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Preface

This book is based on lectures given by the first author at Cal Poly Pomona, Arizona State
University (ASU), and the Massachusetts Institute of Technology (MIT), the second author
at Western Kentucky University (WKU) and Cal Poly Pomona, and the third author at Cal
Poly Pomona. The first eight chapters and two appendices are identical to those in A Course
in Ordinary Differential Equations, 2nd Edition. The text can be used for a traditional one-
semester sophomore-level course in ordinary differential equations (such as WKU’s MATH
331), a one-semester sophomore-level course in differential equations in which partial differ-
ential equations replace Laplace transforms, or a two-semester sophomore- or junior-level
course in differential equations. There is ample material for a two-quarter sequence (such
as Cal Poly Pomona’s MAT 216-431 or MAT 431-432), as well as sufficient linear algebra in
the text so that it can be used for a one-quarter course that combines differential equations
and linear algebra (such as Cal Poly Pomona’s Math 224), or a one-semester course in dif-
ferential equations that brings in linear algebra in a significant way (such as ASU’s MAT
275 or MIT’s 18.03). Most significantly, computer labs are given in MATLAB R©,1 MapleTM,
and Mathematica at the end of each chapter so the book may be used for a course to intro-
duce and equip the student with a knowledge of the given software (such as ASU’s MAT
275). Near the end of this Preface, we give some sample course outlines that will help show
the independence of various sections and chapters. The focus of the text is on applications
and methods of solution, both analytical and numerical, with emphasis on methods used
in the typical engineering, physics, or mathematics student’s field of study. We have tried
to provide sufficient problems of a mathematical nature at the end of each section so that
even the pure math major will be sufficiently challenged.

Key Features

This second edition of the book keeps many of the key features from the first edition:
• MATLAB, Maple, and Mathematica are incorporated at the end of each chapter, help-

ing students with pages of tedious algebra and many of the differential equations topics;
the goal of the software is still to show students how to make informed use of the rele-
vant software in the field; all three software packages have parallel code and exercises;

• There are numerous problems of varying difficulty for both the applied and pure math
major, as well as problems for the nonmathematician (engineers, etc.);

• An appendix that gives the reader a “crash course” in the three software packages; no
prior knowledge is assumed;

• Chapter reviews at the end of each chapter to help the students review;

• Projects at the end of each chapter that go into detail about certain topics and some-
times introduce new topics that the students are now ready to see;

• Answers to most of the odd problems in the back of the book;

1MATLAB is a registered trademark of The MathWorks, Inc. For product information, please contact:
The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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• An appendix on linear algebra to supplement the treatment within the text, should it
be appropriate for the reader/course;

• A full solutions manual for the qualified instructor.

It also incorporates new features, many of which have been suggested by professors and
students who have taught/learned from the first edition:

• The computer codes are moved to the end of each chapter as Computer Labs to
facilitate reading of the book by students and professors who either choose not to use
the technology or who do not have access to it immediately;

• The latest software versions are used; significant changes have occurred in certain
aspects of MATLAB, Maple, and Mathematica since the first edition in 2006, and the
relevant changes are incorporated;

• Much of the linear algebra discussion has been moved to Chapter 5 (from Chapter 3),
which deals with linear systems;

• Sections have been added on complex variables (Chapter 3), the exponential response
formula for solving nonhomogeneous equations (Chapter 4), forced vibrations (Chapter
4) as well as a subsection on nondimensionalization (Chapter 2), and a combining of
the sections on Euler and Runge-Kutta methods (Chapter 2);

• Many rewritten sections highlight applications and modeling within many fields;

• Exercises flow from easiest to hardest;

• Color graphs to help the reader better understand crucial concepts in ordinary differ-
ential equations;

• Updated and extended projects at the end of each chapter to reflect changes within
the chapters.

Approaches to Teaching Differential Equations

The second edition of this book has evolved with our understanding of how to teach the
material in the best possible way. Some notable examples from the above list:

1. The structure of the course in covering linear systems in their entirety before covering
applications to nonlinear systems (phase plane, etc.) was a direct result of numerous
conversations with MIT’s Professor Haynes Miller (who frequently teaches MIT’s 18.03)
as was the incorporation of the new sections on essential topics from complex variables,
exponential response, and complex replacement (developed by Haynes) for solving non-
homogeneous differential equations, and the s-domain and poles as an important use
of Laplace transforms by engineers.

2. Combining the computer codes into Computer Labs at the end of each section rather
than having snippets of code embedded throughout the text was a direct result of a
switch in ASU’s method of teaching this course. Setting aside six class periods for such
labs is the way differential equations is now taught at ASU.

3. The presentation of essential linear algebra topics to aid in the understanding of dif-
ferential equations was helped by discussions with MIT’s Professor Gil Strang as well
as seeing some of his lectures firsthand.

Most differential equations we have encountered in practice have needed analytical approxi-
mations or numerical approximations to gain insight into their behavior. We don’t feel that
students use technology wisely if they simply ask the computer to solve a given problem. We
thus focus on what we consider to be the basics necessary for adequately preparing a student
for study in her or his respective fields, including mathematics. We present the syntax from
MATLAB, Maple, and Mathematica in Computer Labs at the end of each chapter. We feel



Preface xvii

that this provides the readers a better understanding of the theory and allows them to gain
more insight into real-world problems they are likely to encounter. The vast majority of our
students also have no previous experience with MATLAB, Maple, or Mathematica and we
start from the basics and teach informed use of the relevant mathematical software. The
student whom we “typically encounter” has had one year of calculus and is usually a major
in a field other than pure mathematics.

Our book is traditional in its approach and coverage of basic topics in ordinary differential
equations. However, we cover a number of “modern” topics such as direction fields, phase
lines, the Runge–Kutta method, and nondimensionalization in Chapter 2 and epidemiolog-
ical and ecological models in Chapter 6. As mentioned earlier, we also bring elements from
linear algebra, such as eigenvectors, bases, and transformations, in order to best equip the
reader of the book with a solid understanding of the material. Besides the Computer Labs
there are also Projects at the end of each chapter that give useful insight into past and
future topics covered in the book. The topics covered in these projects include a mix of
traditional, modeling, numerical, and linear algebra aspects of ordinary differential equa-
tions. It is the intent that students who study this book and work most of the problems
contained in these pages will be very prepared to continue their studies in engineering and
mathematics.

Some Sample Course Outlines
While we could not begin to prescribe how this book may best be used for each school, we

include some possible sections covered for various course outlines. There is sufficient material
for a two-quarter or two-semester course sequence involving ordinary differential equations
and partial differential equations with or without an emphasis on linear algebra that would
utilize most of the book. We stress that if you intend to incorporate MATLAB, Maple, or
Mathematica into your course, it is crucial to assign Exercises 1–4 (plus a few others) from
Appendix A and the Chapter 1 Computer Lab early in the course. Appendix A requires
only a knowledge of college algebra and some calculus (Taylor series), while Chapter 1
Computer Lab requires knowledge of calculus as it is applied to differential equations. Thus
both can be assigned within the first 2 weeks of the course (and likely together).

Traditional semester ODE course:

Chap. 1 Chap. 2 Chap. 3 Chap. 4 Chap. 5 Chap. 7 Chap. 8

1.1–1.6 2.1–2.2 3.1–3.3 4.1, 4.3 5.1 7.1–7.4 8.1–8.5
3.5–3.6 4.5–4.6 5.4–5.8

Semester ODE course with modeling or application emphasis:

Chap. 1 Chap. 2 Chap. 3 Chap. 4 Chap. 5 Chap. 6 Chap. 7
1.1–1.4 2.1–2.6 3.1–3.2 4.1–4.2 5.1, 5.4 6.1–6.5 7.1–7.5

3.4–3.7 4.4–4.7 5.5, 5.7

Semester DE course with PDEs instead of Laplace Transforms:

Chap. 1 Chap. 2 Chap. 3 Chap. 4 Chap. 5 Chap. 6 Chap. 10

1.1–1.6 2.1–2.2 3.1–3.3 4.1, 4.3 5.1 6.1 10.1–10.6
3.5–3.6 4.5–4.6 5.4–5.8

Semester ODE course with linear algebra emphasis and no separate computer
labs:

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 App. B

1.1–1.4 2.1–2.2 3.1–3.2 4.1–4.2 5.1–5.5 6.1 7.1–7.7 B.1–B.4
2.5 3.4–3.7 4.4, 4.7 5.7–5.8
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Semester DE course with linear algebra emphasis and no separate computer
labs:

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 10 App. B

1.1–1.4 2.1–2.2 3.1–3.2 4.1–4.2 5.1–5.5 6.1 10.1–10.6 B.1–B.4
2.5 3.4–3.7 4.4, 4.7 5.7–5.8

Semester ODE course with linear algebra emphasis and 6 computer labs:

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 7 Comp. Labs

1.1–1.4 2.1–2.2 3.1–3.2 4.1–4.2 5.1–5.5 7.1–7.6 A & 1, 2,
2.5 3.4–3.7 4.4, 4.7 3, 4, 5 & B, 7

Quarter ODE course with linear algebra emphasis:

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 App. B

1.1–1.4 2.1–2.2 3.1–3.2 4.1–4.2 5.1–5.5 B.1–B.4
2.5 3.4–3.7 4.7
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their help in preparing solutions. We would also like to acknowledge our Cal Poly Pomona
colleagues Michael Green, Jack Hofer, Tracy McDonald, Jim McKinney, Siew-Ching Pye,
Dick Robertson, Paul Salomaa, Jenny Switkes, Karen Vaughn, and Mason Porter (Cal-
tech/Oxford) for their willingness to use draft versions of this text in their courses and
their important suggestions, which improved the overall readability of the text. The faculty
and students of AMSSI and MTBI also deserve a special thanks for comments on early
drafts of the computer code. Mary Jane Hill assisted us with certain aspects of the text
and helped in typesetting some of the chapters of the initial drafts of the book; her effort
is greatly appreciated. The production and support staff at Chapman & Hall/CRC Press
have been very helpful. We particularly wish to thank our project coordinator, Theresa Del
Forn and project editor, Prudence Board. Our editor Bob Stern deserves a special thanks
for believing in this project and for his guidance, advice, and patience. We sincerely thank
all these individuals; without their assistance this text would not have succeeded.

A few remarks for students and professors:

This book will succeed if any fears and reservations about learning one of the three com-
puter algebra systems used in this book are put aside. Computers are not here to supplant
us, but rather they are here to help illustrate and illuminate concepts and insights that
we have. Nothing is foolproof and we stress the importance of informed use of the rele-
vant mathematical software. Numerical answers, although quite accurate most of the time,
should always be examined carefully because computers are as smart as the programmer
allows them to be. There should never be a blind trust in an answer.

It is essential that the technology that you choose—MATLAB, Maple, or Mathematica—
be introduced early in the class, just as it is introduced early in the book. While certain
mathematical software packages may be better suited for studying differential equations,
none have the versatility that the above three programs have to give insight into other areas
of mathematics. The two keys to learning the programs are (1) learning the syntax and
(2) learning to use the help menus to figure out some of the commands. Setting aside one
class, for example, to give a brief tutorial on one of these software packages in the computer
lab is a very worthwhile investment. It is by no means necessary and the typical student
will be able to learn the material on his/her own by carefully following Appendix A. For
reinforcement, it is crucial to include at least one or two technology problems with each
homework assignment. The conscientious student will be well prepared to use the same
software package in any upper division course in any branch of the mathematical sciences
and its applications.

It is not necessary to bring computer demonstrations into the classroom. Both authors
have taught their courses successfully without classroom demonstrations; handouts some-
times are useful, especially from the appendices. The students, for better or worse, are
generally far less afraid of technology than one might expect. If students are sent to the
computer lab with an assignment to do and aided with Appendix A, the vast majority will
come back with satisfactory answers. Yes, you may bang your head against your desk in
frustration at times, but just ask the person next to you for help and also seek the help
menus and you will be able to learn MATLAB, Maple, and Mathematica quite well.
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Chapter 1

Traditional First-Order Differential
Equations

A Very Brief History

The study of Differential Equations began very soon after the invention of Differential and
Integral Calculus, to which it forms a natural sequel. In 1676 Newton solved a differential
equation by the use of an infinite series, only 11 years after his discovery of the fluxional
form of differential calculus in 1665. These results were not published until 1693, the same
year in which a differential equation occurred for the first time in the work of Leibniz (whose
account of differential calculus was published in 1684).

In the next few years progress was rapid. In 1694–1697 John Bernoulli explained the
method of “Separating the Variables,” and he showed how to reduce a homogeneous differ-
ential equation of the first order to one in which the variables were separable. He applied
these methods to problems on orthogonal trajectories. He and his brother Jacob (after
whom the “Bernoulli Equation” is named; see Section 1.6.1) succeeded in reducing a large
number of differential equations to forms they could solve. Integrating Factors were proba-
bly discovered by Euler (1734) and (independently of him) by Fontaine and Clairaut, though
some attribute them to Leibniz. Singular Solutions, noticed by Leibniz (1694) and Brook
Taylor (1715), are generally associated with the name of Clairaut (1734). The geometrical
interpretation was given by Lagrange in 1774, but the theory in its present form was not
given until much later by Cayley (1872) and M.J.M. Hill (1888).

