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Introduction
Starting with the introduction of the first aluminum–lithium alloys and throughout 
their mastering and implementation into structures, there have been activities toward 
developing scientific fundamentals and practical realizations of technological pro-
cesses and equipment for ingot melting and casting, production of a wide range of 
semifinished products with the guaranteed chemical composition, structure, and 
complexity of performance characteristics, and also welding modes by production 
of welded parts. In parallel with the development of new alloys, the compositions 
of older alloys have been improved in the process of mastering and enhancing their 
processibility and reliability characteristics.

This book summarizes the results of work since the 1960s to solve problems 
with melting, ingot casting, and producing massive forged semifinished products for 
welded parts in the welding of aluminum–lithium alloys.

The history of the creation of aluminum–lithium alloys and primary areas of their 
application in aircraft structures are briefly presented in Chapter 1.

Chapter 2 details matters of oxidation kinetics and a mechanism for protective 
alloying of aluminum–lithium alloys, a selection of fluxes and inert protective atmo-
spheres, and the interaction of aluminum–lithium melt with lining materials.

Chapter 3 is devoted to the consideration of sources of melt enrichment with 
hydrogen, hydrogen distribution in aluminum–lithium alloy ingots, and a study of 
the presence of hydrogen in aluminum–lithium alloys.

Chapter 4 covers the influence of chemical composition of the alloy and its suscep-
tibility on casting cracking. It deals with peculiarities of casting ingots in aluminum 
alloys doped with lithium, and represents a practical realization of the developed 
technology of ingot casting.

A mechanism of nondendritic structure formation in aluminum alloy ingots 
without any physical effect to the solidifying metal, and a hereditary influence of 
grain-typed structure of ingots on their rheological characteristics are discussed in 
Chapter 5.

Chapter 6 is devoted to excess heterophasicity in 1420 alloy ingots and its heredi-
tary influence on the structure and properties of semifinished products.

The peculiarities of modern aluminum–lithium welding and the structure and 
tensile properties of welded joints are reviewed in Chapter 7. A mechanism of welded 
joint structure formation on massive forgings in alloy 1420 is also presented.

Chapter 8 details matters of aluminum–alloy weldability, tensile properties, and 
structure of welded joints. All modern techniques of producing aluminum–lithium 
seams on semifinished products of a wide thickness range are described.

The authors trust that this book will be useful for engineers and scientists 
involved in the research, development, and implementation of welded structures in 
high-strength aluminum alloys.
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1

1 Brief History of 
Aluminum–Lithium 
Alloy Creation

The creation of new generations of civil and combat aircraft, and leading-edge design 
solutions for aerospace engineering, requires industrial production development and 
mastering of new structural materials and new design solutions and processes for 
their usage in parts. The basic structural materials in civil aircraft are aluminum 
alloys, but they are also used on a large scale in structures of other aircraft types. In 
Russia and abroad, research is being carried out toward the development of alumi-
num alloys to ensure maximum weight efficiency. One of the ways to address this is 
the development of reduced-density alloy compositions.

Researchers have turned their attention to lithium, which has a unit weight of 
0.536 MT m–3. The first alloys appeared in the 1950s and were based on the Al–
Cu–Li system, such as the alloys X2020 (USA) and VAD23 (USSR), later known 
as 1230. These alloys were 3% lighter and 8% harder than conventional alloys 
2024 and D16; also, they demonstrated high strength at room and elevated tem-
peratures (up to 175°C). The alloy X2020 used in the design of military seaborne 
airplane served, as mass media reported, for many years without complaints. The 
alloy VAD23 in the form of thin cross-sectional profiles was part of the design 
of the supersonic commercial airliner TU144, but that program was withdrawn. 
Nevertheless, due to its high elasticity modulus, VAD23 (1230) was used in a num-
ber of reconditioned parts where sheets were produced in considerable quantities 
through to the 1990s.

The genuine breakthrough in the development of lithium-doped aluminum (Al–
Li) alloys was made by a team of VIAM scientists (V. F. Shamrai, N. V. Shiryaeva) 
supervised by academician I. N. Fridlyander: the invention of the hardening effect 
by heat treating an extensive group of alloys in the ternary Al–Mg–Li system [1]. 
At the same time, it was determined that lithium with an elasticity modulus smaller 
than that of aluminum increased the elasticity modulus of the alloys from the Al–
Mg–Li system by up to 8%. That effect was marked as an invention (the “Fridlyander 
effect”) [1].

Based on that system, the lightest aluminum alloy 1420 containing 2% lithium 
and  5.5%  magnesium [2] was offered. Two percent of lithium by weight is equiva-
lent to 11 at.% of aluminum alloy. Therefore, alloy 1420 is 10%–12% lighter than 
duralumin-type alloys used for the fuselage with the same strength characteristics; 
moreover, it has high corrosion resistance.

Between 1970 and 1971, the serial production of vertical takeoff and land-
ing (VTOL) jets Yak-36 and Yak-38 was started, with riveted fuselages made of 
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alloy 1420, which were based onboard and inboard sea aircraft carriers (Figure 1.1). 
Even after many years of their operation, there were problems reported due to 
alloy 1420. The fighter Yak-36 is being successfully operated even today [3]. 
The application of alloy 1420 in the riveted structure resulted in weight reduction 
by 16%.

Successful application of alloy 1420 gave rise to the active development of Al–Li 
alloys and drew the design engineers’ attention to the use of these alloys. In the 1980s 
and 1990s, both in Russia (Soviet Union) and other countries, alloys were developed 
based on Al–Li–Cu and Al–Li–Mg–Cu systems, but work was in progress in Russia 
to create new alloys based on the Al–Li–Mg system as well. All Al–Li alloys were 
additionally doped with zirconium and manganese. Calcium was introduced into 
alloy 1420 as an alloying element.

