix comprise the
ground set, and the linearly independent subsets of rows comprise the family of independent sets.
Therefore, the matroid rank (the maximum cardinality of an element in the matroid) is exactly the
rank of the matrix. Since each row corresponds to some constraint, a dependent row corresponds to a
dependent constraint. The framework as a whole is independent if there are no dependent constraints
and is dependent otherwise.

1.3.3 Generic Rigidity of Frameworks

Determining rigidity of frameworks is difficult; deciding global [29] and local rigidity [1] are
both strongly NP-hard for bar-joint systems. However, if a certain measure-zero set of primitive
arrangements is excluded, determining rigidity can become much easier for certain constraints and
primitives. This is the set of degenerate frameworks, which will be discussed in this section.

In Section 1.3.1, the notion of genericity was discussed in the context of geometric constraint
systems. When considering frameworks, genericity has a different meaning. A framework (G, p) is
said to be generic with respect to property P (G, p) satisfies NP if and only if there exists some
neighborhood N (p) around p such that for all points p′ ∈N (p) the framework (G, p′) satisfies P .

A property P is said to be generic when, for all constraint graphs G, either all generic frame-
works of G (w.r.t. P) satisfy P or none satisfy P . If a property of frameworks (G, p) is generic, then
it is a combinatorial property of the underlying constraint graph alone. Intuitively, a generic prop-
erty of a framework is one that is maintained if primitives were “wiggled” by small amounts in any
direction. For example, the independence of the rigidity matrix is a generic property of frameworks.

To illustrate the importance of considering generic frameworks, consider the following exam-
ples. See Figure 1.2 which depicts two frameworks of the same constraint graph. The nongeneric
framework on the left is rigid while being generically flexible. The three bar “chain” is taut, dis-
allowing finite flexes; with only slightly different lengths, this would no longer be rigid. See also
Figure 1.3 which also depicts two frameworks corresponding to a single constraint graph. The non-
generic framework on the left is flexible while being generically rigid. The three vertical bars are
the same length, permitting a vertical shear; with different lengths, there would be no infinitesimal
motions.

Whereas rigidity does not imply infinitesimal rigidity of a framework, in the generic case it
does. The Implicit Function Theorem from multivariate calculus, as in Ref. [3], shows that when
a framework is generic w.r.t. infinitesimal rigidity, every infinitesimal flex can be converted into a
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Figure 1.3
Two different 2D frameworks of the same generically rigid bar-joint constraint graph (known as
C2×C3). The degenerate framework on the left is flexible, whereas the generic configuration on the
right is rigid.

Table 1.1
Correspondence between constrainedness terminology when used in the context of generic systems
and generic frameworks.

Generic Systems Realizations Generic Framework
Under-constrained Infinite solutions Independent and flexible
Well-constrained Finite solutions Independent and rigid
Over-constrained No solutions Dependent
Under-over-constrained No solutions Dependent and flexible
Well-over-constrained No solutions Dependent and rigid

finite flex, i.e., rigidity in fact implies infinitesimal rigidity. Since infinitesimal rigidity is a generic
property, this shows that rigidity is also a generic property. As mentioned, this property can be
thought of as a combinatorial property of the underlying constraint graph. Therefore, a constraint
graph is called rigid if some generic framework of the graph is infinitesimally rigid. The notions of
flexibility and minimal rigidity have obvious meanings in the generic sense as well.

The generic rigidity matroid of a geometric constraint system with constraint graph G can be
defined in two ways: (1) the rigidity matroid of any generic framework (G, p), or (2) the rigidity ma-
troid formed by the rows of the rigidity matrix R(G) of indeterminates. This leads to combinatorial
notions of independence among constraints.

Table 1.1 establishes a rough correspondence between the genericity of a GCS, a framework, and
rigidity. Traditionally, generically under-constrained was used to describe all flexible frameworks
and was therefore a union of under- and under-over-constrained as defined here. The symmetry of
the new definitions displayed above is another argument for the new terminology.

1.3.4 Approximate Degree-of-Freedom and Sparsity

There is a real, algebraic notion of degree-of-freedom that is discussed in Section 1.3.2. This sec-
tion introduces a different, combinatorial idea of degree-of-freedom that can be used to approxi-
mate rigidity. This was briefly mentioned in Section 1.3.1, and has an obvious relationship with
constrainedness. The following methods are very general, working for any type of primitive or con-
straint. However, a positive result for rigidity by this characterization is often only a necessary con-
dition for true rigidity. Many systems require additional considerations, if there is a combinatorial
characterization at all.

In the constraint graph, each primitive has some degrees-of-freedom (dofs) and each constraint
eliminates some dofs between participating primitives. In some of the literature, particularly that
which uses network flow based algorithms, dof corresponds to the negation of the density of the
constraint graph. Given a constraint graph G = (P,C), with primitives P and constraints C, and a
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Figure 1.4
A 3D bar-joint framework, known as the double-banana. It is flexible due to a rotation about the
dashed line, despite being dof-rigid (i.e., (3,6)-tight).

weight function w on P and C, the density of G is

d(G) =
∑
c∈C

w(c)−
∑
p∈P

w(p).

Given some constant k equal to the number of trivial motions of the underlying geometry, a con-
straint graph is minimally dof-rigid if it has k dofs and every subgraph has at least k dofs. In terms
of density, the graph is minimally dof-rigid if d(G) =−k and for all subgraphs G′, d(G′)≤−k. A
graph is dof-rigid if it contains some minimally dof-rigid subgraph.

For example, consider 2D bar-joint systems: points can be thought of as having 2 dofs (transla-
tion but not rotation) and an edge between two points destroys 1 dof, leaving a system with 3 dof
(translation and rotation.) In Euclidean 2D space, there are 3 trivial motions and therefore a sin-
gle edge would be dof-rigid. In fact, as mentioned earlier, this notion of dof-rigid exactly captures
generic rigidity of 2D bar-joint systems. We follow the convention of referring to methods using dof
analysis as Laman counts.

We can understand the rigidity of some systems combinatorially using only dof analysis. How-
ever, this combinatorial notion of dof-rigid does not usually imply generic rigidity. Consider 3D
bar-joint systems: points instead have 3 dofs, edges still eliminate 1 dof, and the space has 6 trivial
motions. By the counts, the famous “double banana” graph in Figure 1.4 is dof-rigid; however, the
“bananas” can clearly swivel about the dashed hinge.

As mentioned earlier, the Laman-Pollaczek-Beiringer theorem gives a purely combinatorial
property (no algebra, simply counting) to capture the properies of the rigidity matrix and there-
fore the matroid. These subsystems are exactly the independent sets of the 2D bar-joint rigidity
matroid.

