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The ideal scientist is enchanted by the scientific 
poetics of nature. As scientists, we dedicate this book 
to everyone who gets fascinated by Science and Art.
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Preface

Huge numbers of biomedical images are generated each year in routine 
and research labs. In this book, we describe new developments and solu-
tions to analyze and quantify fluorescence images, tagging DNA, RNA, 
and proteins in single cells as well as in cell populations. This book is 
a collaborative effort by large group of scientists working in comple-
mentary disciplines as biology, biochemistry, microscopy, physics, and 
engineering.

In Section I, we present different microscopic techniques that allow 
the production of high-quality 2D and 3D images as confocal micros-
copy to more quantitative methodologies, namely imaging flow cytom-
etry and atomic force microscopy (AFM). This includes chapters that 
define strategies to circumvent limitations of fluorescent nanoparticles 
and include novel strategies to track, quantify, and map these signals. 
Multiple fluorochromes and fluorochrome dyes are currently available 
allowing single or multiple complex visualization of molecular events. 
In every chapter, the advantages and limitations of every microscopic 
approach will be discussed and the future technical developments in 
each scientific area will be addressed.

Section II compiles new imaging and computer-based technologies to 
access the inner machinery of living cells and shows how different meth-
odologies contribute to advance on the understanding of highly dynamic 
biochemical processes occurring at cell, tissue, and organism level. We 
focused on a wide variety of biological questions related to signaling 
events and networks, formation of protein complexes, maintenance of 
cellular homeostasis by lysosomes, circadian rhythms, cell cycle, mem-
brane trafficking, behavior of cancer-cell populations, and macrophages 
dynamics. Overall, we aim to demonstrate in this book how fluorescence 
microscopy and images can be mathematically processed to allow depic-
tion of molecular events and pathways underlying cell function, tissue 
morphology and mechanics, and individual physiology.

Raquel Seruca, Jasjit S. Suri and João M. Sanches
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Introduction

Brief Historical view

Microscopy, fluorescence, and imaging

Two millenniums ago, Romans discovered that glass could be used to 
enlarge objects, but the first instruments capable to make visible struc-
tures not visible by the naked eye, only appeared in the past 400 years. 
Microscopes made possible to observe microorganisms, blood cells, 
sperm, and small details in plants and animals for the first time. Anton 
van Leeuwenhoek and Robert Hooke represented their pioneer observa-
tions by hand drawings and quantified some of their observations. As an 
example, Leeuwenhoek estimated the number of animalcules (bacteria 
and protozoa) in drops of water and determined the size and shape of red 
corpuscles (red blood cells).

Improvements in optics and theoretical studies of image formation and 
optics carried out in the second half of nineteenth century founded 
the grounds for the modern optical microscopy we experience today. 
Nowadays, scientists have a broad range of imaging methods available 
to study biological systems. The most classical transmission microscopy 
contrast techniques such as brightfield, phase-contrast, differential inter-
ference contrast, polarization, and dark-field are based on the alterations 
of light induced by interaction with the specimen. Transmission micros-
copy is a routinely choice approach for morphological analysis and for 
live-cell imaging to study cell shape, cell cycle, or migration of cell in 
culture. However, it is limited, as it does not allow to differential and 
simultaneously label molecules with high sensitivity and in a quantita-
tive way. Fluorescence microscopy surpasses these problems and allows 
exploring the cells and tissues at more molecular and subcellular levels. 
In fluorescence microscopy, the specimens are stained by fluorochrome 
dyes, quantum dots, or express chimeric fluorescently tagged proteins. 
These fluorophores get into an excited state after absorbing energy, as a 
photon, at specific wavelengths. This high-energy state is transient and 
first, the excited state electrons go to lower energy levels by vibrational 
relaxation, after which the molecule returns to ground state by emission 
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of a photon of lower energy than excitation. Multiple fluorochromes with 
very sensitive emission profiles are commercially available to label dif-
ferent cellular components allowing their independent visualization with 
high sensitivity as well as their spatial and temporal correlation.