In Russia, scandium is widely used to dope Al–Li alloys (alloys 1421, 1461, 1424, 
B-1461, V-1464, V-1469). Western companies have started using silver for dop-
ing (alloys 2094, 2095, 2195, 2196, and 2098) since 1990. In Russia, alloy V-1469 
became the first to contain silver. After 2012, Western companies registered Al–
Li alloys with zinc (2397, 2099); at the same time, alloys with zinc (1424, B-1461) 
appeared in Russia.

In 1985, the A. I. Mikoyan Design Bureau, upon the initiative of M. R. Valdenberg, 
deputy chief designer, started work to create a welded airplane using aluminum. For 
the first time in the world, a welded fuselage of one of the MiG-29 fighter modi-
fications was made in aluminum alloy 1420 [3]. A large variety of semifinished 
products—more than 150 items of forgings, extruded panels, and sheets—were used 
in the design. They were also used to fabricate leakproof, welded fuel tanks, and 
cockpits (Figure 1.2), which resulted in weight reduction of the design elements by 
up to 27%.

FIGURE 1.1 Yak-38 fighter, where alloy 1420 was used (first serial utilization of the Al–Li 
alloy).
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MiG-29 aircraft with welded tanks made of alloy 1420 are in service even today. 
That work evolved during the creation of the welded structure of the new-generation 
fighter 1–44 [3–5].

There are up to 800 sheet-formed parts in alloy 1420 used in the unloaded areas 
of the fighter-interceptor Su-27 (1985) (Figure 1.3).

Welded hulls of submarine-launched missiles are manufactured from alloy 1420, 
and then from its modification 1421. Alloy 1420 is being used in the structure of a 
number of other similar parts [3] for many years.

With the purpose of reducing the weight of parts, the G. M. Beriev Aircraft 
Company took a decision to use 1441 alloy sheets in the Be-200 and Be-103 pro-
grams. Alloy 1441 is rolled well in both clad and bare forms, which allows produc-
ing thin sheets (up to 1.2 mm) by coil rolling. Alloy sheets with the same strength 
characteristics have a higher fatigue crack growth resistance and a longer life than 
1163AT alloy sheets by a factor of 1.5 (Figure 1.4) [6,7].

(a)

(b)

FIGURE 1.2 (a) MiG-29M fighter, where welded structures in Al–Li alloy 1420 were used, 
(b) fuel tank.
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At the end of the 1980s, the Antonov Design Bureau started trials with a new 
lithium-containing alloy, 1450, for their transport aircraft programs. The Bureau 
developed the world’s largest airplanes “Ruslan” and “Mria”; therefore, ingots with 
a cross section of 400 × 1450 and 450 × 1200 mm were cast to manufacture large 
plates and extruded panels, which were used in those planes [8] (Figure 1.5).

In 1995, A. N. Tupolev ANTK, after evaluating data on alloy 1420’s properties 
and applications in the military aircraft programs Yak-36, Yak-38, and MiG-29, took 
a decision to use the Al–Li alloy 1420 in the civil airplane Tu-204 for the first time. 
It was used for nonweight-bearing structures such as sheets (fuselage stringer set, 
fillets, compensators), extruded profiles (floor beam ribs and walls, interior element 
fixtures, equipment location racks), and die-forgings (manhole covers, reinforcement 
elements).

With the substitution of parts made of alloy 1163, a weight reduction of 10%–
12% was achieved. The possibilities for applying alloy 1420 die-forgings as window 
frames are being worked out.

Also, a number of similar parts for a new short- to medium-range commercial 
airplane, Tu-334 (2003), are also made using alloy 1420.

A number of parts for the experimental airplane Tu-156 with an LNG- and ker-
osene-fired engine were fabricated using alloy 1420. The use of alloy 1460 (new 
modification is 1461)  to manufacture tanks for cryogenic propellants was reviewed 
for Tu-156 and a cryogen-powered plane [9,10]. A welded tank was manufactured 
using this alloy and successfully tested for the McDonnell Douglas Reusable Launch 
Vehicle. Alloy 1460 was used to substitute alloy 1201, which resulted in a welded 
tank weight reduction by up to 25%.

In 2003, the strongest corrosion-resistant weldable alloy V-1469 was developed 
based on the Al–Cu–Li–Mg system doped with zirconium, scandium, and silver 
[11,12]. The alloy has extremely high processibility by metal forming, which allows 
producing sheets with 1.5 mm thickness, cold-rolled coils, rolled rings, and extruded 

FIGURE 1.3 Su-27 fighter interceptor.
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(a)

(b)

FIGURE 1.4 (a) Be-200 hydroplane and (b) Be-103 hydroplane, where Al–Li alloy sheets 
were used in their design.

FIGURE 1.5 World’s largest transport airplane “Mria,” where semifinished products in Al–
Li alloys were used, including large extruded panels in alloy 1450.
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profiles of various cross sections. Also, sheets with thickness down to 0.35 mm were 
produced [12]. The alloy is recommended for use in the MC21 design and also for 
welded tanks for cryogenic propellants.

Numerous researches have demonstrated the potential of Al–Li alloys in super-
plastic forming [13–18]. In the 1980s, OAO KUMZ manufactured and supplied 
sheets made of alloy 1420RS with the specified grain size for superplastic forming 
to their customers. Parts of complex configuration were formed from the sheets.

To obtain semifinished products in Al–Li alloys in the industrial metallurgi-
cal production environment during process development, there was a challenge to 
overcome the formidable tasks associated with the presence of lithium in the alloys 
[3,22].

First of all, lithium is extremely chemically active in molten aluminum, which 
requires protecting the melt surface at all stages of technological processes subject 
to liquid phase existence (melting, ingot casting, fusion welding) from lithium losses 
and saturation with hydrogen. During the production of clad sheets, due to their 
high oxidizability at rolling temperatures, special preparation of their surface is also 
required [20,21].