This theorem motivated the notion of sparsity and sparsity counts [22]. This terminology is used
to discuss constraint graphs where all primitives have k dofs and all constraints eliminate one dof
and are binary; however, the theory does allow loops, effectively permitting unary constraints, and
allows for multiedges, so constraints that eliminate n dofs can be represented in as many edges. A
graph G = (V,E) is (k, l)-sparse, for every induced subgraph G′ = (V ′,E′), the inequality |E′| ≤
k|V ′|− l. The graph is (k, l)-tight if it additionally satisfies |E|= k|V |− l.

For example, Laman graphs would be the set of (2,3)-tight graphs. A 2D system of 2D rigid
bodies and distance constraints would use k = 3 and l = 3; in fact, (3,3)-tight graphs are exactly
the class of 2D rigid body-bar graphs. For a fixed k and l there is often a natural interpretation of a
(k, l)-tight graph as a constraint system in which geometric primitives have k dof.

For all l < 2k, these counts define a sparsity matroid where the basis is the set of edges and the
independent sets are the edges in the (k, l)-sparse subgraphs. This allows for an efficient class of
algorithms, called pebble games, which can detect (k, l)-sparse graphs in polynomial time, if l < 2k.
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1.4 Alternative Pathway through the Book
Given the interconnected nature of the chapters of this book there are many logical ways of or-
dering the material. Here, we describe an alternative navigation that might be more accessible to a
newcomer.

In this suggested pathway, Group I contains chapters highlighting the different perspectives
from developing solvers for general geometric constraint systems to analyzing the rigidity of bar-
and-joint structures to constructing purely combinatorial objects arising in rigidity theory. Groups
II and III focus on the problems studied in Rigidity Theory, introducing concepts such as local and
global rigidity and considering models initially restricted to points before generalizing to other types
of geometric primitives (e.g., rigid bodies or lines). Groups IV and V shift the structure to partition
by the underlying approaches (metric geometry and algebraic methods).

Group I Getting Started: Chapters 1, 6, 7, 18, and 19
To get the lay of the land, start with two sets of chapters highlighting the perspec-
tives of historically distinct communities. Chapters 6 and 7 focus on decomposition-
recombination approaches used in computing realizations of a general GCS. In contrast,
Chapter 18 restricts its content to the classical structure studied in Rigidity Theory of
2-dimensional bar-and-joint frameworks (introduced in Section 1.1.1); the combinatorial
property characterizing generic bar-and-joint rigidity is studied in a generalized setting in
Chapter 19.

Group II Rigidity Theory for Point Primitives: Chapters 21, 16, 8, 14, 15, and 25
Building upon the fundamentals introduced in Group I, continue the Rigidity Theory per-
spective, with topics posed in the setting of GCS with points as the geometric primitives.

Group III Rigidity Theory for Other Primitives: Chapters 20, 13, 22, and 23
Next, move to the Rigidity Theory for systems defined on geometric primitives beyond
simply points (e.g., rigid bodies, lines).

Group IV Metric Geometry: Chapters 24, 17, 9, and 10
Shifting to an organization based on underlying techniques, start with approaches relying
on distance and metric geometry.

Group V Algebraic Methods: Chapters 12, 11, 3, 2, 5, and 4
Finally, conclude with chapters based on algebraic methods.

The intention of this pathway is to help to get readers started with the varying perspectives on
GCS formulation (Group I). Then, start with topics in Rigidity Theory (Groups II and III) before
shifting to an order partitioned more by the underlying machinery (Groups IV and V).
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2.1 Introduction
Computer-assisted proof in mathematics has been underway since the pioneering times of comput-
ers in the 1950s. Starting from early systems with very limited capability, computer-assisted theorem
proving has evolved to demonstrate theorems never proved before by humans [156] and assist with
monumental efforts spanning several man-years [116]. In this endeavour, geometry plays an impor-
tant part, just as it has throughout the history of mathematics. This is due to its pervasive role: it
is a paradigmatic form of reasoning, with applications to education, mathematical and physical re-
search, but also to many applied areas such as robotics, computer vision, and CAD [48]. Moreover,
many of the search techniques and other algorithmic features developed for geometric reasoning
have influenced other areas of artificial intelligence.

As for other subfields of computer-assisted proof, the mechanization of geometry spans both
automated and interactive theorem proving. In the former, computers aim to prove theorems com-
pletely automatically, while in the latter, the role of the system is to act as a proof assistant that
verifies the reasoning steps of the user, guides the proving process, and provides some limited au-
tomation. These two branches are often connected through methods that can produce geometric
proofs automatically, where either the proofs or the methods themselves are fully verified.

Just as for its pen-and-paper counterpart, computer-assisted proof in geometry is subject to dif-
ferent foundations: algebraic or synthetic (axiomatic) ones. This chapter aims to provide a com-
prehensive survey of the latter and of its applications. In particular, it will mostly deal with pla-
nar Euclidean geometry [6], which in this case generally means a theory consisting of geometric
statements true in R2. There are several formal systems that aim to axiomatize this theory or its
subtheories, including those due to Euclid, Hilbert, and Tarski.

In what follows, to ensure a coherent exposition, we will use a uniform notation (which may
differ at times from that used by the original authors). In particular, we will denote points by upper-
case letters, lines by lowercase ones, the strict notion of betweenness by A ·−B ·−C (i.e., B belongs to
segment AC and is different from A and C) while its nonstrict version will be denoted by A−B−C,
collinearity by Col ABC, perpendicularity by⊥, cyclicity of points, i.e., points lying on the same cir-
cle, by cyclic(A,B,C,D), the angle between half-lines AB and AC by ∠ABC, the full-angle between
lines AB and CD by ∠[AB,CD], a triangle with vertices A, B, C by4ABC, congruence between seg-
ments, triangles, or between angles by ∼=, and equality over measures of angles or over full-angles
by =.

2.2 Automated Theorem Proving
Automated theorem proving in geometry is often considered a “classical AI domain.” Its methods
can be split into three major families or styles: algebraic, synthetic, and semisynthetic.

The algebraic methods deal with the algebraized formulation of geometric statements and usu-
ally involve dealing with the membership of polynomial ideals [45, 217, 224], quantifier elimina-
tions [64, 212], or use coordinate-free approaches based on bracket and Cayley algebras, described
in Chapter 3. Although they are powerful, they cannot produce human-readable proofs and, gener-
ally, consist of steps that do not have any obvious meaning in synthetic geometry. The second and
the third groups of methods, the subjects of this review, focus on proving theorems via geometric ax-
ioms (or higher-level geometric lemmas) and often try to automate the traditional theorem proving
approaches, while attempting to generate human-readable proofs.