Today, differential equations are used in many different fields. They can often accurately
capture the behavior of continuous models or a large number of discrete objects where the
current state of the system determines the future behavior of the system. Such models are
called deterministic (as opposed to stochastic or random). The study of nonlinear
differential equations is still a very active area of research. Although this text will consider
some nonlinear differential equations, here the focus will be on the linear case. We will
begin with some basic terminology.

1.1 Introduction to First-Order Equations

Order, Linear, Nonlinear

We begin our study of differential equations by explaining what a differential equation
is. From our experience in calculus, we are familiar with some differential equations. For
example, suppose that the acceleration of a falling object is a(t) = −32, measured in ft/sec2.
Using the fact that the derivative of the velocity function v(t) (measured in ft/sec) is the
acceleration function a(t), we can solve the equation

dv
v′(t) = a(t) or = a(t) = −32.

dt

Many different types of differential equations can arise in the study of familiar phenomena
in subjects ranging from physics to biology to economics to chemistry. We give examples
from various fields throughout the text and engage the reader with many such applications.

1



2 Chapter 1. Traditional First-Order Differential Equations

It is clearly necessary (and expedient) to study, independently, more restricted classes of
these equations. The most obvious classification is based on the nature of the derivative(s)
in the equation. A differential equation involving derivatives of a function of one variable
(ordinary derivatives) is called an ordinary differential equation, whereas one containing
partial derivatives of a function of more than one independent variable is called a partial
differential equation. In this text, we will focus on ordinary differential equations.

The order of a differential equation is defined as the order of the highest derivative ap-
pearing in the equation.

Example 1 The following are examples of differential equations with indicated orders:

(a) dy/dx = ay (first-order)

(b) x′′(t)− 3x′(t) + x(t) = cos t (second-order)

(c) (y(4))3/5 − 2y′′ = cosx (fourth-order)
where the superscript (4) in (c) represents the fourth derivative.

Our focus will be on linear differential equations, which are those equations that have an
unknown function, say y, and each of its higher derivatives appearing in linear functions.
That is, we do not see them as y2, yy′, sin y, or (y(4))3/5.1 More precisely, a linear differential
equation is one in which the dependent variable and its derivatives appear in additive com-
binations of their first powers. Equations where one or more of y and its derivatives appear
in nonlinear functions are called nonlinear differential equations. In the above example,
only (c) is a nonlinear differential equation.

Example 2 Classify the equations as linear or nonlinear.

(a) y′′ + 3y′ − x2y = cosx

(b) y′′ − 3y′ + y2 = 0

(c) y(3) + yy′ + sin y = x2

Solution
The first of these equations is linear, as it consists of an additive combination of y, y′,
and y′′, each of which is raised to the first power. In contrast to this, the second equation
is nonlinear because of the y2 term. The last equation is nonlinear because of both the
yy′ term and the sin y term—either of these terms by itself would have made the equation
nonlinear. Our study of nonlinear differential equations will focus on techniques for specific
equations or on understanding the qualitative behavior of a nonlinear differential equation,
since general techniques of solution are rarely applicable.

Much of this book is concerned with the solutions of linear differential equations. Thus we
need to explain what we mean by a solution. First we note that any nth-order differential
equation can be written in the form

F (x, y, y′, ..., y(n)) = 0, (1.1)

where n is a positive integer. For example, y′ = x2 + y2 can be written as

y′ − x2 − y2 = 0.

1Most of the equations we consider will involve an unknown function y that depends on x. Two other
common variables used are (i) the unknown function y that depends on t and (ii) the unknown function x
that depends on t, the latter being used in Example 1b.



1.1. Introduction to First-Order Equations 3

Here F (x, y, y′) = y′ − x2 − y2. The second-order equation y′′ − 3x2y′ + 5y = sinx can be
written as

y′′ − 3x2y′ + 5y − sinx = 0

and we see that F (x, y, y′, y′′) = y′′ − 3x2y′ + 5y − sinx.

Definition 1.1.1
A solution to an nth-order differential equation is a function that is n times differentiable
and that satisfies the differential equation. Symbolically, this means that a solution of
differential equation (1.1) is a function y(x) whose derivatives y′(x), y′′(x), ..., y(n)(x)
exist and that satisfies the equation

F (x, y(x), y′(x), ..., y(n)(x)) = 0

for all values of the independent variable x in some interval (a, b) where

F (x, y(x), y′(x), ..., y(n)(x))

is defined. (Note that the solution to a differential equation does not contain any
derivatives, although the derivatives of this solution exist.) The interval (a, b) may be
infinite; that is, a = −∞, or b =∞, or both.

Example 3 The function y(x) = 2e3x is a solution of the differential equation

dy

dx
= 3y,

for x ∈ (−∞,∞) because it satisfies the differential equation by giving an identity:

dy

dx
= 2

de3x

dx
= 6e3x = 3y.

Initial-Value vs. Boundary-Value Problems

We will soon see that solving a general differential equation gives rise to a solution that has
constants. These constants can be eliminated by specifying the initial state of the system
or conditions that the solution must satisfy on its domain of definition or “boundary.” An
example of the first situation is specifying the position and velocity of a mass on a spring.
An example of the second is a rope hanging from two supports, given the location of these
two supports.

Consider a first-order differential equation

dy

dx
= f(x, y)

and suppose that the solution y(x) was subject to the condition that y(x0) = y0. This is
an example of an initial-value problem. The condition y(x0) = y0 is called an initial
condition and x0 is called the initial point. More generally, we have the following:
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Definition 1.1.2
An initial-value problem consists of an nth-order differential equation together with n
initial conditions of the form

y(x0) = a0, y′(x0) = a1, ..., y
(n−1)(x0) = an−1

that must be satisfied by the solution of the differential equation and its derivatives at
the initial point x0.

Example 4 The following are examples of initial-value problems:
(a) dy/dx = 2y − 3x, y(0) = 2 (here x = 0 is the initial point).
(b) x′′(t) + 5x′(t) + sin(tx(t)) = 0, x(1) = 0, x′(1) = 7 (here t = 1 is the initial point).
(Note that the differential equation in (a) is linear, whereas the equation in (b) is non-
linear.) We define a solution to an nth-order initial-value problem as a function that is n
times differentiable on an interval (a, b); this satisfies the given differential equation on that
interval, and satisfies the n given initial conditions with the requirement that x0 ∈ (a, b).
As before, the interval (a, b) might be infinite.

In contrast to an initial-value problem, a boundary-value problem consists of a dif-
ferential equation and a set of conditions at different x-values that the solution y(x) must
satisfy. Although any number of conditions (≥2) may be specified, usually only two are
given. Rather than specifying the initial state of the system, we can think of a boundary-
value problem as specifying the state of the system at two different physical locations, say
x0 = a, x1 = b, a 6= b.

Example 5 The following are examples of boundary-value problems:
(a) d2y/dx2 + 5xy = cosx, y(0) = 0, y′(π) = 2
(b) dy/dx+ 5xy = 0, y(0) = y(1) = 2

Although a boundary-value problem may not seem too different from an initial-value
problem, methods of solution are quite varied. We will focus on initial-value problems. We
ask whether an initial-value problem has a unique solution. Essentially this is two questions:
1. Is there a solution to the problem?
2. If there is a solution, is it the only one?

As we see in the next two examples, the answer may be “no” to each question.

Example 6 An initial-value problem with no solution.
The initial-value problem (

dy

dx

)2

+ y2 + 1 = 0

with y(0) = 1 has no real-valued solutions, since the left-hand side is always positive for
real-valued functions.

Example 7 An initial-value problem with more than one solution.
The initial-value problem

dy

dx
= xy1/3
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with y(0) = 0 has at least two solutions in the interval −∞ < x < ∞. Note that the
functions

y = 0 and y =
x3

3
√

3

both satisfy the initial condition and the differential equation.

Two Important Models

One of the most fundamental models in biology deals with population growth and one
of the most fundamental models in physics deals with a mass on a spring. In the next
two examples, we examine how differential equations describe the behavior of these two
phenomena.

Example 8 The change in the population of bacteria with sufficient nutrients and space
to grow is known to be proportional to its current population. The differential equation
can be written as

dP

dt
= kP (1.2)

where P (t) is the current population of bacteria and k is a constant determined by its
growth rate. We can verify that

P (t) = P (0)ekt (1.3)

is a solution to this differential equation. Because of the presence of the constant P (0), we
say that Equation (1.3) is a family of solutions parameterized by the constant P (0). To
verify this is indeed a solution, we take the derivative to get P (0)kekt. Subsituting this into
the left side of the differential equation and the supposed solution into the right side,

dP

dt︸︷︷︸
P (0)kekt

= k· P︸︷︷︸
P (0)ekt

we see that, with a slight rearrangement of the expressions underneath, we have equality for
all t. Thus (1.3) is a solution to differential equation (1.2) for all t, and we see the solution
describes the exponential growth of the population.

Example 9 In a later chapter we will learn that a mass on a spring moving along a slip-
pery2 surface can be described by the differential equation

mx′′ + kx = 0

where x(t) is the distance the spring has stretched from its resting length, k is the spring

constant, and m is the mass, as shown in Figure 1.1. We can verify that x = cos

(√
k
m t

)
is a solution. To do so we take the second derivative to get x′′ = − k

m cos

(√
k
m t

)
and

substitute it into the equation along with the assumed form of x:

m ·
[
− k
m

cos

(√
k

m
t

)]
︸ ︷︷ ︸

x′′

+ k · cos

(√
k

m
t

)
︸ ︷︷ ︸

x

= 0.

2Physicists use the word “slippery” to mean “ignore frictional forces.”
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Simplification shows that it is indeed a solution and it holds for all t.

m
k

x

x=0
(rest position)

FIGURE 1.1: Model of spring system for Example 9. x = 0 marks the position if the
spring were at its natural (unstretched) length and we will take x to the right as positive.

In the next several sections we will develop methods for finding solutions to first-order dif-
ferential equations. We will then discuss existence and uniqueness of solutions in Chapter 2.

• • • • • • • • • • • • • •
Problems

In Problems 1–12, classify the differential equations by specifying (i) the order, (ii) whether
it is linear or nonlinear, and (iii) whether it is an initial-value or boundary-value problem
(where appropriate).

1. 3y′′ + y = sinx 2. y′′ = sinx
3. y′′ + y′ − y = 0 4. y′′ + 3y′ = 0, y(0) = 1, y′(1) = 0
5. y(3) + (sinx)y(2) + y = x, y(0) = 1, y′(0) = 0, y′′(0) = 2
6. y′′ = 0, y(1) = 1, y′(1) = 2 7. y′ + exy = y4, y(0) = 0
8. y′′ − 3yy′ = x 9. y′′ + sin y = 0
10. y′′ − 4y′ + 4y = 0, y(0) = 1, y′(0) = 1 11. y′′ + exy′ + y2 = 0, y(0) = 1, y(π) = 0
12. x2y′′ + y′ + (lnx)y = 0

In Problems 13–24, verify that the given function is a solution to the differential equation
by substituting it into the differential equation and showing that the equation holds true.
Assume the interval is (−∞,∞) unless otherwise stated. Do NOT attempt to solve the
differential equation.

13. y(x) = 2x3, x
dy

dx
= 3y 14. y(x) = x, y′′ + y = x

15. y = 2,
dy

dx
= x3(y − 2)2 16. y(x) = x3,

dy

dx
= 3y2/3

17. y(x) = ex − x,
dy

dx
+ y2 = e2x + (1− 2x)ex + x2 − 1

18. y(x) = sinx+ 2 cosx, y′′ + y = 0 19. y(x) = x2 − x−1, x2y′′ = 2y, x 6= 0
20. y(x) = x+ C sinx, y′′ + y = x, C = constant

21. y(x) =
−1

x− 3
,
dy

dx
= y2, (−∞, 3) 22. y(x) =

−1

5x+ 4
,
dy

dx
= 5y2, (−4/5,∞)

23. y1(x) = ex and y2(x) = e2x, y′′ − 3y′ + 2y = 0
24. y1(x) = ex and y2(x) = xex, y′′ − 2y′ + y = 0
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In Problems 25–28, determine which of the functions solve the given differential equation.
25. y′′ + 6y′ + 9y = 0: (a) ex, (b) e−3x, (c) xe−3x, (d) 4e3x, (e) 2e−3x + xe−3x

26. y′′ + 9y = 0: (a) sin 3x, (b) sin x, (c) cos 3x, (d) e3x, (e) x3

27. y′′ − 7y′ + 12y = 0: (a) e2x, (b) e3x, (c) e4x, (d) e5x, (e) e3x + 2e4x

28. y′′ + 4y′ + 5y = 0: (a) e−2x, (b) e−2x sin 2x, (c) e−2x cos 2x, (d) cos 2x

In Problems 29–32, find values of r for which the given function solves the differential
equation on (−∞,∞).
29. y(x) = erx, y′′ + 3y′ + 2y = 0 30. y(x) = erx, y′′ + 3y′ − 4y = 0
31. y(x) = xerx, y′′ + 6y′ + 9y = 0 32. y(x) = xerx, y′′ + 4y′ + 4y = 0

1.2 Separable Differential Equations

We will now introduce the simplest first-order differential equations. Although these are
the simplest class of differential equations we will encounter, they appear in numerous ap-
plications and aspects of subsequent theory. We make the following definition:

Definition 1.2.1
A first-order differential equation that can be written in the form

g(y) y′ = f(x) or g(y) dy = f(x) dx,

where y = y(x), is called a separable differential equation.