Second, alloys with lithium have higher elasticity modulus and lower heat con-
ductivity. Therefore, temperature gradients during ingot casting and forming result 
in the buildup of stresses higher than in conventional aluminum alloys without 
lithium.

Third, alloys of the Al–Mg–Li system have a tendency to localize strains, which 
complicates the generation of the specified structure and properties in massive short-
transverse cross sections and also sheet hardening by cold rolling. The latter does not 
allow the production of sheets by cold coil rolling [19].

Starting from the development of first the Al–Li alloys and throughout the period 
of their mastering and implementation into designs, work was in progress to develop 
technological processes and equipment for melting and ingot casting, produce a wide 
range of semifinished products with the guaranteed chemical composition and struc-
ture, obtain a complete set of performance characteristics, and also develop welding 
modes by production of welded parts. In addition to the development of new alloys 
within the mastering process, improvements were made in the compositions of previ-
ously developed alloys to enhance their processibility and reliability characteristics 
[23–26, 119–123].

Russian and foreign researchers developed a broad range of alloys, whose compo-
sitions are given in Tables 1.1 and 1.2.

This book summarizes the results of the work on resolving problems of melting, 
ingot casting, production of massive hammered and forged semifinished products 
for welded parts, and issues of Al–Li alloy welding performed from the 1960s up to 
now, in which the authors were directly involved.

Invaluable contributions to the development of Al–Li alloys were made by the 
following Russian scientists and industrial specialists: V.M. Baranchikov, N.D. 
Vinokurov, G.D. Volkhin, I.Ya. Zaltsman, V.A. Zasypkin, L.A. Ivanova, E.N. Kablov, 
V.G. Kovalyov, L.V. Kuzmichev, K.N. Mikhaylov, I.I. Novikov, A.E. Semyonov, 
O.A. Setyukov, V.M. Chertovikov, S.B. Komarov, V.I. Popov, V.E. Anfyorov, 
V.I. Blagodatskikh, and S.M. Mozharovskiy (melting, casting, rolling processes); 
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TABLE 1.1
Russian Aluminum–Lithium Alloys

Element Percentage by Weight (%) 

Al Alloy Si Fe Cu Mn Mg Cr Zn Ti Ni Li Zr
Other 

Elements

Others

Each Total

1420 0.15 0.2 0.05 — 4.5–6.0 — — 0.1 — 1.8–2.2 0.08–0.15 Be: 0.0002–0.005 0.05 0.15 Base

Ca: 0.04

Na: 0.03 (0.0015a)

1421 0.2 0.2 — — 4.5–5.3 — — 0.1 — 1.8–2.2 0.06–0.10 Be: 0.03 0.05 0.15 Base

Sc: 0.16–0.21

Na: 0.005

1430 0.1 0.15 1.4–1.8 0.25 2.3–3.0 — — 0.01–0.1 — 1.5–1.9 0.08–0.14 Be: 0.02–0.1 0.05 0.15 Base

Sc: 0.01–0.1

Na: 0.003

1440 0.02–0.1 0.03–0.15 1.2–1.9 0.05 0.6–1.1 0.05 0.1 0.02–0.1 — 2.1–2.6 0.10–0.2 Be: 0.05–0.2 0.05 0.15 Base

Na: 0.003

1441 0.08 0.12 1.5–1.8 0.001–0.10 0.7–1.1 — — 0.01–0.07 0.02–0.10 1.8–2.1 0.04–0.16 Be: 0.02–0.20 0.05 0.15 Base

1450 0.1 0.15 2.6–3.3 0.1 0.1 0.05 0.25 0.01–0.06 — 1.8–2.3 0.08–0.14 Be: 0.008–0.1 0.05 0.15 Base

Na: 0.002

Ce: 0.005–0.05

1460 0.1 0.03–0.15 2.6–3.3 — 0.05 — — 0.01–0.05 — 2.0–2.4 0.08–0.13 Na: 0.002 0.05 0.15 Base

Ce: 0.005–0.03

Sc: 0.05–0.14

B: 0.0002–0.003

1424 0.08 0.1 — 0.1–0.25 4.7–5.2 — 0.4–0.7 — — 1.5–1.8 0.07–0.1 Be: 0.02–0.2 0.05 0.15 Base

Sc: 0.05–0.08

Na: 0.0015

1230
VAD23

0.3 0.3 4.8–5.8 0.4–0.8 0.05 — 0.1 0.15 — 0.9–1.4 — Cd: 0.1–0.25 0.05 0.15 Base

(Continued)
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TABLE 1.1 (Continued)
Russian Aluminum–Lithium Alloys

Alloy 

Element Percentage by Weight (%) 

Al Si Fe Cu Mn Mg Cr Zn Ti Ni Li Zr
Other 

Elements

Others

Each Total

V-1461 0.08 0.01–0.1 2.5–2.95 0.2–0.6 0.05–0.6 0.01–0.05 0.2–0.8 0.05 0.05–0.15 1.5–1.95 0.05–0.12 Be: 0.0001–0.02 0.05 0.10 Base

Sc: 0.05–0.10

Ca: 0.001–0.05

Na: 0.0015

V-1469 0.1 0.12 3.2–4.5 0.003–0.5 0.1–0.5 — — — — 1.0–1.5 0.04–0.20 Sc: 0.04–0.15 0.05 0.10 Base

Ag: 0.15–0.6

V-1464 0.03–0.08 0.03–0.10 3.25–3.45 0.20–0.30 0.35–0.45 — — 0.01–0.03 — 1.55–1.70 0.08–0.10 Sc: 0.08–0.10 0.05 0.10 Base

Be: 0.0003–0.002

Na: 0.0005

1430 0.1 0.15 1.4–1.8 0.3–0.5 2.3–3.0 — 0.5–0.7 0.01–0.1 — 1.5–1.9 0.08–0.14 Be: 0.02–0.1 0.05 0.15 Base