Automated theorem proving is used in various contexts, e.g., for mathematical education [19],



Computer-Assisted Theorem Proving in Synthetic Geometry 23

in the simplification of geometric axiom systems [69] and in the study of incidence geometry using
term rewriting techniques [5].

Unless otherwise stated, the methods presented next only deal with planar geometries assuming
the parallel postulate.

Note also that the examples will be presented in a uniform way, although we have taken care to
preserve the essence of the methods being applied. Finally, we remark that there are other surveys
[48, 90, 97, 131, 218] that cover some of the approaches that we will discuss next.

2.2.1 Foundations

Aside from the algorithmic techniques used, automated theorem proving methods rely on various
choices with regard to the underlying logic and geometric knowledge. One issue relates to a set
of axioms to be used. Some methods use well-known geometric axioms sets, but most use custom
(finite sets of first-order) axioms. In the latter case, the axioms are actually simple theorems of Eu-
clidean geometry whose proofs are not considered and are asserted as facts belonging to common
geometric knowledge (hence they are often called “lemmas” or “rules”). The set of axioms is not
necessarily minimal as they are often selected to ease the automatic proof of more complex theo-
rems. For many methods, choosing an appropriate set and level of axioms is one of most critical
issues when it comes to power and efficiency.

2.2.2 Nondegenerate Conditions

The notion of nondegenerate (NDG) conditions arises for each style of automated geometric rea-
soning. Namely, it is often the case that the goal (denoted by G) is implied by the configuration
(denoted by C) plus some additional conditions [46, 48, 55]. For such conditions (denoted by ndg),
the following formulae (where ∀∗ and ∃∗ denote universal and existential closure) have to be valid:
∃∗ (C∧ ndg) and ∀∗ (C∧ ndg⇒ G). In many cases, the methods can automatically produce such
NDG conditions, although not necessarily the “weakest” ones. There are, however, algorithms for
computing the weakest NDG conditions [44].

2.2.3 Purely Synthetic Methods

Purely synthetic methods, or simply synthetic methods do not use coordinates and algebraic forms
for the geometric statements. Many of these techniques add auxiliary elements to the geometric
configuration under consideration, so that certain axioms can be applied. This usually leads to a
combinatorial explosion in the search space. The challenge then rests in controlling this explosion
and in developing suitable heuristics in order to avoid unnecessary construction steps. Due to the na-
ture of these problems, such synthetic proof techniques are sometimes called Artificial Intelligence
(AI) methods for automated theorem proving in geometry.

The very first AI method was developed by Gelernter et al. Quoting the authors: “In early spring,
1959, an IBM 704 computer, with the assistance of a program comprising some 20000 individual in-
structions, proved its first theorem in elementary Euclidean plane geometry” [101]. Their program,
called the Geometry Machine and written in FORTRAN [99, 100], was not only the first automated
theorem prover for geometry, but also one of the very first automated reasoning systems for mathe-
matics. Although its power, from a modern point of view, was very limited, this system is important
both for historical reasons and for introducing a number of ideas and techniques that were used by
many subsequent reasoning systems. At the time, geometry was viewed as a typical, paradigmatic
AI domain but also as a potentially easy domain where simple ad-hoc rules, basic forward and back-
ward chaining∗ applied exhaustively, and simple heuristics could be used to bear easy fruit e.g. such

∗Forward and backward chaining are two important forms of inferences within reasoning systems. The former can be viewed
as a sequence of applications of modus ponens that derives new facts from existing premises in order to prove the goal, while
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as cracking the whole area of high school geometry. In the description of the approaches, logical
representation, algorithms, implementation details, and even the description of features of the pro-
gramming languages were often intermixed. Over time, more sophisticated and mature approaches
have emerged, with many still using some of the early techniques and ideas though.

2.2.3.1 Early Systems

Gelernter’s Geometry Machine implemented several reasoning techniques. These included the use
of “diagrams” (concrete models in the Cartesian plane) in an attempt to reject false subgoals before
any attempt to prove them, dealing with symmetries, and the use of simplification rules (akin to
modern rewrite rules). The system worked by backward reasoning – starting with the given goal
and trying to decompose it to simpler provable subgoals. Its basic rules were based on axioms about
the congruence of triangles. Thus, proving that two segments were congruent could be done by
showing that these two segments were the corresponding edges of two congruent triangles.

Example. Proving the following theorem, in less than 20s, was one of the big triumphs of Geom-
etry Machine: if ∠ABD∼= ∠DBC, AD⊥ AB, DC ⊥ BC, then AD∼=CD (Figure 2.1):

∠ABD∼= ∠DBC (Premise)
∠DAB is right angle (by Definition of perpendicular)
∠DCB is right angle (by Definition of perpendicular)
∠BAD∼= ∠BCD (by All right angles are congruent)
BD∼=BD (by Reflexivity of congruence)
4ADB∼=4CDB (by Congruence of triangles, rule Side-Angle-Angle)
AD∼=CD (by Corresponding elements of

congruent triangles are congruent)

A

B C

D

Figure 2.1
Geometry machine diagram.

There were several subsequent systems improving on Gelern-
ter’s ideas, e.g., by combining backward and forward chaining,
by trying to model the human solving process more faithfully,
or by being designed to serve as support for tutoring systems
[2, 109, 56, 57, 89, 103, 105, 136, 166]. However, despite all these
efforts, these early systems had a very limited scope and were only
able to prove geometric problems of small or moderate complexity.
They didn’t treat NDG conditions and were not able (or were able
only to a limited extent) to add new, “auxiliary” points, necessary
in many proofs. So, they typically dealt only with axioms and conjectures of the following form
(universal closure is assumed): A1(~x)∧ . . .∧An(~x)⇒ B(~x), where~x denotes a sequence of variables,
Ai and B are atomic formulae or their negations.

2.2.3.2 Deductive Database Method, GRAMY, and iGeoTutor

There are several theorem proving methods, including the deductive database (DD) [54] and those
used by the systems GRAMY [155] and iGeoTutor [220], that deal with “rules” and conjectures
of the form (universal closure is assumed): A1(~x)∧ . . .∧An(~x)⇒ B1(~x) and also rules of the form:
A1(~x)∧ . . .∧An(~x)⇒ ∃~y(B1(~x,~y)∧ . . .∧ Bm(~x,~y)) where ~x and ~y denote sequences of variables,
Bi are atomic formulae and A j are atomic formulae or their negations. There are no disjunctions
either in the rules or in the conjectures. Hence, these methods cannot prove conjectures involving
existential quantifiers, but can use new, auxiliary points (or segments), while searching for a proof.†

the latter can be viewed as applying modus ponens backward to refine the goal into subgoals that can hopefully be proven
from the premises.
†Using auxiliary points makes a substantial change compared to the early methods (Section 2.2.3.1), a change that enabled

the proof of a wider set of complex theorems.
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One of the main challenges, though, lies in controlling the introduction of additional objects since
these can lead to a combinatorial explosion.