The main constrain of fluorescence is blurring as fluorophores are self-
luminous. So, out-of-focus light from different focal planes mix with 
the in-focus signals originating blurred images in widefield fluorescence 
microscopy (WFM). Confocal fluorescence microscopy overcomes this 
problem, by using a spatial filter, known as pinhole, at the detection level 
that suppresses the light from out-of-focus areas. This leads to the for-
mation of a high contrasted image, optical section, that have reduced 
contribution of out-of-focus light. A specimen can then be optically sec-
tioned and those images can be used to build a 3D reconstruction of the 
specimen.

Imaging cell in culture is still the most common approach to study 
the biology of the cells; however, higher eukaryotes are multicellular 
organism where the cells are integrated in a 3D community, tissues. So, 
the ability to study the cells within its natural environment is essen-
tial to have an integrate vision of the biological processes, and confo-
cal microscopy ability to generate optical sections is still limited to few 
dozens of micrometers deep into tissues due to scattering of the light by 
matter. Multiphoton microscopy use pulsed IR light that is less scattered 
by tissues allowing to image deep. Since, IR photon have less energy, 
fluorophores must absorb energy of two photons to get excited. The high 
probability of excitation occurs only at focal plane, with no out-of-focus 
light being generated. Emitted light can be only detected close to the 
objective and this increases the detection sensitivity experimented in 
multiphoton microscopy.

In the past decade, a new microscopy technique to image live embryos 
in toto had a great development. In light sheet microscopy, a plane of the 
sample is illuminated by a sheet of light and emitted light is detected 
on an objective at 90°. Combining the acquisition at multiple planes and 
angles permits to make a total 3D reconstruction of each sample. Due 
to light sheet microscopy low phototoxicity, it is instrumental for live 
imaging of embryo development. Actually, live-cell imaging is essential 
to know the rules of biological processes or cell fate decisions and had a 
great expansion with development of new probes, including fluorescent 
proteins, which could illuminate targeted cell components. This enabled 
observing and measuring dynamic cellular events at molecular level 
with high spatial and temporal resolution.

The chemical distribution within an unstained specimen can be also 
evaluated by Raman confocal microscopy, a spectroscopic approach that 
provides a specific fingerprint of molecules.

Recent developments let to create techniques based in switch on/
off of fluorescents molecules (generically known as super-resolution 
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microscopy) that overcome the limit of resolution (~200 nm) of  optical 
microscopy and approaching it to nanoscopy with resolution limits 
reaching already 10 nm. These techniques are super-resolution micros-
copy plus the combination of light microscopy with electron microscopy 
and atomic force microscopy will open a new vision of cell biology in 
future years.

As the pioneers already demonstrated, imaging is not only getting a nice 
picture of fine details. This is particularly evident with digital imaging 
that generates images, which are 2D matrices. So, the digital images can 
be analyzed for extraction of quantitative information in order to per-
form accurate evaluation of data and science of excellence.

Paula Sampaio
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Chapter 1 Confocal 
microscopy in 
the life sciences

Miguel Aroso and 
M. Gomez-Lazaro

Introduction
Microscopy imaging is, in general, achieved by reflecting light off the 
specimen or by illumination of fluorescently labeled molecules (e.g., 
proteins). One of the main advantages of fluorescence microscopy is the 
increase in signal of the fluorophores against a dark background [1]. In 
widefield microscopy, the brightest and highest intensity of the incident 
light, from an incoherent mercury or xenon arc-discharge lamp, is at the 
focal point of the objective but there is illumination of other parts of 
the sample and as a result, different focal planes emits light resulting in 
high background, which might compromise the quality of the image [2]. 
This effect is more pronounced in thicker specimens (>2 µm), where 
out-of-focus fluorescence contributes to a higher background and to a 
degradation of most of the fine details. In this respect, the development 
of the laser scanning confocal microscopy (referred as confocal micros-
copy in this chapter) revolutionized the field of life sciences, since this 
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technology allows the generation of sharper images with significant 
lower background. The basis of confocal microscopy was developed 
by Marvin Minsky in 1955 and patented in 1957 [3]. However, further 
developments of Minsky’s prototype were hampered by limitations in the 
illumination and in the imaging system. The first commercial confocal 
microscope arrived at the market 30 years later—the Bio-Rad MRC-500.