Sc: 0.01–0.1

Na: 0.003

Ce: 0.2–0.4

Y: 0.05–0.1

1441K 0.08 0.12 1.3–1.5 0.001–0.10 0.7–1.1 — — 0.01–0.07 0.01–0.15 1.8–2.1 0.04–0.16 Be: 0.002–0.01 0.05 0.15 Base

1445 0.08 0.12 1.3–1.8 0.001–0.10 0.7–1.1 — — 0.01–0.1 0.01–0.15 1.6–1.9 0.04–0.16 Be: 0.002–0.01 0.05 0.15 Base

Sc: 0.005–0.001

Ag: 0.05–0.15

Ca:0.005–0.04

Na: 0.0015

a For welded parts.
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TABLE 1.2
Composition of Aluminum–Lithium Alloys Registered in the United States, France, and Great Britain

Alloy Registration Date Si Fe Cu Mn Mg Cr Zn Ti Ag Li Zr 

Others 

Each Total 

2090 06.08.1984 0.10 0.12 2.4–3.0 0.25 0.05 0.10 0.15 1.9–2.6 0.08–0.15 0.05 0.15

2091 03.08.1985 0.20 1.8–2.5 0.10 1.1–1.9 0.10 0.25 0.10 1.7–2.3 0.04–0.16 0.05 0.15

2094 04.06.1990 0.12 0.15 4.4–5.2 0.25 0.25–0.8 — 0.25 0.10 0.25–0.6 0.7–1.4 0.04–0.18 0.05 0.15

2095 04.06.1990 0.12 0.15 3.9–4.6 0.25 0.25–0.8 — 0.25 0.10 0.25–0.6 0.7–1.5 0.08–0.16 0.05 0.15

2195 20.11.1992 0.12 0.15 3.7–4.3 0.25 0.25–0.8 — 0.25 0.10 0.25–0.6 0.8–1.2 0.04–0.18 0.05 0.15

2196 08.12.2000 0.12 0.15 2.5–3.3 0.35 0.25–0.8 — 0.35 0.10 0.25–0.6 1.4–2.1 0.08–0.16 0.05 0.15

2097 30.06.1993 0.12 0.15 2.5–3.1 0.10–0.6 0.35 — 0.35 0.15 — 1.2–1.8 0.08–0.15 0.05 0.15

2197 21.09.1993 0.10 0.10 2.5–3.1 0.10–0.50 0.25 — 0.05 0.12 — 1.3–1.7 0.08–0.15 0.05 0.15

2297 18.08.1997 0.10 0.10 2.5–3.1 0.10–0.50 0.25 — 0.05 0.12 — 1.1–1.7 0.08–0.15 0.05 0.15

2397 03.04.2002 0.10 0.10 2.5–3.1 0.10–0.50 0.25 — 0.05–0.15 0.12 1.1–1.7 0.08–0.15 0.05 0.15

2098 22.06.2000 0.12 0.15 2.3–3.8 0.35 0.25–0.8 — 0.35 0.10 0.25–0.6 2.4–2.8 0.04–0.18 0.05 0.15

2099 22.08.2003 0.05 0.07 2.4–3.0 0.10–0.50 0.10–0.50 — 0.40–1.0 0.10 — 1.6–2.0 0.08–0.12 0.05 0.15

8090 16.07.1984 0.20 0.30 1.0–1.6 0.10 0.6–1.3 0.10 0.25 0.10 — 2.2–2.7 0.04–0.16 0.05 0.15

8091 29.03.1985 0.30 0.50 1.0–1.6 0.10 0.50–1.2 0.10 0.25 0.10 — 2.4–2.8 0.08–0.16 0.05 0.15

8093 01.02.1990 0.10 0.10 1.6–2.2 0.10 0.9–1.6 0.10 0.25 0.10 — 1.9–2.6 0.04–0.14 0.05 0.15

8025 15.09.2000 0.05 0.06–0.25 0.20 0.05 0.18 0.50 0.005–0.02 — 3.4–4.2 0.08–0.25 0.05 0.15
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S.M. Basyuk, N.F. Bulgakov, A.N. Gribkov, I.P. Zhegina, V.I. Zyryanov, S.I. 
Kishkina, L.V. Tarasenko, N.I. Turkina, A.A. Shadskiy, L.M. Shevelyova, and G.L. 
Shneider (hammering-forging, heat treating, and metallurgy); and V.V. Alekseev, 
Yu.P. Arbuzov, V.A. Varganov, V.B. Verdenskiy, V.V. Grinin, A.V. Gerasimenko, 
B.S. Denisov, L.F. Ermakov, E.N. Ioda, A.Ya. Ishchenko, A.I. Lopatkin, V.I. Lukin, 
A.I. Meylakh, A.V. Petrov, N.G. Tretyak, and V.I. Ryazantsev (welding).
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2 Theoretical Basis of 
Aluminum–Lithium 
Alloying with Controlled 
Lithium Content 
and Metallic and 
Nonmetallic Impurities

2.1  KINETICS OF ALUMINUM ALLOY OXIDATION 
IN MOLTEN CONDITION

Aluminum and its alloys react with the ambient atmosphere during melting and cast-
ing. It is found that aluminum and aluminum alloy components can interact with 
hydrogen, nitrogen, water vapor, carbon monoxide (CO), and carbon dioxide (CO2) 
[27–29]. In small quantities, there are hydrogen and oxides in alloy, which have a sig-
nificant influence on metal properties. At the beginning of this study in 1960, there 
were no systematic data on the behavior of lithium-containing aluminum alloys in 
liquid state, except for some information about the general laws of lithium influence 
on the oxidation of different metals stated in Shamrai [30], and there have been 
summary reports of difficulties in melting and casting of aluminum–lithium alloys 
because of their high aggressivity in liquid state.