Unlike for algebraic methods, a common motivation here is the generation of human-readable
synthetic proofs that are as close as possible to those taught in schools. Moreover, in the case of
GRAMY, the generation of several proofs is attempted, making it suitable for some forms of tutor-
ing.

Scope. The methods deal with formulae containing no function symbols and with fixed sets of
predicates symbols. For instance, the DD method uses predicate symbols corresponding to geo-
metric relations (over points), such as Col , ⊥, cyclic(), and equality over full-angles (see Section
2.2.4.2). GRAMY deals not only with points, but also with segments, angles and triangles, and with
a set of predicate symbols that includes ∼= , ⊥, ‖, membership, etc. Each system uses a fixed set of
axioms, for instance, the DD method uses around 75 axioms of the first form, including:
D41: cyclic(A,B,P,Q) ⇒ ∠[PA,PB] = ∠[QA,QB]
D42: ∠[PA,PB] = ∠[QA,QB] ∧ ¬Col PQAB ⇒ cyclic(A,B,P,Q)
D74: ∠[AB,CD] = ∠[PQ,UV ] ∧ PQ⊥UV ⇒ AB⊥CD

and around 20 rules of the second form, including, for example:
X1: OM ⊥MA ∧ ∠[XO,MO] = ∠[MO,AO] ⇒ ∃B (Col BAM∧Col BOX)

The DD method was reported as being able to prove, in a matter of seconds and via hundreds of
derived facts, 160 out of the 600 theorems in the authors’ collection of results proved by Wu’s
method. GRAMY and iGeoTutor were applied on smaller benchmark sets gathered from different
sources.

Theorem proving mechanisms. For a given conjecture, atomic formulae from the hypotheses
are considered as “facts.” All three methods use forward chaining for deriving new facts using the
available axioms (the DD method takes some ideas from deductive database theory [96]). There is
a number of techniques (e.g., based on symmetries) used for keeping the number of stored derived
facts low and the proving process efficient.

Auxiliary points are introduced only in a controlled manner, determined by various strategies,
such as introducing new points only if new facts cannot be derived using forward chaining, or intro-
ducing points only through a very limited number of templates, specific geometry configurations.

GRAMY and iGeoTutor do not handle NDG conditions, while the DD method treats them using
a form of negation as failure augmented with some basic diagrammatic model checking.

iGeoTutor can deal with conjectures involving some arithmetical constraints and for that purpose
uses external provers that are specialized for theories like linear arithmetic and are available within
the SMT (Satisfiability Modulo Theory) solver Z3 [160].

P

Q

A

B C

D

Figure 2.2
iGeoTutor diagram.

Example. The system iGeoTutor can prove the following theo-
rem: Given a square ABCD, a point in its interior such that AP∼=PD
and ∠PAD = 15◦, prove that the triangle4PBC is equilateral. The
system, using the fact AB∼=AD, decides to use the congruent tri-
angles template, and adds a points Q such that ∠BAQ∼=∠PAD
and AQ∼= AP (such that 4AQB ∼= 4APD holds). Later, the sys-
tem decides to use another template and introduces the segment
QP. By the initial forward chaining, the system deduces BP∼=CP,
∠APD = 150◦ (among others facts). The rest of the proof is as fol-
lows:
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4AQB∼=4APD (by Congruence of triangles, rule Side-Angle-Side)
∠BAQ = 15◦, ∠BQA = 150◦ (by Corresponding parts of

congruent triangles are congruent)
∠QAP = 60◦ (∠QAP = 90◦−∠BAQ−∠PAD)
∠AQP = 60◦, ∠APQ = 60◦ (by AQ∼=AP, Isosceles triangle)
AQ∼=PQ (by4AQP is equilateral)
∠BQP = 150◦ (∠BQP = 360◦−∠BQA−∠AQP)
4AQB∼=4PQB (by BQ∼=BQ, ∠BQA∼= ∠BQP

AQ∼=PQ, Side-Angle-Side)
AB∼=BP (by Corresponding parts of

congruent triangles are congruent)
BC∼=BP, BC∼=CP (by AB∼=BC, AB∼=BP, BP∼=CP,

Transitivity of congruence)

Properties. These methods are complete, with respect to the set of rules being used, for proofs
that do not require the introduction of auxiliary points since the search space is then finite. This
feature enables not only proof, but also the deduction of additional facts from a given configuration
and hence the discovery of new theorems. If a proof requires auxiliary elements, completeness can
be proved only under specific conditions.

2.2.3.3 Logic-Based Approaches

Geometric theorems can be proved not only by dedicated systems but also by general ones, typically
by theorem provers for first order logic or some of its fragments such as Coherent logic (CL). Such
automated provers usually cover rich sets of formulae that include existential quantification. We
review some of these approaches next.

Coherent logic consists of formulae of the following form (universal closure is assumed) [15,
85]: A1(~x)∧ . . .∧An(~x)⇒ ∃~y(B1(~x,~y)∨ . . .∨ Bm(~x,~y)), ~x and ~y denote sequences of variables, Ai
denotes an atomic formula, and B j denotes a conjunction of atomic formulae. There are no function
symbols with arity greater than zero and there is no negation. Resolution logic (RL) deals with
clauses, i.e., formulae of the following form (universal closure is assumed): A1(~x)∨ . . .∨An(~x),
where ~x denotes sequences of variables, and Ai denotes an atomic formula or a negation of an
atomic formula.

CL conveys a wider range of formulae compared to the DD method, for instance (Section
2.2.3.2) – there can be existential quantification over variables, not only in axioms but also in con-
jectures and, also, there can be disjunctions. CL can also be considered as an extension of RL, but
in contrast to the resolution-based proving, the CL conjecture can be proved directly and unchanged
(refutation, Skolemization and transformation to clausal form are not used). The domain of pro-
cedures for CL actually covers first-order logic because every first-order theory can be translated
into coherent logic, possibly with additional predicate symbols [185, 85]. Checking validity of an
arbitrary first-order formula can be replaced by checking unsatisfiability of a corresponding set of
clauses (after refutation, Skolemization and transformation to clausal form).