Separable differential equations are solved by collecting all the terms involving the de-
pendent variable y on one side of the equation and all the terms involving the independent
variable x on the other side. Once this is completed (it may require some algebra), both
sides of the resulting equations are integrated. That is, the equation

g(y) y′ = f(x)

can be written in “differential form”

g(y)
dy

dx
= f(x)

so that treating dy/dx as a fraction, we have

g(y) dy = f(x) dx.

Here the variables are separated, so that integrating both sides gives∫
g(y) dy =

∫
f(x) dx. (1.4)

The Method of Separation of Variables, which we just applied to (1.4), is the name given to
the method we use to solve Separable Equations—it is one of the simplest and most useful
methods for solving differential equations. (Incidentally, it is an important technique for
solving certain classes of partial differential equations, too.)

Sometimes we will be able to solve (1.4) for y. When we can do so, we will say we can
express the explicit solution and will write y = h(x). Other times, we will not be able
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to solve (1.4) or it will not be worth our time and efforts to do so. In these situations, we
say that we are giving the implicit solution with (1.4). When our solution can be written
explicitly, it will be easy to plot solutions in the x-y plane, by hand or with the computer;
however, when the solution is implicit, plotting solutions by hand is challenging at best.
The various computer programs discussed in Appendix A and the end of each chapter will
allow us to view plots in the x-y plane without much additional work. We now consider a
number of examples.

Example 1 Solve y′ = ky where k is a constant.

Solution
Writing y′ as dy

dx gives
dy

dx
= ky.

Treating dy
dx as a “fraction” and rearranging terms gives

dy

y
= k dx.

This step will only be valid if y 6= 0. We note that y = 0 is also a solution to the original
differential equation. Integrating gives∫

dy

y
=

∫
k dx,

which is
ln |y| = kx+ C1,=⇒ |y| = ekx+C1 .

This gives
y = ±ekxeC1 .

Now eC1 is a positive constant, so that we may let C = ±eC1 . In the above process, we
encountered the constant solution y = 0, which also gives us the possibility that C = 0.
Thus, we have

y = Cekx (1.5)

as our solution, where x ∈ (−∞,∞) and C is any real constant. We say that (1.5) defines
a one-parameter family of solutions of y′ = ky. It is also important to remember the
“trick” used above for getting rid of the absolute values—it will come up quite often in
practice! We will consider a few more examples with similar standard “tricks.”

Example 2 Solve
dx

dt
= et−x, x(0) = ln 2, for x(t).

Solution
Separating the variables gives

dx

dt
= ete−x

and thus
ex dx = et dt.

Integrating both sides of this equation gives

ex = et + C.
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Solving for x, we have

x = ln |et + C|.

Applying the initial condition x(0) = ln 2 yields

ln 2 = ln |1 + C|, so that C = 1.

Thus

x = ln(et + 1),

which is defined for all t. Note that et+1 is always positive so that we can drop the absolute
value signs. We should also note that, after integrating, we could have applied the initial
condition to determine C and then proceeded to solve for x instead of first solving for x and
then applying the initial condition to determine C. Both methods will result in the same
final answer. See Figure 1.2 for a plot of the solution.

FIGURE 1.2: Plot of solution for Example 2.

Example 3 Solve (x− 4) y4 − x3 (y2 − 3)
dy

dx
= 0.

Solution
To separate variables, we divide by x3y4, which implicitly assumes that x 6= 0 and y 6= 0.
Doing so gives

x− 4

x3
dx =

y2 − 3

y4
dy.

This simplifies to (x−2 − 4x−3) dx = (y−2 − 3y−4) dy. Integrating gives

−1

x
+

2

x2
=
−1

y
+

1

y3
+ C

as the general solution, which is valid when x 6= 0 and y 6= 0. This is definitely a case where
giving the solution in an implicit representation is acceptable! See Figure 1.3 for a plot of
the implicit solution. We refer the reader to the end of this chapter for the computer code
used to plot these types of solutions with one of the software packages. There is, however, a
more important idea that is illustrated by this example. If we assume x 6= 0 and y2−3 6= 0,
we can rewrite the original differential equation as

dy

dx
=

(x− 4)y4

x3(y2 − 3)
,
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x
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Plot of Example 3 with C=−10,2,6,50
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FIGURE 1.3: Implicit plot for Example 3. The curves plotted here satisfy the implicit
solution. We note here that the C-values superimposed on the curves were good for this
problem, but it often takes ingenuity, experience, trial and error, or some combination of
these to get a “nice” picture.

and then one can clearly see that y = 0 is a solution. (That is, when y = 0 is substituted
into both sides of the equation, we get an identity for all x.) This problem shows that the
separation process can lose solutions.

How can we verify that
−1

x
+

2

x2
=
−1

y
+

1

y3
+ C

is a solution? We need to substitute it into the differential equation as before. This will
require us to find y′ and we will do so with implicit differentiation. Taking the derivative
of both sides of the equation gives

1

x2
− 4

x3
=

1

y2
y′ − −3

y4
y′.

We solve for y′ and then simplify the complex fraction to obtain

y′ =
y4(x− 4)

x3(y2 − 3)
,

which is an equivalent form of our original differential equation.

Although the separation process will work on any differential equation in the form of Defi-
nition 1.2.1, evaluating the integrals in (1.4) can sometimes be a daunting, if not impossible,
task. As discussed in calculus, certain indefinite integrals such as∫

ex
2

dx

cannot be expressed in finite terms using elementary functions. When such an integral is
encountered while solving a differential equation, it is often helpful to use definite integra-
tion by assuming an initial condition y(x0) = y0.

Example 4 Solve the initial-value problem

dy

dx
= ex

2

y2, y(2) = 1
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and use the solution to give an approximate answer for y(3).

Solution
We would like to divide both sides by y2 and we note that y = 0 is a solution. We set this
solution aside and now assume y 6= 0, divide by y2, and integrate from x = 2 to x = x1 to
obtain ∫ x1

2

[y(x)]−2 dy

dx
dx = −[y(x)]−1|x1

2

=
−1

y(x1)
+

1

y(2)

=

∫ x1

2

ex
2

dx.

If we let t be the variable of integration and replace x1 by x and y(2) by 1, then we can
express the solution to the initial-value problem by

y(x) =
1

1−
∫ x

2

et
2

dt

.

With an explicit solution, we often want to be able to find the corresponding y-value given
any x. The right-hand side still cannot be solved exactly but can be approximated if x is
given. For example, y(3) ≈ −0.0007007. We note that we will have a point x > 2 that will
make the denominator zero (and thus is not in the domain of our solution) and our function
will become unbounded.

It is sometimes the case that a substitution or other “trick” will convert the given differ-
ential equation into a form that we can solve. A differential equation of the form

dy

dx
= f(ax+ by + k),

where a, b, and k are constants, is separable if b = 0; however, if b 6= 0, the substitution

u(x) = ax+ by + k

makes it a separable equation.

Example 5 Solve
dy

dx
= (x+ y − 4)2

by first making an appropriate substitution.

Solution
We let u = x+ y − 4 and thus dy

dx = u2. We need to calculate du
dx . For this example, taking

the derivative with respect to x gives

du

dx
= 1 +

dy

dx
.

Substitution into the original differential equation gives

du

dx
− 1 = u2.
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This equation is separable. Dividing by 1 + u2, we obtain

du

1 + u2
= dx

and integrating gives
arctan(u) = x+ c.

Thus u = tan(x+ c). Since u = x+ y − 4, we then have

y = −x+ 4 + tan(x+ c),

which is defined wherever tan(x+ c) is defined.

• • • • • • • • • • • • • •
Problems

In Problems 1–20, solve each of the following differential equations. Explicitly solve for
y(x) or x(t) when possible.

1. dydx = cosx

2. x dydx = (1 + y)2

3. xdxdt + t = 1

4. (1 + x) dydx = 4y
5. tanx dy + 2y dx = 0
6. dydx = 2

√
xy

7. 4xydx+ (x2 + 1)dy = 0

8. dydx = x2

1+y2

9. y′ = 10x+y

10. xy′ =
√

1− y2

11. y′ = xyex
2

, y(0) = 1. Explain why this differential equation guarantees that its solution
is symmetric about x = 0.
12. y′ = 2x2(y2 + 1), y(0) = 1
13. (ex + 1) cos y dy + ex(sin y + 1) dx = 0, y(0) = 3
14. (tanx)y′ = y, y

(
π
2

)
= π

2
15. 2x(y2 + 1) dx+ (x4 + 1) dy = 0, y(1) = 1
16. (x2 − 1)y′ + 2xy2 = 0, y(

√
2) = 1

17. (y + 2) dx+ y(x+ 4) dy = 0, y(−3) = −1
18. 8 cos2 y dx+ csc2 x dy = 0, y(π/12) = π/4

19. y′ = ex
2

, y(0) = 0

20.
dy

dx
=
y3 + 2y

x2 + 3x
, y(1) = 1

21 . Find the solution of the following equation that satisfies the given conditions for
x→ +∞: x2y′ − cos 2y = 1, y(+∞) = 9π

4 .
22 . Find the solution of the following equation that satisfies the given conditions for
x→ +∞: 3y2y′ + 16x = 2xy3, y(x) is bounded for x→ +∞.

In Problems 23–27, make an appropriate substitution to solve each of the following differ-
ential equations. Explicitly solve for y(x) or x(t) when possible.
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23. xydx+ (x+ 1)dy = 0 24. y′ − y = 2x− 3
25. (x+ 2y)y′ = 1 y(0) = −2 26. y′ = cos(y − x)
27. y′ =

√
4x+ 2y − 1

28. Suppose that the population N(t) of a given species (bacteria, elves, Toolie birds,
college students, etc.) is not always zero and varies at a rate proportional to its current
value. That is,

dN

dt
= rN,

where r ∈ R is some measured constant proportionality factor. If the initial population
is assumed to be N(0) = N0 > 0, solve this exponential differential equation and
discuss the behavior of the solution as t→∞ for different values of r.

29. An equivalent way of thinking of the exponential growth problem 28 is to assume the
per capita growth rate, 1

N
dN
dt , is constant. That is, we assume 1

N
dN
dt = r. It is more

realistic to assume that the per capita growth rate decreases as the population grows.
If we assume this decrease is linear and agrees with the exponential growth model for
small populations, we can write the equation

1

N

dN

dt
= r

(
1− N

K

)
where the left-hand side is the per capita growth rate and the right-hand side is a
linearly decreasing function in N that has y-intercept r and x-intercept K. Multiplying
both sides by N gives

dN

dt
= r

(
1− N

K

)
N,

which is the well-known logistic differential equation. If the initial population is given
as N(0) = N0 > 0, solve this differential equation and discuss the behavior of the
solution as t→∞. From this behavior, why is K called a carrying capacity?

1.3 Linear Equations

Linear first-order differential equations are perhaps the most commonly arising class of
differential equations in applications. A linear differential equation is defined as follows:

Definition 1.3.1
A first-order ordinary differential equation is linear in the dependent variable y and

the independent variable x if it can be written as

dy

dx
+ P (x)y = Q(x). (1.6)

More generally, we often see equations of the form

a1(x)y′ + a0(x)y = b(x)

but, provided a1(x) 6= 0 for all x, we can always divide by a1(x) and define P (x) = a0/a1

and Q(x) = b/a1 to obtain an equation of the form of (1.6).
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In our work to follow, specifically in Chapters 3 and 4, we will refer to an equation of
this form as a “linear nonhomogeneous equation.” In the case when Q(x) = 0, we refer to
the equation as “homogeneous,” but we caution the reader to be careful with the word “ho-
mogeneous” as it can also have other meanings; see Section 1.6. While it is an unfortunate
fact that mathematicians often use the same term for different mathematical notions, our
use of it should be clear by context.

In the following pages, we present two techniques for solving linear differential equations.
It is likely the case that only one of these methods will be presented in class, depending on
the emphasis of your course. The first is variation of parameters while the second is the
integrating factor technique.