In connection with this, the questions of melting and casting of ingots alloyed 
with lithium have assumed high urgency, and studying their interaction with the 
ambient atmosphere, as well as developing ways to protect these alloys during melt-
ing and casting from lithium loss, hydrogen saturation, and other metallic and non-
metallic impurities, is required.

The oxidation rate of metals and alloys depends on several factors, primarily 
on alloy composition, the nature of the elements included in alloy composition, gas 
environment composition, temperature, and heating time [31,32].

Oxidation reactions of most metals and alloys are surface reactions. Therefore, 
the more the surface metal contacts with the environment, the greater the loss from 
oxidation.

Direct contact of the metal with the oxidative environment exists only in the initial 
moment of oxidation, and the oxidation proceeds through the oxide film thereafter.

Therefore, the oxidation rate of metal is often dependent on the characteristics of 
the oxide film.
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The main characteristic that determines the protective properties of the oxide film 
is the Pilling–Bedworth ratio, η:

 h = V /VMemOn Me  (2.1)

where
VMemOn is the volume of 1 oxide mole
VMe is the volume of 1 metal atom gram

If the ratio is equal to or greater than unity, then the continuity condition is followed, 
and the film is protective. If the ratio is less than unity, the oxide is not enough to 
cover the metal surface with continuous layer; hence, the film is loosened, and pores 
and cracks appear.

Most oxides formed on metals satisfy continuity conditions, except for alkali 
oxides and alkali earth metal oxides (Table 2.1).

Oxidation of metals is a complex process consisting of a number of steps [32]: 
metal ionization; diffusion of metal ions and electrons from the surface of the 
metal oxide section through the oxide film and the oxide–gas section; diffusion of 
oxygen molecules to the oxide surface; oxygen adsorption activation on the oxide 
surface; joining of electrons to form oxygen ions; diffusion of oxygen ions and 
atoms through the oxide film to the metal surface; and chemical reaction of metal 
with oxygen.

At high-temperature oxidation, when thick films are formed, diffusion of particles 
through these films is the slowest ongoing process. Therefore, the rate of ion diffu-
sion determines the overall oxidation rate. The ionic radius of metals is considerably 

TABLE 2.1
Some Characteristics of Metals and Their Oxides

Metal 

Melting 
Temperature 

(°C) 

Free 
Surface 
Energy 
(mJ/
cm2) 

Ionic 
Radius 
(Nm) 

Atomic 
Radius 
(Nm) Oxide 

Standard 
Measurement 

of Oxide 
Energy 

Forming, Kcal/
Mol Oxide 

Volume Ratio 

Own 
Metal Aluminum

Al 660 860 0.057 0.143 Al2O3 210.2 1.42 1.42

Li 180 — 0.068 0.155 Li2O 400.0 0.58 0.75

Cu 1083 926 0.098 0.128 CuO 82 1.64 —

Zn 419.5 105 0.083 0.139 ZnO — — —

Mg 650 728 0.074 0.160 MgO 143.7 0.81 1.09

Na 97.83 171 0.092 0.189 Na2O — — —

Be 1286 — 0.031 0.160 BeO 14.1 1.68 0.82

V 1525 — 0.097 0.181 V2O3 152 1.39 —

Ca 850 246 0.106 0.197 CaO 151.9 — —
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smaller than the ionic radius of oxygen (Table 2.1); therefore, oxygen diffusion can 
be neglected [31], and it can be considered that the oxidation rate is determined by 
the diffusion of metal ions.

However, this applies to such cases when the formed oxide films on the metal sur-
face are protective, that is, they prevent direct contact of liquid metal with the ambi-
ent atmosphere. In cases when the surface film do not form a continuous dense layer 
(η < 1) and is not protective due to the presence of pores and cracks, the oxidizing gas 
penetrates relatively easily to the metal surface and metal drops go outside under the 
influence of capillary forces and are immediately oxidized thereafter. Consequently, 
when studying the oxidation process, it is necessary to deal with the issues of mecha-
nism, rate of growth, and morphology of the oxide films.

In isothermal conditions, several oxidation time laws are found: linear, parabolic, 
logarithmic, and asymptotic [32].

Aluminum and some other components of aluminum melts are very chemically 
reactive and form stable compounds under the reaction with water vapor and air oxy-
gen [32,33]. The most commonly occurring compound, aluminum oxide (Al2O3; also 
termed alumina), is a very strong chemical compound with negligible minor vapor 
pressure dissociation (1013 × 10−40 Pa at 750°C); the combination heat of the reaction 
2Al(TB) + 1,5O2 → Al2O3 is about 1680 kJ/mol [34].

Alumina has a number of structural modifications, the existence of which is 
determined by the temperature and composition of the environment: γ, δ, λ. The 
only stable oxide modification is λ-Al2O3 (corundum) with an R-lattice and density 
of about 4 g/cm3 at room temperature. However, it is rarely found as it is formed 
when oxidation is at 927°C [32]. The most common alumina differs by amorphous 
structure and appears on the early stages of oxidation [31]. During slow heating, 
aluminum oxide in the γ-modification arises on the surface [34] and comprises water 
molecules, stabilizing the lattice of oxide in the γ-modification.

As a rule, the oxide film on the surface of solid aluminum is considerably hydrated, 
that is, it contains Al (OH)3 and AlOOH modification hydroxides in addition to the 
main component γ-Al2O3 [31].

Aluminum oxide is a semiconductor and has electronic conductivity [32]. Oxide 
formation processes of this type fall into Wagner’s ion-electron theory of high-tem-
perature parabolic metal oxidation, which is characterized by the mass transfer of 
metal ions Men+ and electrons nē from the metal surface through the film in the 
direction of the oxidant. The movement of oxygen ions through the film is not practi-
cally produced [32].