Provability in CL and unsatisfiability in RL are semi-decidable and there is a number of methods
and provers for coherent logic (some of them are based on simple forward reasoning and iterative
deepening, with a number of techniques for narrowing the search space [15, 208, 209], while some
use more advanced techniques, like lemma learning and back-jumping [167, 169]) and much more
for RL [196]. CL admits a simple sequent-calculus style proof system, and any corresponding CL
proof has a simple structure [208]. Readable proofs in a forward reasoning style can be easily
obtained in CL [15]. The existing theorem proving methods for CL and RL do not deal with NDG
conditions but can use the same heuristics as for the DD method (Section 2.2.3.2).
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CL provers have been used in a variety of settings and domains. In particular, they have been
applied to Euclidean geometry using an axiom system similar to Borsuk’s [18, 129] and to Hilbert’s
and Tarski’s axiomatics, with proofs exported to Isabelle, Coq, and natural language [208, 209].
They have also been used to prove the correctness of solutions to ruler and compass construction
problems [153]. They have been used for projective plane geometry, where a proof of Hessenberg’s
theorem was carried out with Coq proof objects generated [16]. Recent work has also seen them
combined with resolution theorem provers such as Vampire (for filtering relevant axioms) [210].

Example. The following theorem from Tarski’s geometry [201] can be proved in CL (using the
theorem prover ArgoCLP [209]): Assuming that A−B−C, (A, B)∼= (A, D), and (C, B)∼= (C, D), show
that B = D. The presented proof is obtained by simplifying and transforming the generated proof,
so it reintroduces negation and uses reductio ad absurdum [152].

1. It holds that B−A−A (by th 3 1).
2. From the facts that A−B−C, it holds that Col C AB (by ax 4 10 3).
3. From the facts that (A, B) ∼= (A, D), it holds that (A, D) ∼= (A, B) (by th 2 2).
4. It holds that A = B or A 6= B (by ax g1).

5. Assume that A = B.
6. From the facts that (A, D) ∼= (A, B) and A = B it holds that (A, D) ∼= (A, A).
7. From the facts that (A, D) ∼= (A, A), it holds that A = D (by ax 3).
8. From the facts that A = B and A = D it holds that B = D.

This proves the conjecture.
9. Assume that A 6= B.

Let us prove that A 6= C by reductio ad absurdum.
10. Assume that A = C.

11. From the facts that A−B−C and A = C it holds that A−B−A.
12. From the facts that A−B−A, and B−A−A, it holds that A = B (by th 3 4).
13. From the facts that A 6= B, and A = B we get a contradiction.

Contradiction.
Therefore, it holds that A 6= C.

14. From the fact that A 6= C, it holds that C 6= A (by the equality axioms).
15. From the facts that C 6= A, Col C AB, (C, B) ∼= (C, D), and (A, B) ∼= (A, D), it holds that B = D (by th 4 18).

This proves the conjecture.

Quaife used the resolution theorem prover OTTER to prove several non-trivial theorems in
Tarski’s geometry [201], with a slightly modified axiom system [189]. During theorem proving, a
number of techniques were employed to guide resolution and, upon success, some post-processing
used to translate the resolution proofs into a more readable form. More recently, Beeson and Wos
carried out some similar work, but with a newer version of OTTER and with much more success
thanks to a number of techniques and strategies that have become available in the meantime [10, 11].
They proved around 200 theorems from the book by Schwabhäuser et al. [201]. Of these theorems,
76% were proved automatically using different custom heuristics and strategies, while for the others
heavy human support (in a form of lemmas and hints) was required. This latest work did not involve
the production of readable proofs from the resolution ones. Even more recently, other resolution
provers with state-of-the-art techniques have led to an even higher percentage of theorems from the
same corpus being proved completely automatically, without any guidance by humans [216].

Example. The following proof, slightly reformulated for the sake of uniformity, is generated by
Quaife’s approach: if C is between B and D, each of which is between A and E, then C is between
A and E.
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37 U−V−W ⇒W−V−U (by Axiom)
45 U−V−X ,V−W−X ⇒U−W−X (by Lemma)
46 U−V−W,U−W−X ⇒U−V−X (by Lemma)
74 U−V−X ,U−W−X ⇒U−V−W,U−W−V (by Lemma)
77 A−B−E (by Hyp)
78 B−C−D (by Hyp)
79 A−D−E (by Hyp)
80 ¬A−C−E (by negated goal)
91 ¬A−C−D (by 80, 46, 79)
92 ¬A−C−B (by 80, 46, 77)

109 ¬A−B−D (by 91, 45, 78)
127 ¬B−C−A (by 92, 37)
184 A−D−B (by 109, 74, 79, 77)
253 ¬B−D−A (by 127, 46, 78)
309 Contradiction! (by 184, 37, 253)

2.2.4 Semisynthetic Methods

Semisynthetic methods, sometimes also called coordinate-free methods or geometric invariant
methods, do not use algebraic formulation of geometry problems, but express conjectures in terms
of certain geometric quantities and prove them by manipulating equalities over expressions in these
quantities. This approach can also lead to combinatorial explosion, but in many cases can give short
and readable proofs.

2.2.4.1 Area Method

The area method is a procedure for a fragment of Euclidean plane geometry [50, 51, 130, 229].
It uses suitably chosen geometry quantities, such as area of triangle, and can efficiently prove
many non-trivial theorems and produces proofs that are often very concise and human-readable.
The method had been extended to solid Euclidean geometry [52], to non-Euclidean geometries
[225, 226] and, in conjunction with Collins algorithm [63], to a system for proving geometry in-
equalities [197].

Scope. A conjecture consists of a construction and a goal, where the construction is expressed in
terms of (five basic) specific construction primitives (or constructions composed of the primitive
ones), and the goal is an equality over expressions given in terms of (three basic) specific primitive
geometry quantities. Both the construction and the goal are expressed only in terms of points (i.e.,
cannot involve lines or circles explicitly).

An example of a construction primitive is INTER Y U V P Q, which indicates that point Y is the
intersection of lines UV and PQ. For a construction step to be well-defined, certain NDG conditions
may be required. The above construction step has a NDG condition U 6= V ∧ P 6= Q ∧ UV ∦ PQ.
Intersections of two circles and intersections of a line and a circle are supported by construction
primitives only in some special cases. Additional construction steps can be expressed in terms of
the basic ones.

The geometric quantities used are: the signed ratio of parallel directed segments, denoted
AB
CD

, the signed area for a triangle ABC; denoted SABC (negated for the triangle with the op-
posite orientation); the Pythagoras difference, denoted PABC (for the points A, B, C, defined as
PABC = AB

2
+CB

2−AC
2
). Using these quantities, a number of geometric predicates can be simply

expressed, for instance: A= B iff PABA = 0; Col ABC iff SABC = 0; AB⊥CD iff PABA 6= 0∧PCDC 6=
0∧PACD = PBCD; AB ‖CD iff PABA 6= 0∧PCDC 6= 0∧SACD = SBCD, etc.