Modern confocal microscopes can be considered as completely inte-
grated electronic systems  [4], where the optical microscope plays a 
central role in a configuration that consists of one or more electronic 
detectors, a computer (for image display, processing, output, and storage), 
and several laser systems combined with wavelength selection devices 
and a beam-scanning assembly [5]. One of the most important compo-
nents of the scanning unit is the pinhole aperture, which acts as a spatial 
filter and is positioned directly in front of the detector [6] (Figure 1.1). 

Pinhole

Laser

Microscope
objective

Sample

Dichroic
mirror

Computer

PMT

Figure 1.1 Schematic representation of a confocal microscope. A typical 
confocal microscope is composed of a laser as a source of excitation 
light (which can be different lasers with different laser lines or even a 
unique white laser), which will be used to scan the focused laser beam 
across the sample. The light is reflected off a dichroic mirror to direct 
the light to the sample. The objective of the microscope is used to focus 
the point illumination in the sample that will be scanned. The emitted 
light passes through the mirror and will be detected by the detector 
(usually a photomultiplier tube [PMT]) after passing through a pinhole 
that removes the out-of-focus light. The smaller the opening of the 
pinhole the higher amount of out-of-focus light is rejected. The photons 
arriving at the detector are processed by a computer for image display.
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It is possible to adjust the pinhole aperture to exclude fluorescent signals 
from out-of-focus features positioned above and below the focal plane 
and control the optical section thickness [5,7]. Thus, the image obtained 
has less haze and better contrast and represents a thin cross section of 
the specimen [8–13]. It is also possible to acquire several optical sections 
from the specimen that later can be used to create 3D representations. 
Nevertheless, the reduction of the pinhole size leads to a reduction of the 
image intensity, as fewer photons can be captured. Thus, there is a need 
to have a bright and coherent excitation source (e.g., laser) and very sen-
sitive photon detectors [14]. Those detectors should be highly sensitive 
and respond very quickly to a continuous flux of varying light intensity. 
The most common choice in many commercial confocal microscopes 
are the photomultiplier tubes (PMT) [15–17], which convert the fluores-
cent signals that pass through the pinhole into an analog electrical signal 
with a continuously varying voltage that corresponds to the intensity of 
the signal. Then, the analog signal is converted into pixels and the image 
information is displayed in the computer’s monitor. The confocal image 
of a specimen is reconstructed, point-by-point, from emission photon 
signals and does not exist as a real image that can be observed through 
the microscope eyepieces [7].

Within this chapter, you will find advice on sample preparation, image 
acquisition, and preprocessing. It also includes the description of two 
common applications of confocal microscopy within the life science 
field (colocalization and fluorescence recovery after photobleaching) and 
a summary of commonly used fluorophores. Although confocal micros-
copy represents a popular technology, it has some limitations that will 
be revealed together with some advanced technological developments.

Experimental procedures

Sample processing: Needs and troubles
The observation of biological samples by confocal microscopy should, 
ideally, be carried out in living specimens. However, most of the times, it 
is not possible and previous sampling preparation is required. Common 
sample preparation for widefield and confocal microscopy relies on four 
main steps: (1) fixation to preserve cellular morphology and adherence of 
the specimen to the coverslip, (2) permeabilization to grant access of the 
labeling reagents to intracellular components, (3) labeling of the desired 
structures, and (4) mounting of the sample with addition of appropriate 
antifading reagent.

The fixation step must preserve the cellular organization, 3D struc-
ture,  and antigenicity of the target when performing immunofluores-
cence. However, no fixation protocol is perfect and it should be chosen 
accordingly with the main objectives of the sample visualization. For 
example, if the samples will be analyzed by confocal microscopy 