Since the oxidation kinetics is also determined by the morphology film, it 
has protective properties on the aluminum as continuity condition is satisfied 
(Table 2.1).

The alloying elements and impurities in aluminum substantially affect the struc-
ture and properties of films formed on the metal surface. The influence character 
can be estimated by thermodynamic parameters determining the oxidation reaction 
of different metals.

The preferential oxidation of one or another element depends on its oxygen 
affinity and concentration or, more precisely, on the activity in the molten alloy at 
heating temperature. The oxygen affinity can be measured approximately by oxide 
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formation warmth under standard conditions, referred to as one atom gram of oxide 
(Table 2.1).

The kinetics of alloy oxidation is also determined by what elements the molten 
surface layers are enriched with. It is known [35] that the surface layers are concen-
trated with substances lowering the free energy, that is, surface-active substances. 
Surface activity is significantly dependent on the physical and chemical properties of 
elements and is defined by the properties of all the components in the molten surface 
[31,35]. Surface-active substances usually reduce the surface tension.

An element with a lower surface tension than aluminum reduces the surface 
tension of the molten surface proportionally to the logarithm of its concentration, 
and surfactant properties begin to appear. The surface tension of pure metals (σ) 
(Table 2.2) linearly depends on temperature (t):

 
s s s= + -0 ( ) ,t t d /dtmelting  

 (2.2)

where
σ0 is the surface tension at tmelting

The surface activity is determined by the size of the component and its atomic radius, 
atomic number, and electronic structure and is characterized by a generalized statis-
tical moment [35]:

 
m eZ /Re

Me= ( )j h  (2.3)

where
Z is the element atomic number
e is the electron charge
RMe is the atomic radius
φ(η) is the dimensionless parameter

TABLE 2.2
Temperature Dependence of Surface Tension and 
Generalized Statistic Moments of Some Elements

Element 
σ0 at tmelting

mN/m 
dσ/dtm

N/m me 

Al 870 −0.34 0.458

Li 395 −0.15 0.22

Na 195 −0.089 0.183

K 111 −0.062 0.106

Mg 559 −0.39 0.30

Ca 361 −0.10 0.19

Ba 224 −0.095 0.18
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According to Zadumkin theory, the surface-active elements are those with ratios of 
me

p > me
n, where me

p, me
n are generalized statistical moments of solvent and impu-

rity. me values   for metals are given in Table 2.2, from which it follows that alkali 
(K, Na, Li) and alkaline-earth elements (Ba, Sr, Ca) have the greatest surface activity.

A single criterion of surface activity is not established, but in the data shown 
in Table 2.2, the correlation observed between surface tension and energy of some 
structural and thermodynamic element parameters is quite satisfactory.

In all presented parameters (Table 2.2), lithium is more surface active than mag-
nesium, which also has a high surface activity. Therefore, in the surface layer of the 
aluminum, molten lithium and magnesium will be present.

Copper concentration in the surface layer is lower than the average concentra-
tion in the alloy. Tests carried out in [36] have shown that copper does not affect the 
process of aluminum oxidation. This is confirmed by electron diffraction studies.

In binary aluminum–magnesium alloys added with even small quantities 
of magnesium, the oxidation is significantly higher than in pure aluminum and 
sharply increases at alloy magnesium content growth. At low magnesium content, 
the thick film of MgO·Al2O3 spinel is formed on the molten surface along with 
a loose film of magnesium oxide [37]. Increase in Mg content results in magne-
sium oxide composed film having no protective properties. Beryllium additives 
in the amount of hundredths of a percent reduce the aluminum alloy oxidation 
with high magnesium content (over 10%) almost 200 times. The standard changes 
of free energy of beryllium and magnesium oxide formation are the same, but 
beryllium, having smaller ion radius, is more mobile, which determines the higher 
concentration of beryllium in the surface layer. This provides simultaneous oxida-
tion of magnesium and beryllium. As shown by electron diffraction studies [38], at 
0.005%–0.05% beryllium content in the alloy with 5% of magnesium, the hetero-
geneous film is formed consisting of a magnesium and beryllium oxide mixture. 
It is considered that mechanism of protection of aluminum–magnesium alloys by 
beryllium is mechanical healing by beryllium oxide of oxide film discontinuities 
consisting of magnesium oxide [37,38].

According to Wagner’s theory, it is possible that the positive effect of beryllium in 
the oxidation process is associated with the fact that, having low conductivity, beryl-
lium oxide  should reduce the diffusion rate of lithium through oxides [32].

The comparison of lithium and magnesium characteristics, shown in Table 2.2, 
justifies that in aluminum–lithium–magnesium base alloys, both elements will influ-
ence the alloy oxidation process since they are surface-active substances, and conse-
quently, the molten surface layer consists of the ion mixture of these elements. Being 
present together in the molten surface, these two surface-active substances mutually 
reduce activity [39]. However, lithium plays the leading role.

In accordance with the Langmuir theory, lithium forms a monomolecular layer 
in the alloys of aluminum–copper–lithium-based systems and it remains in contact 
with the atmosphere.

Based on the carried-out analysis of characteristics in Tables 2.1 and 2.2 and the 
positive experience of beryllium use as a protective additive in alloys with high mag-
nesium content, it became interesting to test beryllium and yttrium having η > 1 as a 
protective additive to alloys with high lithium content.
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2.2  OXIDATION KINETICS AND MECHANISM OF PROTECTIVE 
ALLOYING OF ALUMINUM–LITHIUM ALLOYS

2.2.1 Al–Cu–li SyStem Alloy

The oxidation kinetics of Al–Cu–Li system was studied on 1230 alloys (interna-
tional equivalent of 2020) [44]. On the molten bath surface of 1230 alloy right after 
lithium introduction, the matte film is formed, which thickens, becomes loose, and 
cracks along with increase in holding time. Open metal is covered immediately with 
matte film again. The results of the chemical analysis, shown in Figure 2.1, demon-
strate that 1230 alloy is oxidized in accordance with linear law and that the process 
intensity increases with the increase of melt temperature [40,41].