The method implemented by its authors proved 500 theorems from their collection [51].
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Theorem proving mechanism. The method works by the elimination of constructed points in
reverse order, using a set of specific elimination lemmas.‡ All the lemmas used by the method can
be proved by an elegant, custom axiom system (Section 2.3.1.4).

There is an elimination lemma for each pair of construction step and geometric quantity. For
instance, the following lemma is used for eliminating a point constructed on a line at a given ratio
from a signed area:

If Y is a point constructed on line PQ, such that PY
PQ

= λ then for any points A and B

SABY = λSABQ +(1−λ )SABP.

The combined NDG conditions of the conjecture is the conjunction of those for the correspond-
ing construction steps, of the conditions that the denominators of the ratios of parallel directed
segments in the goal equality are not equal to zero, and of the conditions that lines appearing in
ratios of segments in the goal are parallel. It is then proved that the goal equality follows from the
construction specification and the combined NDG conditions.§

A
B

C
D

I

J

K

L

Figure 2.3
Varignon’s theorem.

Apart from the basic NDG conditions, there are also side con-
ditions in some of the elimination lemmas having two cases — pos-
itive (always of the form “A is on PQ”) and negative (always of the
form “A is not on PQ”). If one side condition can be proved, then
that case is applied. Otherwise, in one variation of the method, the
proof process branches into two cases, and in another, the negative
case is assumed and added to the NDG conditions [130].

Example. As an example, we give the proof of Varignon’s theo-
rem: Given a quadrilateral ABCD, let I, J, K and L be the midpoints
of AB, BC, CD, DA, then IJKL is a parallelogram. We give below
the proof that IJ ‖ KL, the proof that JK ‖ IL is similar. Note that
a synthetic proof within Coq is given in Figure 2.9.

SKIJ−SLIJ

= SKIB
2 + SKIC

2 −
SLIB

2 −
SLIC

2 J Eliminated
= SBKA

2 + SBKB
2 + SCKA

2 + SCKB
2 − SBLA

2 −
SBLB

2 −
SCLA

2 −
SCLB

2

I Eliminated

= 1
2 (SBKA + SCKA + SCKB − SBLA − SCLA −
SCLB)

Simplification

= 1
2 (
SABC

2 + SABD
2 + SACC

2 + SACD
2 + SBCC

2 +
SBCD

2 −SBLA−SCLA−SCLB)

K Eliminated

= 1
2 (
SABC

2 + SABD
2 + SACC

2 + SACD
2 + SBCC

2 +
SBCD

2 − SABA
2 − SABD

2 − SACA
2 − SACD

2 −
SBCA

2 −
SBCD

2 )

L Eliminated

= 1
4 (SABC +SBCA) Simplification

= 0 Simplification

Properties. The method is terminating, sound, and complete: for each geometric statement in its
scope, it can decide whether it is a theorem, i.e., it is a decision procedure for this fragment of
geometry. Its complexity is exponential in the number of points involved [229].

‡A later variant of the method also deals with nonconstructive statements, described in terms of various geometric predicates
[53].
§If the negation of some NDG condition of a geometric statement is implied by the remaining construction steps, the

left-hand side of the implication is inconsistent and the statement is trivially valid.
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2.2.4.2 Full-Angle Method

The full-angle method [47] is, in spirit, closely related to the area method (Section 2.2.4.1) and can
also produce elegant proofs for a number of complex theorems. The idea of eliminating points is
extended to eliminating lines. The main motivation of the full-angle method is the fact that using
“traditional angles” in geometrical proofs typically leads to considering a number of cases. For
instance, for four distinct cyclic points A, B, C, D, one can claim that the angles ∠ABC and ∠ADC
are congruent if B and D are on the same side of line AC or complementary if they are on opposite
sides (Figure 2.4). On the other hand, with full-angles one can simply (without using order relation
or orientations of plane) state ∠[AD,CD] = ∠[AB,CB]. Namely, it holds ∠[AB,BC] = ∠[DE,EF ]
iff ∠ABC∼=∠DEF and the two angles have the same orientation or ∠ABC = 180◦−∠DEF and the
two angles have opposite orientations.

A

B

C

D

D

Figure 2.4
Cyclic points and peripheral angles.

A full-angle is defined to be an ordered pair ∠[m,n]
of two intersecting lines m and n, such that ∠[m,n] is
equal to another full-angle ∠[u,v] if there is a rotation
R such that R(m) ‖ u and R(n) ‖ v (therefore, any full-
angle can be considered as an equivalence class) [51].
The sum of two full-angles is defined as follows: given
four lines m, n, u, and v, and a rotation R such that
R(u) ‖ n, then ∠[m,n] +∠[u,v] = ∠[m,R(v)]. For arbi-
trary line m, ∠[m,m] is denoted by 0. For arbitrary lines
m and n, ∠[m,n] can be denoted also by −∠[n,m]. It can
be proved that full-angles form an Abelian group with the
operation +, the neutral element 0, and with inverse element corresponding to the (unary) operator
−. In addition,∠[m,n]+−∠[u,v] is abbreviated by∠[m,n]−∠[u,v], and for arbitrary perpendicular
lines m and n, ∠[m,n] is denoted by 1.

It can be proved that full-angles satisfy around 20 properties useful for transforming goals,
including the following ones (where, for each full-angle ∠[AB,CD], it is assumed that A 6= B and
C 6= D):
R4: 1+1 = 0
R6: if Col PQX then ∠[AB,PX ] = ∠[AB,PQ]
R10: if cyclic(A,B,C,D) then ∠[AD,CD] = ∠[AB,CB]
R13: ∠[AB,CD] =−∠[CD,AB]
R14: for any line UV , ∠[AB,CD] = ∠[AB,UV ]+∠[UV,CD]

Scope. The full-angle method deals with conjectures consisting of hypotheses, expressed in terms
of relevant construction steps (cf. the area method in Section 2.2.4.1) or in terms of other geometric
predicates (as in the later variation of the area method), and of a goal that is an equality over full-
angles.

Theorem proving mechanism. The proof method uses forward chaining for exhaustively deduc-
ing new facts from the existing ones, using lemmas (rules) like:
F1: if m ‖ n and m ‖ l, then n ‖ l
F5: if PA⊥ PB then QA⊥ QB iff cyclic(A,B,P,Q)
F8: if AB ‖ AC, then Col ABC
K2: if m⊥ n and u⊥ v, then ∠[m,u] = ∠[n,v]

Some rules have NDG conditions attached and they can be treated as for the area method (see
Section 2.2.4.1).