Variation of Parameters

The first method of solving linear equations that we consider has a nice generalization for
higher-order equations. If we consider (1.6) with Q(x) = 0,

dy

dx
+ P (x) y = 0,

we can solve this linear homogeneous equation by using separation of variables. We obtain
yc, the complementary solution.3 We know that we can multiply yc by any constant
and it will still be a solution; however, we instead consider uyc where u is a function of x
and try to find a function u that will make this work. In order for u(x)yc to be a solution,
it needs to satisfy the differential equation. Substituting the assumed solution into (1.6),
we obtain

(u′(x)yc + u(x)yc
′) + P (x)u(x)yc = Q(x), (1.7)

which we can regroup and then simplify as

u′(x)yc + u(x)[yc
′ + P (x)yc]︸ ︷︷ ︸

= 0

= Q(x)

=⇒ u′(x)yc = Q(x)

since yc is a solution to the homogeneous equation. We then solve for u′(x) and integrate
to obtain

u(x) =

∫
Q(x)

yc
dx. (1.8)

As we only care about finding one function u(x) that will work, we don’t introduce the typ-
ical +C upon integration. Thus we have found a function u(x) that makes uyc a solution—
we call this a particular solution and denote it yp. Our general solution to (1.6), with
yp = u(x)yc, is then

y = Cyc + yp, (1.9)

where C is a constant that is determined by the initial condition.

Example 1 Solve
dy

dx
+ 2xy = 3x using variation of parameters.

Solution
This equation is linear with P (x) = 2x and Q(x) = 3x. We solve the homogeneous equation

3This solution is sometimes called the homogeneous solution and is denoted yh. The terms are used
interchangeably.
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first:

dy

dx
= −2xy ⇒

∫
dy

y
=

∫
−2xdx

⇒ ln |y| = −x2 + C1

⇒ y = Ce−x
2

. (1.10)

We now assume that a particular solution can be written as

yp = u(x)yc = u(x)e−x
2

.

The function u(x) that will allow this to be a solution of the original linear equation is

u(x) =

∫
Q(x)

yc
dx

=

∫
3x

e−x2 dx

= 3

∫
xex

2

dx

=
3

2
ex

2

. (1.11)

Recalling that yp = u(x)yc, our solution is then given by

y = Cyc + yp

= Ce−x
2︸ ︷︷ ︸

yc

+
3

2
ex

2︸ ︷︷ ︸
u(x)

e−x
2︸︷︷︸

yc

(1.12)

which simplifies to

y =
3

2
+ Ce−x

2

.

We can easily check that this is a solution of the original differential equation.

Example 2 Solve dy

dx
+

(
2x+ 1

x

)
y = e−2x

using variation of parameters.

Solution
This is clearly linear and we first solve the homogeneous equation

dy

dx
+

(
2x+ 1

x

)
y = 0.

Separation of variables gives us
yc = C

e−2x

x
.

We now assume a particular solution of the form yp = u(x) e
−2x

x . From the derivation, we
know that things will cancel out so that we need to solve for u in (1.8):

u(x) =

∫
e−2x

e−2x
/
x

=

∫
xdx
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so that

u(x) =
x2

2
=⇒ yp = u(x)yc =

x2

2

e−2x

x
=

1

2
xe−2x.

Our general solution is yc + yp:

y =
C

x
e−2x +

1

2
xe−2x.

Superposition

A key idea in the study of linear differential equations is that of superposition. We have
been studying the basic linear equation (1.6)

dy

dx
+ P (x)y = Q(x).

We can state a very useful theorem that will serve as an important tool in our further study.

THEOREM 1.3.1 Superposition
Suppose that y1 is a solution to y′+P (x)y = Q1(x) and y2 is a solution to y′+P (x)y =
Q2(x). Then

c1y1 is a solution to y′ + P (x)y = c1Q1(x)

for any constant c1. For any constants c1, c2, we also have that

c1y1 + c2y2 is a solution to y′ + P (x)y = c1Q1(x) + c2Q2(x).

Example 3 Verify that e2x is a solution to
dy

dx
+ y = 3e2x and 5x − 5 is a solution to

dy

dx
+ y = 5x. Then find a solution to

dy

dx
+ y = e2x + 4x.

Solution
We can easily verify that y1 = e2x and y2 = 5x − 5 are the solutions of the respective
differential equations. Let Q1(x) = 3e2x, Q2(x) = 5x, and Q(x) = e2x + 4x denote the
right-hand sides of the three differential equations. We observe that

Q(x) =
1

3
Q1(x) +

4

5
Q2(x).

By superposition, it follows that

y =
1

3
y1 +

4

5
y2 =

1

3
(e2x) +

4

5
(5x− 5)

is a solution of y′ + y = Q(x).

Integrating Factor Technique

In studying separable equations, we put all the terms of one variable on the left side of the
equation and the terms of the other variable on the right side of the equation. This allowed
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us to integrate functions of just one variable. Another trick that we will use is to rewrite
the left side so that it looks like the result of the product rule (from calculus). To remind
ourselves, for y, µ that are both functions of the same variable, the product rule states that

(yµ)′ = y′µ+ µ′y.

We know how to integrate the left-hand side so the goal is to somehow rewrite part of our
equation so that it looks like the right-hand side. Looking at y′µ + µ′y and recalling our
basic linear equation y′ + Py = Q, we want to multiply the left-hand side by a function µ
that satisfies

µ′ = µP. (1.13)

In this equation, P = P (x) is known, whereas µ = µ(x) (called the integrating factor) is
unknown. We can find µ(x) because Equation (1.13) is separable. Thus

dµ

µ
= P (x) dx.

Integrating gives

µ(x) = e
∫
P (x)dx. (1.14)

Since (1.14) is an integrating factor, we have

e
∫
P (x)dx︸ ︷︷ ︸
µ

dy

dx︸︷︷︸
y′

+ e
∫
P (x)dxP (x)︸ ︷︷ ︸

µ′

y = Q(x)e
∫
P (x)dx,

which is the same as

d

dx

e∫ P (x)dx︸ ︷︷ ︸
µ

y

 = Q(x)e
∫
P (x)dx.

So

e
∫
P (x)dxy =

∫
Q(x)e

∫
P (x)dxdx+ C,

which gives

y = e−
∫
P (x) dx

(∫
Q(x)e

∫
P (x)dx dx+ C

)
(1.15)

as the solution of the differential equation (1.6). Note that we have explicitly written the
constant of integration even though the integral has not yet been evaluated. Depending
upon your situation, one can memorize the formula (1.15) for the solution of a first-order
linear equation; however, it is just as easy (if not out right preferable) to simply apply the
method of solution each time.

Summary: Solving linear equations via an integrating factor
1. Write the linear equation in the form of Equation (1.6).
2. Calculate the integrating factor e

∫
P (x) dx.

3. Evaluate the integral
∫
Q(x)e

∫
P (x)dxdx and then multiply this result by e−

∫
P (x) dx.

4. The general solution to (1.6) is

y = Ce−
∫
P (x) dx + e−

∫
P (x) dx

∫
Q(x)e

∫
P (x)dx dx.
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In the event that we are given an initial condition y(x0) = y0, we would apply it at the
time of integration, going from x0 to a final (general) value x. If we let p̄(x) =

∫
P (x)dx,

then the general formula becomes

y = Ce−p̄(x) + e−p̄(x)

∫
Q(x)ep̄(x) dx,

and applying the initial condition gives us the solution

y = y0e
p̄(x0)−p̄(x) + e−p̄(x)

∫ x

x0

Q(t)ep̄(t) dt, (1.16)

where the variable of integration has changed to a dummy variable t.

Example 4 Solve
dy

dx
+

(
2x+ 1

x

)
y = e−2x.

This is linear with

P (x) =
2x+ 1

x
and Q(x) = e−2x

so that an integrating factor is

e
∫
P (x)dx = e

∫
2x+1
x dx

= e(2x+ln |x|)

= |x|e2x.

We note that integrating factors are not unique. For instance, dropping the absolute value to
obtain xe2x gives another integrating factor of the differential equation. Thus, multiplying
the original equation by this expression gives

xe2x dy

dx
+ e2x(2x+ 1)y = x.

If we had multiplied by −xe2x, we would have obtained the same equation. This equation
can be simplified to give

d

dx
(xe2xy) = x.

Integrating this equation gives

xe2xy =
1

2
x2 + C,

which becomes

y =
1

2
xe−2x +

C

x
e−2x.

These last few steps could have been avoided by using (1.15).

Example 5 Solve (x2 + 1)
dy

dx
+ 4xy = x with the initial condition y(0) = 10.
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Solution
Rewriting this equation gives

dy

dx
+

(
4x

x2 + 1

)
y =

x

x2 + 1
,

hence

P (x) =
4x

x2 + 1
and Q(x) =

x

x2 + 1

so that an integrating factor is

e
∫
P (x)dx = e

∫
4x
x2+1

dx

= eln(x2+1)2

= (x2 + 1)2.

Once we have our integrating factor, we can use the solution as given in (1.15), first noting
that

e−
∫
P (x)dx = e− ln(x2+1)2

= (x2 + 1)−2. (1.17)

Then

y =
1

(x2 + 1)2

(∫
x(x2 + 1) dx

)

=
1

(x2 + 1)2

(
1

4
x4 +

1

2
x2 + C

)
.

Now the initial condition, y(0) = 10, gives C = 10 and thus

y =
1
4x

4 + 1
2x

2 + 10

(x2 + 1)2

is the solution we seek.

Now that we know the techniques of solving linear equations, we consider some applica-
tions. In Section 1.4, we will consider Newton’s law of cooling, which describes how the
temperature of an object changes due to the constant temperature of the medium surround-
ing it. This is not always realistic, as in some settings the temperature of the surroundings
varies. For example, determining the temperature inside a building over a span of a 24-hour
day is complicated because the outside temperature varies. If we assume that the building
has no heating or air conditioning, the differential equation that needs to be solved to find
the temperature u(t) at time t inside the building is

du

dt
= k(C(t)− u(t)), (1.18)

where C(t) is a function that describes the outside temperature and k > 0 is a constant that
depends on the insulation of the building. Note that (1.18) is a linear equation. According
to this equation, if C(t) > u(t), then

du

dt
> 0,
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which implies that u(t) increases, and if C(t) < u(t), then

du

dt
< 0,

so that u(t) decreases.

Example 6 Suppose that on a given day during the month of April in Pomona, California,
the outside temperature in degrees Fahrenheit is given by

C(t) = 70− 10 cos

(
πt

12

)
for 0 ≤ t ≤ 24. Determine the temperature in a building that has an initial temperature of
60 ◦F if k = 1/4. See Figure 1.4.

Outside
Temperature

(in ◦F)

time (in hours)

FIGURE 1.4: Outside temperature over 24 hours for Example 6.

Solution
We see that the average temperature (i.e., the average of C(t)) is 70 ◦F because∫ 24

0

cos

(
πt

12

)
dt = 0.

The initial-value problem that we must solve is

du

dt
= k

(
70− 10 cos

(
πt

12

)
− u
)

with initial condition u(0) = 60. The differential equation can be rewritten as

du

dt
+ ku = k

(
70− 10 cos

(
πt

12

))
,

which is a linear equation and is thus solvable. This gives (check it!)

u(t) =
10

9 + π2

(
63 + 7π2 − 9 cos

(
πt

12

)
− 3π sin

(
πt

12

))
+ C1e

−t/4.
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We then apply the initial condition u(0) = 60 to determine the arbitrary constant C1 and
obtain the solution

u(t) =
10

9 + π2

(
63 + 7π2 − 9 cos

(
πt

12

)
− 3π sin

(
πt

12

))
− 10π2

9 + π2
e−t/4.

A graph of this solution is shown in Figure 1.5. The graph shows that the temperature
reaches its maximum of about 77 ◦F near t = 15.5, which is about 3:30 p.m.

Inside

Temperature
(in ◦F)

time (in hours)

FIGURE 1.5: Inside temperature over 24 hours for Example 6.

Sometimes an equation may not immediately appear to be linear.

Example 7 Consider the differential equation

y2 dx+ (3xy − 1) dy = 0.

This equation is not linear in y. What do we do? Look harder. If we consider y as the
independent variable and x as the dependent variable, we can write

dx

dy
=

1− 3xy

y2
,

which is
dx

dy
+

3x

y
=

1

y2
,

and we see that it is in the form

dx

dy
+ P (y)x = Q(y),

which is linear in x, so that this equation can be solved using the theory we have just
developed.

Hence, an integrating factor is

e
∫
P (y)dy = e

∫
3
y dy = eln |y|3 = y3.
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We also have exp
(
−
∫
P (y)dy

)
= 1/y3. Then our solution is

x =
1

y3

(∫
1

y2
(y3)dy

)
+
C

y3

=
1

y3

(
y2

2

)
+
C

y3
.

This becomes

x =
1

2y
+
C

y3

which is defined for all y 6= 0.