The investigation of film formed on the melt after 120 min holding showed that 
it was not uniform in thickness but consisted of two layers. The top layer was white 
and the lower layer adjacent to the melt was light gray.

X-ray crystal phase analysis carried out after layered film separation showed that 
the top layer consisted of lithium phases—lithium oxide (Li2O) and lithium hydrox-
ide (LiOH); the lower layer consisted of transition alumina (γ-Al2O3) and lithium 
oxide (Li2O).

Lithium hydroxide can be a product of either the direct reaction of lithium with

 Li H LiOH H kka mo bO+ ® + +2 22 48 3, p p/  (2.4)

water vapor or the secondary reaction of lithium oxide with water vapor.
The study [42] conducted with 2090 alloy shows the formation of a film consisting 

of Li2O, Li2CO3, and LiAlO2 at samples heated at temperatures ranging from 200°C 
to 550°C.
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FIGURE 2.1 Kinetics of lithium burnout from 1230 alloy: (a) without protection of bath 
level at temperatures: 1—680°C; 2—700°C; 3—720°C and (b) with beryllium: 4—0.02%; 
5—0.26%.
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Beryllium doping in 1230 alloys in amounts of 0.02%, 0.07%, 0.10%, 0.20%, and 
0.26% do not provide the effect of long-term protection (Figure 2.1). At concentra-
tions greater than 0.10%, there is only a short-term effect of alloy oxidation (Figure 
2.1, curve 5). During 5–6 min, the metal surface stays shiny, which corresponds to 
the flat section of the specified diagram. Then, the metal surface bounces by light 
gray matte film, which thickens along with increase in holding time, darkens, and 
begins to explode and burst. The mechanism of short-term protection can be attrib-
uted probably to the reciprocal activity decrease of two surfactants [43], which delays 
the lithium output to the molten surface. This explanation can be considered reliable 
since additional phases, including beryllium, were not detected in the film during 
x-ray diffraction analysis [43,44]. Due to lithium deficiency, the poorer compound is 
produced—lithium hydroxide having η greater than one.

Based on the specified data, it follows that beryllium being present in significant 
amounts in 1230 alloy gives only short-term protection of the alloy and is not recom-
mended for long-term alloy protection from oxidation during melting.

2.2.2 Al–mg–li SyStem Alloy

The kinetics of Al–Mg–Li system alloy oxidation was investigated with 1420 alloy. 
Peculiarity of 1420 alloy is the simultaneous presence of two surface-active ele-
ments (magnesium and lithium) in much greater quantities than in AMg6 and 1230 
(Table 2.3).

Taking into account the results of protective alloying of 1230, the introduction 
of 0.15%–0.25% beryllium and yttrium in 1420 alloy was tested. A loose film 
constantly increasing in thickness, initially white, and turns dark gray with lots 
of cracks after a holding time of 120 min, is formed in alloy without any addi-
tion of protective elements. Such film does not protect the alloy from oxidation, 
which proceeds in accordance with linear law, starting after 15–30 min of storage 
(Figure 2.2).

Having 0.2% Be during the first 5–7 min after lithium injection, the elastic shiny 
film is formed, which is separated with difficulty from the melt surface and stretches 
after the sampler. At further molten storage, the film becomes matte and brittle and 

TABLE 2.3
Surface-Active Elements Content in Some 
Aluminum Alloys

Alloy 

Element Content at.(%) 

Li Mg Total

1420 8.8 (2.2) 5.5 (5.0) 14.3

AMg6 — 6.6 (6.0) 6.6

1230 4.8 (1.2) — 4.8

Note: Percentage weight element content in parentheses.
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its thickness increases rapidly (Figure 2.2), and in the same period on the lithium 
burnout kinetic curve, a steep part is observed, which increases the oxidation rate. 
After 30–45 min, the film thickness growth rate slows down, and by 60 min, the 
thickness growth is no longer observed, the film color turns into gray, and dark 
brown spots are visible. The kinetic burnout curves show the process rate reduction 
after 60 min of storage, and after 80 min, oxidation practically stops.

At 0.2% yttrium introduction, the dense brittle film is formed, the thickness of 
which varies slightly and strength rises along with increase in molten holding time. 
During melt exposure, the oxidation reactions occur, resulting in no additive alloy 
and the formation of χ-Al2O3 and Li2O oxides.

Along with high speed oxidation, the secondary moisture interaction reaction and 
carbon dioxide reaction occur resulting in after 1–3 min the LiOH hydroxide and 
Li2CO3 carbonate formation on the molten surface. Hydroxide at holding tempera-
ture stays in the molten state (Tmelting = 462°C), and carbonate is close to the molten 
state (Tmelting = 732°C) (Table 2.4).

Calculation of the Pilling–Bedworth ratio for these phases showed that they must 
have protective properties in liquid aluminum (Table 2.4) [43].

It is experimentally confirmed that, kinetically, during the first minutes of stor-
age, when the reaction rate of Li2O formation slightly exceeds the reaction rate of 
Li2CO3 and LiOH formation (Table 2.5), lithium burning in the molten state pro-
ceeds weakly, which is indicated by a plateau (Figure 2.2, curve 1).

In the alloy with beryllium, Li2O oxide in its pure form is absent; it is consumed 
for the formation of Li2CO3 and LiOH mixtures (Table 2.6). On the beryllium alloy 
oxidation kinetic curve, the presence of a plateau at short holding time is explained 
by the presence of these phases.