Using derived facts, rules like the ones listed above are used for elimination of points (R6) or
lines (R10) from the goal – this is again analogous to the area method although the expressions are
now simpler since there are no multiplications or divisions over full-angles.
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The configuration is not necessarily expressed in terms of constructive statements and so (unlike
in the basic version of the area method) there is no implicit order in which points can be eliminated.
So, an ordering has to be imposed over points, which extends to full-angles, in order to control
the application of the rules. For instance, the rule: For any line UV , ∠[AB,CD] = ∠[AB,UV ] +
∠[UV,CD] is used only if the two new full-angles can be further reduced to full-angles less than
∠[AB,CD] (in the ordering).

A B

CD E

F

G

Figure 2.5
Simson’s theorem.

Example. For Simson’s theorem (Figure 2.5) the hypothe-
ses are cyclic(A,B,C,D), E is the foot from D to BC (i.e.,
Col BC E and DE ⊥ BC), F is the foot from D to AC (i.e.,
Col AC F and DF ⊥ AC), G is the foot from D to AB (i.e.,
Col ABG and DG ⊥ AB), and the goal is that G, F , E are
collinear, i.e., ∠[GF,GE] = 0.

The proof assumes that for each full-angle∠[XY,UV ] used
it holds that X 6= U and Y 6= V . The following point order
is used O,A,B,C,D,E,F,G, and the following facts (among
others) can be derived from the hypotheses: cyclic(F,A,D,G)
(because FA ⊥ FD,GA ⊥ GD), cyclic(E,B,D,G) (because
EB⊥ ED,GB⊥ GD). In the following proof outline, applications of rules related to the symmetry
properties of relations are not shown.

∠[GF,GE] =
= ∠[GF,GD]+∠[GD,GE] (by R14)
= ∠[AF,AD]+∠[GD,GE] (by R10, cyclic(F,A,D,G))
= ∠[AF,AD]+∠[BD,BE] (by R10, cyclic(E,B,D,G))
= ∠[AF,AD]−∠[BE,BD] (by R13)
= ∠[AC,AD]−∠[BE,BD] (by R6, Col AF C)
= ∠[AC,AD]−∠[BC,BD] (by R6, Col BC E)
= ∠[AC,AD]−∠[AC,AD] (by R10, cyclic(A,B,C,D))
= 0

Properties. The method is not complete, but can be used as a complement to the area method.
When applied to a conjecture in its scope, if it succeeds, the generated proof is typically short and
readable. Otherwise, the goal is transformed into a goal for the area method: an equality α = β is
transformed¶ into tan(α) = tan(β ) and then further using the following equations (where PABCD =
PABD−PCBD):

tan(∠[AB,CD]+∠[PQ,UV ]) =
tan(∠[AB,CD])+ tan(∠[PQ,UV ])

1− tan(∠[AB,CD]) tan(∠[PQ,UV ])

tan(∠[AB,CD]) =
4SACBD

PADBC

Since the area method is complete, the above gives a decision procedure for formulae belonging
to the scope of the full-angle method [47].

2.2.4.3 Vector-Based Method

The idea of using vectors for automating geometric proofs has been proposed by several authors, but
probably the most important work in the area is due to Chou, Gao, and Zhang [49]. Their method

¶The function tan for the full-angle (corresponding to the usual trigonometric function), tan(∠[AB,CD]) = 4SACBD
PADBC

, is
well-defined, thanks to the fact that ∠[AB,CD] = ∠[PQ,UV ] iff SACBDPPUQV = SPUQV PACBD.
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is, in spirit, close to the area method (Section 2.2.4.1), in the way the hypotheses are described
constructively and the constructed points are eliminated from the goal one by one using appropriate
lemmas.

Scope. The hypotheses are expressed in terms of (four) specific construction primitives. For in-
stance, PRATIO A W U V r denotes the construction of a point A such that

−→
WA = r

−→
UV , where r

is a rational number, an expression over geometric quantities, or a parameter (the NDG condition
is U 6= V ). Additional construction steps can be suitably expressed in terms of the basic ones. For
instance, the construction of the midpoint, denoted MIDPOINT M A B, can be expressed as PRATIO
M A A B 1/2.

A goal is either an equality over vectors or an equality involving the inner products (〈−→AB,
−→
CD〉)

and exterior products ([
−→
AB,
−→
CD]) of vectors over constructed points.

There are two kinds of NDG conditions: those induced by the construction steps and those
necessary for the goal to be defined (denominators are not zero). Then, the conjecture is changed by
augmenting the hypotheses with these NDG conditions.

Theorem proving mechanism. The method works by the elimination of constructed points in
reverse order, using a set of specific elimination lemmas, like for the area method. There are elim-
ination lemmas for each pair (construction step, geometry quantity). For instance, the following
lemma is used for the elimination of a point Y constructed by the PRATIO step from the linear
quantity G(Y ) satisfying G(αY1 +βY2) = αG(Y1)+βG(Y2), for any real numbers α and β :

If Y is introduced by PRATIO Y W U V r, then G(Y ) = G(W )+ r(G(V )−G(U)).

Properties. The method is terminating, sound, and complete: for each geometry statement in its
domain, it can decide whether it is a theorem, i.e., the method is a decision procedure for its fragment
of geometry. The complexity of the method is exponential in the number of involved points [49].

2.2.4.4 Mass-Point Method

Barycentric coordinates and mass points have been used in geometry at least since 1969 [68], and
were introduced in automated theorem proving for geometry by Zou and Zhang [230]. In the non-
complex case, the method is similar to the method used by Kimberling for studying triangle centers
(Section 2.3.2). A mass point is mP, where m (“mass”) is a positive real number, and P is a point in
a plane. Two mass points mP and nQ are equal iff m = n and P = Q.

Scope. The conjecture consists of hypotheses (in the form of a construction) and a goal. Hypothe-
ses are expressed in terms of three free (arbitrary) points and subsequent points are obtained by
five basic geometric constructions and some compound ones (that enable a constructed point to be
expressed as a linear combination of the three basis points), including:

C3 LRATIO X A B r, that gives a point X on the line AB such that
−→
AX = r

−→
AB, where r is a rational

number, a rational expression, or a variable. Specially, MIDPOINT X A B denotes LRATIO X A B
1/2. Constructing a point X such that

−→
AX = r

−→
XB (or (1+ r)X = A+ rB) is denoted by MRATIO X

A B r.
C5 INTER X U V A B, that gives the intersection point X of lines UV and AB (the NDG condition

is that X is not equal to some of the points U , V , A, B, and that UV and AB are not parallel; otherwise,
the prover fails).