• • • • • • • • • • • • • •
Problems

Solve the linear equations in Problems 1–18 by considering y as a function of x, that is,
y = y(x).
1. y′ + y = ex 2. y′ + 2y = 4
3. y′ + 2y = −3x 4. y′ − 2xy = ex

2

5. y′ − 3x2y = x2 6. 3xy′ + y = 12x

7.
dy

dx
+

1

x
y = x 8. y′ +

1

x
y = ex

9.
dy

dx
− 2x

1 + x2
y = x2 10. xy′ + (1 + x)y = e−x sin 2x

11.
dy

dx
+ y = cosx 12. (2x+ 1)y′ = 4x+ 2y

13.
dy

dx
− y = 4ex, y(0) = 4 14. y′ + 2y = xe−2x, y(1) = 0

15. y′ + y tanx = secx, y(π) = 1 16. y′ = (1− y) cosx, y(π) = 2
17. dydx + y

x = cos x
x , y(π2 ) = 4

π , x > 0 18. xy′ + 2y = sinx, y
(
π
2

)
= 1, x > 0

Solve the linear equations in Problems 19–21 by considering x as a function of y, that is,
x = x(y).
19. (x+ y2)dy = ydx 20. (2ey − x)y′ = 1
21. (sin 2y + x cot y)y′ = 1

Problems 22–23 address aspects of superposition.

22. Recall that a linear equation is called homogeneous if Q(x) = 0, i.e., if it can be
written as

dy

dx
+ P (x) y = 0.

(a) Show that y = 0 is a solution (called the trivial solution).
(b) Show that if y = y1(x) is a solution and k is a constant, then y = ky1(x) is also a
solution.
(c) Show that if y = y1(x) and y = y2(x) are solutions, then y = y1(x) + y2(x) is a
solution.

23. (a) If y = y1(x) satisfies the homogeneous linear equation
dy

dx
+ P (x) y = 0 and y =

y2(x) satisfies the nonhomogeneous linear equation
dy

dx
+ P (x) y = r(x), show that
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y = y1(x) + y2(x) is a solution to the nonhomogeneous linear equation

dy

dx
+ P (x) y = r(x).

(b) Show that, if y = y1(x) is a solution of
dy

dx
+ P (x) y = r(x), and y = y2(x) is a

solution of
dy

dx
+ P (x) y = q(x), then y = y1(x) + y2(x) is a solution of

dy

dx
+ P (x) y = q(x) + r(x).

(c) Use the results obtained in parts (a) and (b) to solve

dy

dx
+ 2y = e−x + cosx.

24. A pond that initially contains 500,000 gal of unpolluted water has an outlet that releases
10,000 gal of water per day. A stream flows into the pond at 12,000 gal/day containing
water with a concentration of 2 g/gal of a pollutant. Find a differential equation that
models this process, and determine what the concentration of pollutant will be after
10 days.

25. When wading in a river or stream, you may notice that microorganisms like algae are
frequently found on rocks. Similarly, if you have a swimming pool, you may notice
that, in the absence of maintaining appropriate levels of chlorine and algaecides, small
patches of algae take over the pool surface, sometimes overnight. Underwater surfaces
are attractive environments for microorganisms because water removes waste and pro-
vides a continuous supply of nutrients. On the other hand, the organisms must spread
over the surface without being washed away. If conditions become unfavorable, they
must be able to free themselves from the surface and recolonize on a new surface.

The rate at which cells accumulate on a surface is proportional to the rate of growth of
the cells and the rate at which the cells attach to the surface. An equation describing
this situation is given by

dN(t)

dt
= r(N(t) +A),

where N(t) represents the cell density, r the growth rate, A the attachment rate, and
t time.
(a) If the attachment rate, A, is constant, solve

dN(t)

dt
= r(N(t) +A)

with the initial condition N(0) = 0.
(b) If A = 3 in a particular colony of cells, use the following table to find the growth

rate at the end of each hour:
t 1 2 3 4

N(t) 3 9 21 45
. Using this growth rate, estimate

the algae population size at the end of 24 hours and 36 hours.

26. In Section 3.7, you will learn about electric circuits as an application of a second-order
differential equation. However, consider the circuit with an inductor and resistor only,
whose differential equation is first-order and linear and is given by

LI ′ +RI = V,
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where I is the to-be-determined current in the circuit, L measures the inductance,
R measures the resistance, and V is the constant applied voltage. Find an equation
describing the current in the circuit.

27. Suppose a(t) > 0, and f(t)→ 0 for t→∞. Show that every solution of the equation

dx

dt
+ a(t)x = f(t)

approaches 0 for t→∞.

28. In the same equation suppose that a(t) > 0, and let x0(t) be the solution for which the
initial condition x(0) = b is satisfied. Show that, for every positive ε > 0, there is a
δ > 0 such that, if we perturb the function f(t) and the number b by a quantity less
than δ, then the solution x(t), t > 0, is perturbed by less than ε. The word perturbed
is understood in the following sense: f(t) is replaced by f1(t) and b is replaced by b1
where

|f1(t)− f(t)| < ε, |b1 − b| < δ.

This property of the solution x(t) is called stability for persistent disturbances.

1.4 Some Physical Models Arising as Separable Equations

Now that we have studied separable equations in detail, we consider some applications.
The wide variety of application problems that we will consider all lead to equations in which
variables can be separated.

Free Fall, Neglecting Air Resistance

We will begin this application section with an easy problem from elementary physics. This
application should be very familiar.

If x(t) represents the position of a particle at time t, then the velocity of the particle is
given by

v(t) =
dx

dt
.

Similarly, the acceleration of the particle is

a(t) =
dv

dt
=
d2x

dt2
.

Thus, if we consider a particle that is in free fall, where the acceleration of the particle is
due to gravity alone, we have

a(t) = −g.
Here g is assumed to be a constant, and we use −g as gravity acts downward. For the
moment, we ignore the effects of air resistance. Thus,

dv

dt
= −g,

which is a simple separable equation, so that

v(t) = −gt+ c.
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If we assume that the particle has an initial velocity v0, so that v(0) = v0, then v(t) =
−gt+ v0. Now this gives the separable equation

dx

dt
= −gt+ v0

which has solution

x(t) =
−g
2
t2 + v0t+ C1.

If the particle has initial position x0, then

x(0) = x0

which gives

x(t) =
−g
2
t2 + v0t+ x0 (1.19)

as the position x(t) of the particle in free fall, at time t.

Example 1 A man standing on a cliff 60 m high hurls a stone upward at a rate of 20
m/sec. How long does the stone remain in the air and with what speed does it hit the
ground below the cliff?

Solution
Here x0 = 60 and v0 = 20. We take g = 9.8 m/sec2. Thus,

x(t) = −9.8

2
t2 + 20t+ 60

and

v(t) = −9.8t+ 20.

The stone is in the air while x(t) > 0, so to find the time t that the stone is in the air, we
set x(t) = 0 and solve for t. Using the quadratic equation,

t =
−20±

√
(20)2 − 4(−4.9)(60)

2(−4.9)
= −2.01, 6.09.

The stone is thus in the air for about 6.1 sec. We use this time to find the velocity upon
impact:

v(6.1) = −9.8(6.1) + 20 = −39.78 m/sec.

Air Resistance
We will now consider the effects of air resistance. The amount of air resistance (some-

times called the drag force) depends upon the size and velocity of the object, but there
is no general law expressing this dependence. Experimental evidence shows that at very
low velocities for small objects it is best to approximate the resistance R as proportional
to the velocity, while for larger objects and higher velocities it is better to consider it as
proportional to the square of the velocity [38].

By Newton’s second law, F = ma, so that, if v(t) is the velocity of the object, we have

m
dv

dt
= F1 + F2
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where F1 is the weight of the object,

F1 = mg,

and F2 is the force of the air resistance on the object as it falls, so

F2 = k1v or F2 = k2v
2

where k1, k2 are proportionality constants. Note that ki < 0 because air resistance is always
opposite the velocity; see Examples 2 and 3 below. We also point out that the units of k1

and k2 are different. In SI units, force has units of Newtons = N = kg· m/sec2. Thus k1

must have the units of kg/sec. On the other hand, k2 can be written as

k2 = −1

2
CρA

where ρ is the air density (SI units of kg/m3), A is the cross-sectional area of the object (SI
units of m2), and C is the drag coefficient (unitless) [38].

Example 2 An object weighing 8 pounds falls from rest toward earth from a great height.
Assume that air resistance acts on it with a force equal to 2v. Calculate the velocity v(t)
and position x(t) at any time. Find and interpret limt→∞ v(t).

Solution
Remembering that pounds is a force (not a mass), we see that we need to calculate the
mass of the object in order to apply Newton’s second law. Using g = 32 ft/sec2 gives
m = w/g = 8/32 = 1/4. Thus, by Newton’s second law,

m
dv

dt
= F1 + F2,

that is
1

4

dv

dt
= 8− 2v.

This is a separable equation and can be written as

dv

8− 2v
= 4dt

so that, upon integrating both sides, we have

−1

2
ln |8− 2v| = 4t+ c.

Using the condition that the object fell from rest, so that v(0) = 0, we can determine the
constant c and solve for v(t). We have

v(t) = 4− 4e−8t

as the velocity of the object at any time. A graph of this velocity is shown in Figure 1.6.
Analytically, we see that v(t) approaches 4 as t→∞. This value is known as the limiting
or terminal velocity of the object.

Now since dx
dt = v(t), we have

dx

dt
= 4− 4e−8t.
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This is easily integrated to obtain x(t) = 4t + 1
2e
−8t + c. If we take the initial position of

the object as zero, so that x(0) = 0, then

x(t) = 4t+
1

2
e−8t − 1

2
.
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FIGURE 1.6: Approach to terminal velocity of free-falling object of Example 2.

A Cool Problem
In addition to free-fall problems, separable equations arise in some simple thermodynam-

ics applications. One such application is the following example.

Suppose that a pie is removed from a hot oven and placed in a cool room. After a given
period of time, the pie has a temperature of 150 ◦F. We want to determine the time required
to cool the pie to a temperature of 80 ◦F, when we can finally enjoy eating it.

This example is an application of Newton’s law of cooling, which states

the rate at which the temperature T (t) changes in a cooling body is proportional to
the difference between the temperature of the body and the constant temperature
Ts of the surrounding medium.

Symbolically we know the rate of change is the derivative, and the statement is expressed
as

dT

dt
= k(T − Ts), (1.20)

with the initial temperature of the body T (0) = T0 and k a constant of proportionality. We
observe that, if the initial temperature T0 is larger than the temperature of the surrounding
Ts, then T (t) will be a decreasing function of t (as the body is cooling), so dT/dt < 0, but
T0−Ts > 0 so that the proportionality constant k must be negative. A similar analysis with
T0 < Ts also gives k < 0. This condition on k also follows by noting that the temperature
of the body will approach that of the surrounding medium as time gets large.

To solve (1.20), we seek a function T (t) that describes the temperature at time t. For
this equation, separating the variables, we have

dT

T − Ts
= k dt.
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Integrating both sides of this equation gives∫
dT

T − Ts
=

∫
kdt.

Evaluating both integrals, we obtain

ln |T − Ts| = kt+ C,

where C is the constant of integration. Exponentiating both sides and simplifying gives

|T − Ts| = ekteC =⇒ T − Ts = ±eCekt.

Solving for the temperature, we see that

T (t) = C1e
kt + Ts

where C1 = ±eC . We can then apply the initial condition T (0) = T0, which implies
T0 = C1 + Ts, so that C1 = T0 − Ts and the solution is then

T (t) = (T0 − Ts)ekt + Ts. (1.21)

We know that the temperature of the body approaches that of its surroundings and this
can be seen mathematically as

lim
t→∞

T (t) = Ts,

which is true because k < 0.
Let’s now consider a specific pie-cooling example.

Example 3 Suppose that a pie is removed from a 350 ◦F oven and placed in a room
with a temperature of 75 ◦F. In 15 min the pie has a temperature of 150 ◦F. We want to
determine the time required to cool the pie to a temperature of 80 ◦F, when we can finally
enjoy eating it.

Solution
Comparing with the above derivation, we see that T0 = 350 and Ts = 75. Substituting
these values in (1.21) gives

T (t) = 275ekt + 75.

We still need to find k or equivalently ek, which quantifies how fast the cooling of the pie
occurs. We were given the temperature after 15 min, i.e., T (15) = 150. Thus

275e15k + 75 = 150,

and solving for ek gives

ek =

(
3

11

)1/15

,

or k = −0.08662. Thus

T (t) = 275

(
3

11

)t/15

+ 75,

and this can be used to find the temperature of the pie at any given time. We can also
calculate the time it takes to cool to any given temperature. We want to know when
T (t) = 80 ◦F. Thus we solve

275

(
3

11

)t/15

+ 75 = 80
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for t to obtain

t =
−15 ln 55

ln 3− ln 11
≈ 46.264.

Thus, the pie will reach a temperature of 80◦F after approximately 46 min.
It is interesting to note that the first term in our equation for the pie temperature satisfies

275

(
3

11

)t/15

> 0

for all t > 0. Thus

T (t) = 275

(
3

11

)t/15

+ 75 > 75.

The pie never actually reaches room temperature! This is an artifact of our model; we do
note, however, that

lim
t→∞

275

(
3

11

)t/15

+ 75 = 75,

which can also be seen in Figure 1.7.
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FIGURE 1.7: Graph of pie temperature vs. time of Example 3.

We present another example of Newton’s law of cooling from forensic science.