γ-LiAlO2 oxide is formed at temperatures above 600°C and at normal pressure in 
3–5 min after lithium introduction into the molten state without additives and with 
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FIGURE 2.2 Kinetics of lithium burnout from 1420 alloy without beryllium additives 
(1) and with 0.2% beryllium addition (2), also with thickness of surface film on the alloy with 
0.2% of beryllium (3).
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beryllium, and in 1 min after lithium introduction with yttrium additives on the film 
surface composite.

γ-LiAlO2 oxide, like many oxides with A+1B+3O2 formula, has a tetragonal struc-
ture. Its lattice periods are a = 5.169 A0 and c = 6.268 A0. However, unlike other 
oxides, such as LiFeO and LiZnO, which are similar to NaCl structure and in which 
the cations are coordinated octahedrally, except for γ-LiAlO2, lithium and aluminum 
are coordinated tetrahedrally. The Pilling–Bedworth ratio for (η) oxide calculated on 
the density data basis [45] equals to 1.26 (Table 2.4).

During half-hour storage at 720°C, the surface layers of 1420 alloy without addi-
tives consist of phase mixture with different structures and properties. At longer-
term holding, when the lithium and magnesium oxidation is simultaneous, the Li2O 

TABLE 2.4
Physical Characteristics of Compounds Formed on the 1420 Molten Surface

Compound Crystal Lattice 
Melting 

Temperature (°C) 
Density 
(kg/m3) 

Molar 
Volume (cm3) Volume Ratioa 

Li2O FCC 2000 2013 15 0.75

LiOH Tetragonal 462 1460 16.4 1.26

Li2CO3 Monocrystalline 618 (732) 2110 37 1.42

γ-LiAlO2 Tetragonal — 2610 25.0 1.26

MgO FCC 3073 3650 11.25 1.09

BeO Hexagonal 2843 3030 8.25 —

a Calculated relative to alloy.

TABLE 2.5
Kinetics of 1420 Molten Surface Films Phase Composition Changes without 
the Bath Surface Protection

Timea (min) Phase Compoundsb 

1 Al χ-Al2O3 Li2O — — — — —

2 Al χ-Al2O3 Li2O LiOH — — — —

3 Al χ-Al2O3 Li2O LiOH Li2CO3 γ-LiAlO2 MgO —

4 Al χ-Al2O3 Li2O LiOH Li2CO3 γ-LiAlO2 MgO —

5 Al χ-Al2O3 Li2O LiOH Li2CO3 γ-LiAlO2 MgO —

6 Al χ-Al2O3 Li2O LiOH Li2CO3 γ-LiAlO2 MgO LiH

10 Al χ-Al2O3 Li2O LiOH Li2CO3 γ-LiAlO2 MgO LiH

15 Al χ-Al2O3 Li2O LiOH Li2CO3 γ-LiAlO2 MgO LiH

120 Al χ-Al2O3 Li2O LiOH Li2CO3 γ-LiAlO2 MgO —

a Time after lithium introduction.
b The phases are located in the order of their quantity reduction in the corresponding film.
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and MgO phase quantity significantly increases, which leads to the formation of 
loose film, providing no protection for 1420 alloy without additives from continuous 
oxidation. As shown in Table 2.5, the predominant phase at long-term holding is 
lithium oxide.

When studying the kinetics of Al–Li–Cu–Mg–Zr system alloy oxidation [46,47], 
the researchers found out the Li2CO3, α-Li5AlO2, and γ-LiAlO2 phases formation at 
500°C during a holding time of 160 min.

With the presence of 0.2% beryllium, the Li2O lithium oxide appearance in the 
film is accompanied by an increase in oxidation rate, which corresponds to a steep 
section on the kinetic curve. However, beginning with 8 min, the separate parts of 
the molten surface are covered with dark-gray film comprising phases with protec-
tive properties—MgAl2O4 and BeAl2O4—having η greater than one (Table 2.6), but 
the number of these phases is not sufficient to stop the burning of lithium. Within the 
30–45 min holding range, there are two competing processes on the surface: Li2O 
formation and beryllium and magnesium complex oxides formation, and therefore, 
the surface area occupied by MgAl2O4 and BeAl2O4 determines the speed of lithium 
burning and not the film thickness. After 30–45 min, the surface film growth rate of 
the complex composition on the molten with beryllium slows down (Figure 2.2). This 
indicates that the amount of lithium-containing phases becomes constant. Lithium 
burning process stops only after 90 min when the entire molten surface is covered 
with dark film of complex oxide mixtures.

The protective properties of γ-LiAlO2 oxide are revealed most completely in 
melting alloys with yttrium (Table 2.7). The amount of lithium carbonate after 
a holding time of 2 h remains constant, while the number of γ-LiAlO2 oxide in 

TABLE 2.6
Kinetics of 1420 Molten Surface Films Phase Composition Changes with 
0.2% Beryllium Addition

Timea 
(min) 

Film 
Color Phase Compoundb 

1 White Al MgO Li2CO3 LiOH

2 White Al MgO LiOH Li2CO3

3 White Al MgO LiOH Li2CO3

4 White-gray Al MgO LiOH Li2CO3

5 White Al MgO LiOH Li2CO3 γ-LiAlO2

Gray Al MgO LiOH Li2CO3 γ-LiAlO2

6 White-gray Al MgO LiOH Li2CO3 γ-LiAlO2 MgAl2O4

10 Black Al MgO Γ-LiAlO2 MgAl2O4 BeAl2O4

15 White-gray Al MgO Li2O LiOH Li2CO3 γ-LiAlO2

Black Al MgO LiOH Li2CO3 γ-LiAlO2 MgAl2O4 BeAl2O4 BeO

20 Black Al MgO LiOH Li2CO3 MgAl2O4 BeAl2O4 γ-LiAlO2 BeO

a Time after lithium introduction.
b The phases are located in the order of their quantity reduction in the corresponding film.