The goal is a predicate over constructed points, one from a set that includes, for instance,
Col ABC. For this predicate, it can be proved [228]: if P, Q, and R are points of the plane ABC (A, B,
C are noncollinear points), and P = apA+bpB+ cpC, Q = aqA+bqB+ cqC, R = arA+brB+ crC,
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then P, Q and R are collinear iff ∣∣∣∣∣∣
ap bp cp
aq bq cq
ar br cr

∣∣∣∣∣∣= 0.

The method is extended to deal with additional constructions (such as a construction of a circle)
and uses complex numbers for convenience. This extended version has a scope strictly wider than
the basic version.

The authors of the implementation successfully used it for proving hundreds of nontrivial theo-
rems. Although the generated proofs are understandable, they are still not human-like proofs.

S R

Q

P

AB

C
A1

B1
C1

Figure 2.6
Desargues’s theorem.

Theorem proving mechanism. The mass point method works by
expressing all constructed points as a linear combination, of three
(or two, for some simple conjectures) free points, then reformulat-
ing the goal the same way and finally proving it as a goal over real
numbers.

Example. Desargues’s theorem (see also Section 2.3.2) states
that, given two triangles 4ABC and 4A1B1C1, if the lines AA1,
BB1, CC1 intersect in a point S, then the intersection points P of BC
and B1C1, Q of CA and C1A1, and R of AB and A1B1 are collinear
(Figure 2.6). The theorem has to be slightly reformulated in order
to use the mass point method. The construction is as follows:

Let A, B, and C be three free points.
Let S be an arbitrary point of the plane ABC, hence S = aA+bB+ cC for some real numbers a,

b, c, such that a+b+ c = 1.
MRATIO A1 S A x, for some x (then it holds A1 =

1
1+x S+ x

1+x A = 1
1+x (aA+bB+ cC)+ x

1+x A =
a+x
1+x A+ b

1+x B+ c
1+xC).

MRATIO B1 S B y, for some y (then it holds B1 =
a

1+y A+ b+y
1+y B+ c

1+yC).
MRATIO C1 S C z, for some z (then it holds C1 =

a
1+z A+ b

1+z B+ c+z
1+zC).

INTER P B C B1 C1 (then it holds yB− zC = (1+ y)B1− (1+ z)C1 = (y− z)P, i.e., P = y
y−z B−

z
y−zC).

INTER Q A C A1 C1 (then it holds Q = x
x−z A− z

x−zC).
INTER R A B A1 B1 (then it holds R = x

x−y A− y
x−y B).

The goal is to prove that P, Q, R are collinear, which is done by showing that:∣∣∣∣∣∣
0 y

y−z − z
y−z

x
x−z 0 − z

x−z
x

x−y − y
x−y 0

∣∣∣∣∣∣= 0

Properties. The mass point method provides a decision procedure for conjectures within its
scope [230].

2.2.5 Provers Implementations and Repositories of Theorems

There are a number of tools, typically providing dynamic geometry functionalities, that have support
for the automated proof of geometry theorems. We mention the most notable ones next.

GEX/jGEX/MMP/Geometer is a family of systems equipped with provers based on algebraic
approaches, the DD method, the area method, the vector method, and the full-angle method [98,
227]. GeoGebra [19], also equipped with several algebraic-based provers and tools based on the area
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method, is aimed at education. It can also work with the Coq proof assistant to support interactive
proofs [180]. GeoProof is another tool linked to Coq that can use provers based on the area method,
Wu’s method, and the Gröbner basis method for generating machine verifiable proofs [163]. GCLC
is a system that supports two algebraic methods and the area method [128]. Theorema [36], built
on top of Mathematica, is a general mathematical tool with support for several theorem proving
approaches, including the area method. OpenGeoProver is a library with several algebraic provers
and one based on the area method [151]. Geometry Explorer uses the full-angle method [223] and
provides means of visualizing geometric proofs as graphs.

There are ongoing efforts toward linking dynamic geometry systems with automated theorem
proving and also with automated discovery, intelligent management of geometry knowledge, tutor-
ing, eLearning, and so on [43, 142, 191, 219].

Finally, aside from collections of theorems available within the above tools, we note the exis-
tence of a dedicated repository of geometry theorems known as TGTP [190].

2.3 Interactive Theorem Proving
A proof assistant is a piece of software that can check mathematical assertions interactively. The
main ones that have been used for the formalization of geometry are Coq [14, 66, 67], Isabelle [168,
175, 221], HOL4 [207], HOL-Light [119], and Mizar [215, 222]. They differ in their mathematical
foundations (e.g., type theory, higher order logic [HOL], or set theory) and their proof language. In
procedural style proof assistants (e.g., Coq and HOL Light), proofs are described as sequences of
commands that modify the proof state whereas in proof assistants that use a declarative language
(e.g., Mizar and Isabelle), the proofs are structured and contain the intermediate assertions that were
given by the user and justified by the system.

2.3.1 Formalization of Foundations of Geometry

There are several ways in which the foundations of geometry can be laid.
In the synthetic approach, the geometry theory is built from axioms, with non-logical symbols

corresponding to geometric predicates, and sorts corresponding to geometric objects.
The best-known modern axiomatic systems along these lines are those of Hilbert [124] and

Tarski [214], which we will examine in detail next.
In the analytic approach, a field F is assumed (usually R, the reals), the space is defined as Fn,

and the geometric objects and predicates are defined.
In the mixed analytic/synthetic approaches, one assumes both the existence of a field and also

some geometric axioms. For example, the axiomatic systems for geometry proposed for education
in North America by the School Mathematics Study Group in the 1960s are based on Birkhoff’s ax-
iomatic system [17] in which the underlying field (R) serves to measure distances and angles. This
approach, known as the metric approach, is developed in a number of modern sources [154, 159].
A similar approach is used by Chou, Gao, and Zhang for the foundations of the area method [229]
(Section 2.2.4.1), where the underlying field is used to express ratios of signed distances and ar-
eas. The axioms and properties of the area method have been formalized in Coq [130]. Geometry
can also be defined as a space of objects and a group of transformations acting on it (Erlangen
program [135]), and several axiom systems based on this approach have been proposed [86, 170].

Axiom systems based on intuitionistic logic have also been proposed for geometry. Von Plato,
for instance, uses the concept of apartness of points and convergence of lines to study plane geome-
try [183, 184]. Beeson, for his part, introduces a constructive version of Tarski’s axiom system [7, 8].