Example 4 In the investigation of a homicide, the time of death is important. The nor-
mal body temperature of most healthy people is 98.6 ◦F. Suppose that when a body is
discovered at noon, its temperature is 82 ◦F. Two hours later it is 72 ◦F. If the temperature
of the surroundings is 65 ◦F, what was the approximate time of death?

Solution
This problem is solved as the last example. Here T (0) represents the temperature when the
body was discovered and T (2) is the temperature of the body 2 hours later.

Thus, T0 = 82 and Ts = 65 so that (1.21) becomes

T (t) = 17ekt + 65.

Using T (2) = 72, we solve 17e2k + 65 = 72 for ek to find

ek =

(
7

17

)1/2
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so that

T (t) = 17

(
7

17

)t/2
+ 65.

This equation gives us the temperature of the body at any given time. To find the time
of death, we use the fact that the body temperature was at 98.6◦F at this time. Thus we
solve

17

(
7

17

)t/2
+ 65 = 98.6

for t and find that

t =
2 ln(1.97647)

ln 7− ln 17
≈ −1.53569.

This means that the time of death occurred approximately 1.53 hours before the body
was discovered. Therefore, the time of death was approximately 10:30 a.m. because the
body was found at noon.

Mixture Problems
Problems involving mixing typically give rise to separable differential equations. A typi-

cal mixture problem is given in the following example.

Example 5 A bucket contains 10 L of water and to it is being added a salt solution that
contains 0.3 kg of salt per liter. This salt solution is being poured in at the rate of 2 L/min.
The solution is being thoroughly mixed and drained off. The mixture is drained off at the
same rate so that the bucket contains 10 L at all times. How much salt is in the bucket
after 5 min?

Solution
Let y(t) be the number of kilograms of salt in the bucket at the end of t minutes. We need
to derive a differential equation for this problem, and we do so by considering change in
this system over a small time interval. We first find the amount of salt added to the bucket
between time t and time t+∆t. Each minute, 2 L of solution is added so that in ∆t minutes,
2∆t liters is added.

In these 2∆t liters the amount of salt is

0.3 kg/L× (2∆t) L = (0.6∆t) kg.

On the other hand, 2∆t liters of solution is withdrawn from the bucket in an interval ∆t.
Now at time t the 10 L in the flask contains y(t) kilograms of salt. Then 2∆t of these liters
contains approximately (0.2∆t)(y(t)) kilograms of salt if we suppose that the change in the
amount of salt y(t) is small in the short period of time ∆t.

We have computed the amount of salt added in the interval (t, t + ∆t), as well as the
amount subtracted in the same interval. But the difference between the amounts of salt
present at times t+ ∆t and t is y(t+ ∆t)− y(t), so that we have obtained the equation

y(t+ ∆t)− y(t) = 0.6∆t− (0.2∆t)(y(t)).

We now divide by ∆t and let ∆t → 0. The left side approaches the derivative y′(t), and
the right side is 0.6− 0.2y(t). The differential equation is thus

y′(t) = 0.6− 0.2y(t), (1.22)
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which can be thought of as the rate of change in the number of kilograms of salt in the bucket
y′(t) being equal to the rate of salt (in kg) flowing into the bucket 0.6 (= 0.3 kg/L × 2 L)
minus the rate of salt flowing out of the bucket 0.2y(t).

Equation (1.22) is a separable equation and can be written as

dy

0.6− 0.2y
= dt.

Integrating both sides gives
ln |0.6− 0.2y| = −0.2t+ c

so that, solving for y(t), we obtain

y(t) = 3− Ce−0.2t. (1.23)

When t is zero, the amount of salt in the bucket is zero, that is, y(0) = 0. Equation (1.23)
shows that, when t = 0, we have

y(0) = 3− C
or C = 3. The value of C is now known, so that Equation (1.23) becomes

y(t) = 3− 3e−0.2t.

To find y at the end of 5 min, we simply substitute t = 5 so that the amount of salt in the
bucket is y(5) ≈ 1.9 kg.

• • • • • • • • • • • • • •
Problems

In Problems 1–7, it will be convenient to take the velocity to be the unknown function.

1. A ball dropped from a building falls for 4.00 sec before it hits the ground. If air
resistance is neglected, answer the following questions:
(a) What was its final velocity just as it hit the ground?
(b) What was the average velocity during the fall?
(c) How high was the building?

2. You drop a rock from a cliff, and 5.00 sec later you see it hit the ground. Neglecting
air resistance, how high is the cliff?

3. A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air resistance,
with what velocity was the ball thrown?

4. Iron Man is flying at treetop level near Paris when he sees the Eiffel Tower elevator start
to fall (the cable snapped). He knows Pepper Potts is inside. If Iron Man is 2 km away
from the tower, and the elevator falls from a height of 350 m, how long does he have
to save Pepper, and what must be his average velocity? Solve this problem assuming
no air resistance. (Of course, Tony Stark instantly does the calculations required, as
he is an expert in differential equations!)

5. The mass of a football is 0.4 kg. Air resists passage of the ball, the resistive force being
proportional to the square of the velocity, and being equal to 0.004 N when the velocity
is 1 m/sec. Find the height to which the ball will rise, and the time to reach that height
if it is thrown upward with a velocity of 20 m/sec. How is the answer altered if air
resistance is neglected?

6. The football of the preceding exercise is released (from rest) at an altitude of 17.1 m.
Find its final velocity and time of fall.
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7. Assume that air resistance is proportional to the square of velocity. The terminal
velocity of a 75-kg human in air of standard density is 60 m/sec [38]. Neglecting the
variation of air density with altitude and assuming that the 75-kg parachutist falls
from an altitude of 1.8 km, find the velocity. Hint: use the terminal velocity to find
the coefficient of v2.

Problems 8–12 concern Newton’s law of cooling.

8. At the request of their children, Randy and Stephen make homemade popsicles. At
2:00 p.m., Kaelin asks if the popsicles are frozen (0 ◦C), at which time they test the
temperature of a popsicle and find it to be 5 ◦C. If they put the popsicles with a
temperature of 15 ◦C in the freezer at 12:00 noon and the temperature of the freezer is
−2 ◦C, when will Erin, Kaelin, Robyn, Ryley, Alan, Abdi, and Avani be able to enjoy
the popsicles?

9. An object cools in 10 min from 100 ◦C to 60 ◦C. The surroundings are at a temperature
of 20 ◦C. When will the object cool to 25 ◦C?

10. Determine the time of death if a corpse is 79 ◦F when discovered at 3:00 p.m. and 68
◦F 3 hours later. Assume that the temperature of the surroundings is 60 ◦F and that
normal body temperature is 98.6 ◦F.

11. A thermometer is taken from an inside room to the outside, where the air temperature
is 5 ◦F. After 1 minute the thermometer reads 55 ◦F, and after 5 minutes it reads 30
◦F. Determine the initial temperature of the inside room.

12. A slug of metal at a temperature of 800 ◦F is put in an oven, the temperature of which
is gradually increased during an hour from a◦ to b◦. Find the temperature of the metal
at the end of an hour, assuming that the metal warms kT degrees per minute when it
finds itself in an oven that is T degrees warmer.

In Problems 13–17, it is supposed that the amount of gas (or liquid) contained in any fixed
volume is constant. Also, thorough mixing is assumed.

13. A 20-L vessel contains air (assumed to be 80% nitrogen and 20% oxygen). Suppose 0.1
L of nitrogen is added to the container per second. If continual mixing takes place and
material is withdrawn at the rate at which it is added, how long will it be before the
container holds 99% nitrogen?

14. A 100-L beaker contains 10 kg of salt. Water is added at the constant rate of 5 L/min
with complete mixing and drawn off at the same rate. How much salt is in the beaker
after 1 hour?

15. A tank contains 25 lb of salt dissolved in 50 gal of water. Brine containing 4 lb/gal is
allowed to enter at a rate of 2 gal/min. If the solution is drained at the same rate, find
the amount of salt as a function S(t) of time t. Find the concentration of salt at time
t. Suppose the rate of draining is modified to be 3 gal/min. Find the amount of salt
and the concentration at time t.

16. Consider a pond that has an initial volume of 10,000 m3. Suppose that at time t = 0,
the water in the pond is clean and that the pond has two streams flowing into it, stream
A and stream B, and one stream flowing out, stream C. Suppose 500 m3/day of water
flows into the pond from stream A, 750 m3/day flows into the pond from stream B,
and 1250 m3 flows out of the pond via stream C. At t = 0, the water flowing into
the pond from stream A becomes contaminated with road salt at a concentration of
5 kg/1000 m3. Suppose the water in the pond is well mixed so the concentration of
salt at any given time is constant. To make matters worse, suppose also that at time
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t = 0 someone begins dumping trash into the pond at a rate of 50 m3/day. The trash
settles to the bottom of the pond, reducing the volume by 50 m3/day. To adjust for the
incoming trash, the rate that water flows out via stream C increases to 1300 m3/day
and the banks of the pond do not overflow. Determine how the amount of salt in the
pond changes over time. Does the amount of salt in the pond reach 0 after some time
has passed?

17. A large chamber contains 200 m3 of gas, 0.15% of which is carbon dioxide (CO2). A
ventilator exchanges 20 m3/min of this gas with new gas containing only 0.04% CO2.
How long will it be before the concentration of CO2 is reduced to half its original value?

Problems 18–20 concern radioactive decay. The decay law states that the amount of ra-
dioactive substance that decays is proportional at each instant to the amount of substance
present.

18. The strength of a radioactive substance decreases 50% in a 30-day period. How long
will it take for the radioactivity to decrease to 1% of its initial value?

19. It is experimentally determined that every gram of radium loses 0.44 mg in 1 year. What
length of time elapses before the radioactivity decreases to half its original value?

20. A tin organ pipe decays with age as a result of a chemical reaction that is catalyzed
by the decayed tin. As a result, the rate at which the tin decays is proportional to the
product of the amount of tin left and the amount that has already decayed. Let M be
the total amount of tin before any has decayed. Find the amount of decayed tin p(t).

Problems 21 and 22 deal with geometric situations where the derivative arises and yields
a separable equation.

21. Find a curve for which the area of the triangle determined by the tangent, the ordinate
to the point of tangency, and the x-axis has a constant value equal to a2.

22. Find a curve for which the sum of the sides of a triangle constructed as in the previous
problem has a constant value equal to b.

23. On an early Monday morning in February in rural Kentucky (not far from Western
Kentucky University) it started to snow. There had been no snow on the ground
before. It was snowing at a steady, constant rate so that the thickness of the snow on
the ground was increasing at a constant rate. A snowplow began clearing the snow
from the streets at noon. The speed of the snowplow in clearing the snow is inversely
proportional to the thickness of the snow. The snowplow traveled 2 miles during the
first hour after noon and traveled 1 mile during the second hour after noon. At what
time did it begin snowing?

1.5 Exact Equations

We will now introduce another type of differential equation. Exact equations are not
separable equations nor are they necessarily linear. They come up in higher-level math in
fields such as potential theory and harmonic analysis.

Consider the first-order differential equation dy
dx = f(x, y). We observe that it can always

be expressed in the differential form

M(x, y) dx+N(x, y) dy = 0
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or equivalently as
M(x, y) +N(x, y)

dy

dx
= 0

and vice versa. We will now consider a type of differential equation that is not separable,
but, nevertheless, has a solution. We need a definition from multivariable calculus to pro-
ceed:

Definition 1.5.1
Let F (x, y) be a function of two real variables such that F has continuous first partial
derivatives in a domain D. The total differential dF of F is defined by

dF (x, y) =
∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy

for all (x, y) ∈ D.

Example 1 Suppose F (x, y) = xy2 + 2x3y; then

∂F

∂x
= y2 + 6x2y and

∂F

∂y
= 2xy + 2x3

so that the total differential dF is given by

dF (x, y) =
∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy

= (y2 + 6x2y) dx+ (2xy + 2x3) dy.

Definition 1.5.2
The expression

M(x, y) dx+N(x, y) dy (1.24)

is called an exact differential in a domain D if there exists a function F of two real
variables such that this expression equals the total differential dF (x, y) for all (x, y) ∈
D. That is, (1.24) is an exact differential in D if there exists a function F such that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y)

for all (x, y) ∈ D.

If M(x, y) dx+N(x, y) dy is an exact differential, then the differential equation

M(x, y) dx+N(x, y) dy = 0 (1.25)

is called an exact differential equation. As long as x = C (a constant) is not a solution, we
consider the equivalent form

M(x, y) +N(x, y)
dy

dx
= 0 (1.26)

as the standard form for an exact equation.
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Example 2 The differential equation

y2 + 2xy
dy

dx
= 0

is exact, since, if F (x, y) = xy2, then

∂F

∂x
= y2 and

∂F

∂y
= 2xy.

Not all differential equations, however, are exact. Consider

y + 2x
dy

dx
= 0.

We cannot find an F (x, y) so that

∂F

∂x
= y and

∂F

∂y
= 2x.

Numerous trials and errors may be enough to convince us that this is the case. What we
really need is a method for testing a differential equation for exactness and for constructing
the corresponding function F (x, y). Both are contained in the following theorem and its
proof.

THEOREM 1.5.1
Consider the differential equation

M(x, y) +N(x, y)
dy

dx
= 0 (1.27)

where M and N have continuous first partial derivatives at all points (x, y) in a rect-
angular domain D. Then the differential equation (1.27) is exact in D, if and only
if

∂M(x, y)

∂y
=
∂N(x, y)

∂x
(1.28)

for all (x, y) in D.

Remark: The proof of this theorem is rather important, as it not only provides a test for
exactness, but also a method of solution for exact differential equations.
Proof: To prove one direction of the theorem, we first suppose the differential equation
(1.27) is exact in D and show that (1.28) must hold as a result. If (1.27) is exact, then
there is a function F such that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

So
∂2F

∂y∂x
=
∂M

∂y
and

∂2F

∂x∂y
=
∂N

∂x

by differentiation. Now we have assumed the continuity of the first partials of M and N in
D, so that

∂2F

∂y∂x
=

∂2F

∂x∂y
.
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This means that
∂M

∂y
=
∂N

∂x
,

which is the same as (1.28).

To prove the other direction, we assume (1.28) and show that (1.27) must be exact.
(Proving this direction will also show us how to construct the solution for a given exact
equation.) Thus, we assume

∂M

∂y
=
∂N

∂x

and find an F so that
∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y). (1.29)

It is clear that we can find an F that satisfies either of these equations, but can we find an
F that satisfies both? Let’s proceed and see what happens. Suppose that F satisfies

∂F

∂x
= M(x, y).

We can integrate both sides of this equation to get

F (x, y) =

∫
M(x, y) dx+ φ(y) (1.30)

where
∫
M(x, y) dx is the partial integration with respect to x, holding y constant. Note

that our “constant” of integration, φ(y), is a function but is a function of y only (it might
also include an additive constant, but definitely no x). This is because the expression
∂F/∂x would result in the loss of any “only y functions.” Now we need to find an F (x, y)
that satisfies both equations in (1.29). We thus need to make sure the F (x, y) in (1.30) also
satisfies ∂F

∂y = N(x, y). We calculate ∂F/∂y by differentiating (1.30) with respect to y:

∂F

∂y
=

∂

∂y

∫
M(x, y) dx+

dφ(y)

dy
.

Equating with N(x, y) gives

N(x, y) =

(
∂

∂y

∫
M(x, y) dx

)
+ φ′(y),

where φ′(y) = dφ(y)/dy. Solving for φ′(y) gives

φ′(y) = N(x, y)− ∂

∂y

∫
M(x, y) dx.

Since φ(y) is a function of only y, it must also be the case that φ′(y) is a function of only
y. We can see this by showing

∂

∂x

(
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
= 0.
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Evaluating the left-hand side and simplifying gives

∂

∂x

(
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
=
∂N

∂x
− ∂2

∂x∂y

∫
M(x, y) dx

=
∂N

∂x
− ∂2 F

∂x∂y
(by noting what F is)

=
∂N

∂x
− ∂2 F

∂y∂x
(by continuity)

=
∂N

∂x
− ∂2

∂y∂x

∫
M(x, y) dx

=
∂N

∂x
− ∂M

∂y

= 0,

where the last equality holds since we have assumed that

∂N

∂x
=
∂M

∂y
.

What this means is that

N(x, y)− ∂

∂y

∫
M(x, y) dx

cannot depend on x since its derivative with respect to x is zero. Hence,

φ(y) =

∫ (
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
dy

and thus

F (x, y) =

∫
M(x, y) dx+ φ(y)

is a function that satisfies both

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

Thus,

M(x, y) +N(x, y)
dy

dx
= 0

is exact in D.

In short, the criterion for exactness is (1.28):

∂N

∂x
=
∂M

∂y
.

If this equation holds, then the differential equation is exact. If this is not true, the differ-
ential equation is not exact.

Example 3 We considered the differential equation

y2 + 2xy
dy

dx
= 0 (1.31)
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earlier. We see that
M(x, y) = y2 and N(x, y) = 2xy.

Thus,
∂M

∂y
= 2y =

∂N

∂x
,

so that the differential equation is exact. On the other hand,

y + 2x
dy

dx
= 0 (1.32)

gives M(x, y) = y and N(x, y) = 2x so that

∂M

∂y
= 1 6= 2 =

∂N

∂x
.

Hence y + 2x dy
dx = 0 is not exact.

Example 4 Consider the differential equation

(2x sin y + y3ex) + (x2 cos y + 3y2ex)
dy

dx
= 0.

Here
M(x, y) = 2x sin y + y3ex and N(x, y) = x2 cos y + 3y2ex;

hence
∂M

∂y
= 2x cos y + 3y2ex =

∂N

∂x
.

Thus the differential equation is exact.

Remark: The test for exactness applies to equations in the form

M(x, y) +N(x, y)
dy

dx
= 0. (1.33)

If the left-hand side is an exact differential, then we can solve the exact differential equation
(1.33) by finding a function F (x, y) so that

∂F (x, y)

∂x
dx+

∂F (x, y)

∂y
dy = 0.

More simply, using the total differential, we obtain dF (x, y) = 0. Thus,

F (x, y) = C

is a solution to (1.33).
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THEOREM 1.5.2
Suppose the differential equation

M(x, y) +N(x, y)
dy

dx
= 0

is exact. Then the general solution of this differential equation is given implicitly by

F (x, y) = C,

where F (x, y) is a function such that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

Remark 1: As with separable and homogeneous equations, the constant in Theorem 1.5.2
is determined by an initial condition.
Remark 2: We have an explicit form for F (x, y), namely,

F (x, y) =

∫
M(x, y) dx+ φ(y),

where φ(y) =

∫ (
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
dy. This form, however, is not always useful.

We will see by example how to solve exact differential equations.
Remark 3: We integrated ∂F/∂x = M and substituted this into ∂F/∂y = N . We instead
could have solved ∂F/∂y = N first (by integrating with respect to y and obtaining a
“constant” ψ(x)) and then substituted into ∂F/∂x = M . The resulting F is the same but
would be written

F (x, y) =

∫
N(x, y) dy + ψ(x), (1.34)

where ψ(x) =

∫ (
M(x, y)− ∂

∂x

∫
N(x, y) dy

)
dx. See Problem 19 at the end of this sec-

tion.

Example 5 Show that

(3x2 + 4xy) + (2x2 + 2y)
dy

dx
= 0

is exact and then solve it by the methods discussed in this section.

Solution
We have

M(x, y) = 3x2 + 4xy and N(x, y) = 2x2 + 2y

so that the equation is exact, since

∂M

∂y
= 4x =

∂N

∂x
.

Our goal is to find an F (x, y) that simultaneously satisfies the equations

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).
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That is, F must satisfy

∂F

∂x
= 3x2 + 4xy and

∂F

∂y
= 2x2 + 2y.

Integrating ∂F/∂x with respect to x gives

F (x, y) =

∫
(3x2 + 4xy) dx

= x3 + 2x2y + φ(y).

This same F must also satisfy ∂F/∂y = N and we then have

2x2 + φ′(y) =
∂F

∂y
= 2x2 + 2y.

Thus, φ′(y) = 2y. Integrating with respect to y gives

φ(y) = y2 + C0

so that
F (x, y) = x3 + 2x2y + y2 + C0.

Thus, a one-parameter family of solutions is given by

x3 + 2x2y + y2 = C.

We now solve an exact equation by first integrating with respect to y; see Remark 3
above.

Example 6 Show that

(2x cos y + 3x2y) + (x3 − x2 sin y − y)
dy

dx
= 0

is exact and solve it subject to the initial condition y(0) = 2. Plot the solution.

Solution
We have M(x, y) = 2x cos y + 3x2y and N(x, y) = x3 − x2 sin y − y. The equation is exact
because

∂M

∂y
= 3x2 − 2x sin y =

∂N

∂x
.

Now we find an F (x, y) so that

∂F

∂x
= M(x, y) and

∂F

∂y
= N(x, y).

This time we will integrate ∂F/∂y = N with respect to y. Thus

F (x, y) =

∫
N(x, y) dy

=

∫
(x3 − x2 sin y − y) dy

= x3y + x2 cos y − y2

2
+ ψ(x).
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This must also satisfy ∂F/∂x = M . Calculating ∂F/∂x gives

∂F

∂x
= 3x2y + 2x cos y + ψ′(x).

Substituting into
∂F

∂x
= M(x, y)

gives ψ′(x) = 0, which is easily integrated to obtain ψ(x) = C1. Thus,

F (x, y) = x3y + x2 cos y − 1

2
y2 + C1,

and a one-parameter family of solutions is

x3y + x2 cos y − 1

2
y2 = C.

The initial condition y(0) = 2 gives C = −2. Hence

x2 cos y + x3y − 1

2
y2 = −2

is the implicit solution that satisfies the given initial condition. The solution curves can be
plotted, as shown in Figure 1.8.

FIGURE 1.8: Implicit plot for Example 6. The upper curve is the solution curve because
it passes through the initial condition.

Note that, although both curves in Figure 1.8 satisfy the implicit equation, only one of
these curves passes through the given initial condition and thus is the correct solution.

Solution by Grouping

There is a much slicker method for solving exact differential equations and it is known
as the method of grouping. For better or worse, it requires a “working knowledge” of
differentials and a certain amount of ingenuity. We again consider Example 5, this time in
its differential form:

(3x2 + 4xy) dx+ (2x2 + 2y) dy = 0.

We rewrite it in the form

3x2 dx+ (4xy dx+ 2x2 dy) + 2y dy = 0
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which is
d(x3) + d(2x2y) + d(y2) = d(C).

That is,
d(x3 + 2x2y + y2) = d(C)

so that
x3 + 2x2y + y2 = C.

Clearly, this procedure is much quicker if we can find the appropriate grouping. Let’s try
this method one more time by again considering Example 6. We group the terms as

(2x cos y dx− x2 sin y dy) + (3x2y dx+ x3 dy)− y dy = 0.

Thus, we have
d(x2 cos y) + d(x3y)− d

(
y2

2

)
= d(C)

and so
x2 cos y + x3y − 1

2
y2 = C

is a one-parameter family of solutions.

Important Note: If we use the method of grouping, we still need to check that the
equation is exact for our first step.
• • • • • • • • • • • • • •
Problems

In Problems 1–13, check to see if the equation is exact. If it is, solve it by the methods of
this section. If an initial condition is given, graph the solution.
1. (1 + xy2) + (1 + x3y) dydx = 0 2. (1 + y2 sin 2x)− 2y cos 2x dydx = 0

3. 2xy + (x2 − y2) dydx = 0 4. (1 + y2 sin 2x)− y cos 2x dydx = 0

5. 2xy3 + (1 + 3x2y2) dydx = 0 6. (2 + y
x2 ) dx+ (y − 1

x ) dy = 0

7. 3x2(1 + ln y) = (2y − x3

y ) dydx 8. ( x
sin y + 2) + (x2+1) cos y

cos 2y−1
dy
dx = 0

9. (2xy + 1) + (x2 + 4y) dydx = 0, y(0) = 1

10. (2y sinx cosx+ y2 sinx) + (sin2 x− 2y cosx) dydx = 0, y(0) = 3

11. (2− 9xy2)x+ (4y2 − 6x3)y dydx = 0, y(1) = 1

12. (y sec2 x+ secx tanx) + (tanx+ 2y) dydx = 0, y(0) = 1

13. e−y − (2y + xe−y) dydx = 0, y(1) = 3

In Problems 14 and 15, determine the constant A such that the equation is exact. Then
solve the resulting exact equation.
14. (x2 + 3xy) + (Ax2 + 4y) dydx = 0 15.

(
Ay
x3 + y

x2

)
+
(

1
x2 − 1

x

)
dy
dx = 0

In Problems 16 and 17, determine the most general function (N(x, y) or M(x, y)) that
makes the equation exact.
16. M(x, y) + (2yex + y2e3x) dydx = 0 17. (x3 + xy2) +N(x, y) dydx = 0

18. Let x represent the units of labor and y represent the units of capital. If f(x, y)
measures the number of units produced, a differential equation satisfied by a level
curve of it is

axa−1y1−a + (1− a)xay−a
dy

dx
= 0.

Solve this equation as (i) a separable equation and (ii) an exact equation. In doing (ii),
we obtain the well-known Cobb–Douglas production function f(x, y) = Cxay1−a.
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19. By following the proof of Theorem 1.5.1, show that an equivalent formulation of F (x, y)
is given by

F (x, y) =

∫
N(x, y)

dy

dx
+

∫ (
M(x, y)− ∂

∂x

∫
N(x, y)

dy

dx

)
.

Although this could easily be obtained by rearranging the previously obtained expres-
sion for F (1.30), do not simply rearrange terms.

20. By using the substitution y = vx, show that the homogeneous equation

(Ax+By) + (Cx+ Ey)
dy

dx
= 0,

where A,B,C, and E are constants, is exact if and only if B = C.

21. By using the substitution y = vx, show that the homogeneous equation

(Ax2 +Bxy + Cy2) + (Ex2 + Fxy +Gy2)
dy

dx
= 0,

where A,B,C,E, F, and G are constants, is exact if and only if B = 2E and F = 2C.

1.6 Special Integrating Factors and Substitution Methods

Special Integrating Factors

In solving linear equations, we learned that we could multiply by an appropriate integrat-
ing factor, thus transforming the equation into a form we can solve. Besides the one we
learned, there are other integrating factors that we will now consider.

Definition 1.6.1
If the differential equation

M(x, y) dx+N(x, y) dy = 0 (1.35)

is not exact in a domain D but the differential equation

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0 (1.36)

is exact in D, then µ(x, y) is called an integrating factor of the differential equation
(1.35).

Example 1 The differential equation

(3y + 4xy2) dx+ (2x+ 3x2y) dy = 0 (1.37)

is not exact since
∂M

∂y
= 3 + 8xy 6= 2 + 6xy =

∂N

∂x
.

If we let µ(x, y) = x2y, we can use (1.36) to rewrite (1.37) as

(x2y)(3y + 4xy2) dx+ (x2y)(2x+ 3x2y) dy = 0.

Expanding gives
M = 3x2y2 + 4x3y3 and N = 2x3y + 3x4y2.
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Then
∂

∂y
(3x2y2 + 4x3y3) = 6x2y + 12x3y2 =

∂

∂x
(2x3y + 3x4y2).

Thus the new equation is exact and hence µ(x, y) = x2y is an integrating factor.

We saw above how multiplying by an appropriate integrating factor converted a linear
equation into an exact equation, which we could then solve. Multiplying by an appropriate
integrating factor is a technique that will work in other situations as well.

We have seen that if the equation

M(x, y) dx+N(x, y) dy = 0

is not exact and if µ(x, y) is an integrating factor, then the differential equation

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0

is exact. Using the criterion for exactness, we must have

∂

∂y
(µ(x, y)M(x, y)) =

∂

∂x
(µ(x, y)N(x, y)).

To simplify notation, we will write M,N instead of M(x, y), N(x, y) when taking the partial
derivatives, even though both M and N are functions of x and y. The criterion for exactness
can then be written

∂µ

∂y
M(x, y) + µ(x, y)

∂M

∂y
=
∂µ

∂x
N(x, y) + µ(x, y)

∂N

∂x
.

Rearranging gives

∂µ

∂y
M(x, y)− ∂µ

∂x
N(x, y) = µ(x, y)

∂N

∂x
− µ(x, y)

∂M

∂y
. (1.38)

Thus µ(x, y) is an integrating factor if and only if it is a solution of the partial differential
equation (1.38). We will not consider the solution of this partial differential equation. We
will instead consider (1.38) in the case where µ only depends on x, i.e., µ(x, y) = µ(x). (We
can also consider the case when µ(x, y) = µ(y) and the analogous formulation is left as one
of the exercises.) In this situation, (1.38) reduces to

−µ′(x)N(x, y) = µ(x)
∂N

∂x
− µ(x)

∂M

∂y
.

That is,
1

µ

dµ

dx
=

1

N(x, y)

(
∂M

∂y
− ∂N

∂x

)
. (1.39)

If the right-hand side of (1.39) involves two dependent variables, we run into trouble. If,
however, it depends only upon x, then Equation (1.39) is separable, in which case we obtain

µ(x) = exp

[∫
1

N(x, y)

(
∂M

∂y
− ∂N

∂x

)
dx

]
as an integrating factor.
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Example 2 Solve the differential equation

(2x2 + y) dx+ (x2y − x) dy = 0.

Solution
In this equation,

M(x, y) = 2x2 + y and N(x, y) = x2y − x

so that

∂M

∂y
= 1 6= 2xy − 1 =

∂N

∂x

and the equation is not exact. It can also be shown (try it!) that the differential equation
is not separable, homogeneous, or linear. Now

1

N(x, y)

(
∂M

∂y
− ∂N

∂x

)
=

1

x2y − x (1− (2xy − 1))

=
−2

x

depends only upon x. Thus,

µ(x) = exp

(
−
∫

2

x
dx

)
= e−2 ln |x| =

1

x2

is an integrating factor. If we multiply the equation through by this factor, we have

(
2 +

y

x2

)
dx+

(
y − 1

x

)
dy = 0.

Now this equation is exact since

∂M

∂y
=

1

x2
=
∂N

∂x
.

We can thus solve this differential equation using the exact method to obtain

2x+
y2

2
− y

x
= C.

1.6.1 Bernoulli Equation

We will now consider a class of differential equations that can be reduced to linear equa-
tions by an appropriate transformation. These equations are called Bernoulli equations and
often arise in applications.
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Definition 1.6.2
A first-order differential equation of the form

dy

dx
+ P (x) y = Q(x) yn n ∈ R (1.40)

is called a Bernoulli differential equation.

Note that, when n = 0 or n = 1, the Bernoulli equation is actually a linear equation and
can be solved as such. When n 6= 0 or 1, then we must consider an additional method.

THEOREM 1.6.1
Suppose n 6= 0 or 1; then the transformation

v = y1−n

reduces the Bernoulli equation (1.40) to

dv

dx
+ (1− n)P (x) v = (1− n)Q(x), (1.41)

which is a linear equation in v.

Proof: Multiply the Bernoulli equation by y−n and thus obtain

y−n
dy

dx
+ P (x) y1−n = Q(x) . (1.42)

Now let v = y1−n so that
dv

dx
= (1− n)y−n

dy

dx
.

Hence, Equation (1.42) becomes

1

1− n
dv

dx
+ P (x) v = Q(x),

that is,
dv

dx
+ (1− n)P (x) v = (1− n)Q(x).

Letting
P1(x) = (1− n)P (x) and Q1(x) = (1− n)Q(x)

gives
dv

dx
+ P1(x) v = Q1(x),

a linear differential equation in v.

Example 3 Solve the differential equation

dy

dx
+ y = xy3.
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Solution
This is a Bernoulli equation with n = 3. We thus let v = y1−3 = y−2, so that

dv

dx
= −2y−3 dy

dx
.

Using (1.41) we obtain
dv

dx
− 2v = −2x. (1.43)

This is a linear differential equation with integrating factor

exp

(∫
P (x) dx

)
= exp

(∫
−2 dx

)
= e−2x.

We also calculate exp
(
−
∫
P (x) dx

)
= e2x. Thus the solution of (1.43) can be written

v = e2x

(∫
−2xe−2x dx

)
.

Integrating by parts gives

v = e2x

(
xe−2x +

1

2
e−2x

)
+ Ce2x.

Simplifying gives

v = x+
1

2
+ Ce2x.

But our original problem was in the variable y. We know v = y−2 and thus the solution is

1

y2
= x+

1

2
+ Ce2x

which can be written as

y = ±
(

1

x+ 1
2 + Ce2x

)1/2

.

This solution is defined as long as the denominator is not equal to zero.

1.6.2 Homogeneous Equations of the Form g(y/x)

We have now been introduced to separable differential equations and their relative ease
of solution. We will now consider a class of differential equations that can be reduced to
separable equations by a change of variables.

Remark: Before proceeding, we alert the reader that the use of the word homogeneous
in this section must not be confused with its use as the type of linear ordinary differential
equation whose right-hand side is zero (as in Chapters 3 and 4). Its use in those chapters
is more common, but both have their place.

Example 4 Consider the differential equation

dy

dx
=
x− y
x+ y

.
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Solution
After a minute or so of reflection, we see that this is not a separable equation. We can,
however, rewrite the equation as

dy

dx
=

1− y
x

1 + y
x

(1.44)

so that we can isolate the fraction y/x. This suggests we consider the change of variable

v =
y

x

or equivalently
y = vx.

Our original problem has dy/dx and thus we take the derivative of both sides of the above
equation with respect to x to get

dy

dx
= v + x

dv

dx
.

Substitution of this and y = vx into (1.44) gives

v + x
dv

dx
=

1− v
1 + v

.

Simplifying results in the separable equation

x
dv

dx
=

1− 2v − v2

1 + v
,

and we separate its variables as

1 + v

1− 2v − v2
dv =

dx

x
,

and integrate to give
ln |1− 2v − v2| = −2 lnx+ C1.

Exponentiation of both sides yields

|1− 2v − v2| = eC1x−2 = C2x
−2.

But, v = y/x, so that substitution gives

1− 2y

x
−
(y
x

)2

= ±C2x
−2 = Cx−2.

Multiplying by x2 to clear the fraction gives

x2 − 2xy − y2 = C

as the implicit solution to the differential equation.

This is an example of a general method of reducing a class of differential equations to
that of a separable equation. We need some terminology.
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Definition 1.6.3
The first-order differential equation

M(x, y) +N(x, y)
dy

dx
= 0

is said to be of homogeneous type (or homogeneous) if, when written in the derivative
form

dy

dx
= f(x, y),

there exists a function g such that f(x, y) can be expressed in the form g(y/x).

By classifying the equation as homogeneous, we will be able to apply the above technique
in order to reduce the differential equation to one that is separable. It is sometimes not
obvious that a given equation can be rewritten as a homogeneous equation. We present two
examples now to help clarify this concept.

Example 5 The differential equation

(x2 − 3y2) + 2xy
dy

dx
= 0

is homogeneous, since the equation can be written in derivative form as

dy

dx
=

3y2 − x2

2xy
,

and we can rearrange this as

3y2 − x2

2xy
=

3

2

(y
x

)
− 1

2

(
1

y/x

)
so that

dy

dx
=

3

2

(y
x

)
− 1

2

(
1

y/x

)
.

The right-hand side is of the form g(y/x) for the function

g(z) =
3z

2
− 1

2z
,

and so the differential equation is homogeneous.

Example 6 The differential equation(
y +

√
x2 + y2

)
dx− x dy = 0

can be written as
dy

dx
=
y +

√
x2 + y2

x
.

For x > 0, we have

y +
√
x2 + y2

x
=
y

x
+

√
1 +

(y
x

)2

,
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so
dy

dx
=
y

x
+

√
1 +

(y
x

)2

which is of the form g(y/x) for a function of the form

g(z) = z +
√

1 + z2.

If we had considered x < 0, we would have obtained

g(z) = z −
√

1 + z2.

In either case, we see that the differential equation is homogeneous.

As we mentioned, we have introduced homogeneous differential equations because they
are related to separable equations; in fact, we have the following theorem which formalizes
the method used in Example 4.

THEOREM 1.6.2
If

M(x, y) +N(x, y)
dy

dx
= 0 (1.45)

is a homogeneous equation, then the change of variables

y = vx

transforms (1.45) into a separable equation in the variables v and x.

Note that this change of variables implies that

y′ = v + xv′

by the product rule.

Example 7 Solve

y + (x− 2y)
dy

dx
= 0.

Solution
We first observe that this can be rewritten as

dy

dx
=

y

2y − x.

Dividing numerator and denominator by x gives

dy

dx
=

y/x

2y/x− 1
.

The right-hand side is then of the form g(y/x), and making the change of variables y = vx
gives

v + x
dv

dx
=

v

2v − 1
,
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which becomes

x
dv

dx
=

2(v − v2)

2v − 1
.

This equation is separable! Rearranging gives

2v − 1

2(v − v2)
dv =

1

x
dx,

and integrating both sides yields

−1

2
ln |v − v2| = ln |x|+ C1.

We then use v = y/x to reintroduce the y-variable. Thus

−1

2
ln

∣∣∣∣yx − (yx)2
∣∣∣∣ = ln |x|+ C1,

but we can let C1 = lnC for an arbitrary constant C, so that

−1

2
ln

∣∣∣∣yx − (yx)2
∣∣∣∣ = ln |Cx|

is the implicit solution. We could obtain an explicit solution with a bit more work but
choose not to. Again, we could plot these solutions for various C-values with our favorite
software package.

• • • • • • • • • • • • • •
Problems

Solve Problems 1–8 by first finding an integrating factor of suitable form.
1. ydx+ (ex − 1)dy = 0 2. (x2 + y2 + x)dx+ ydy = 0
3. y(x+ y)dx+ (xy + 1)dy = 0 4. (x2 − y2 + y)dx+ x(2y − 1)dy = 0
5. ydx− xdy = 2x3 sinx dx 6. (3x2 + y) dx+ (x2y − x) dy = 0
7. (3x2y − x2)dx+ dy = 0 8. (x2 + 2x+ y)dx = (x− 3x2y)dy

9. Show that, if (∂N/∂x− ∂M/∂y)/(xM − yN) depends only on the product xy, that is,

∂N
∂x − ∂M

∂y

xM − yN = H(xy),

then the equation
M(x, y) dx+N(x, y) dy = 0

has an integrating factor of the form µ(xy). Find the general formula for µ(xy).

10. We derived a formula for an integrating factor if µ(x, y) = µ(x). If µ(x, y) = µ(y),
derive the integrating factor formula

µ(y) = exp

[∫
1

M(x, y)

(
∂N

∂x
− ∂M

∂y

)
dy

]
. (1.46)
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Solve the Bernoulli equations given in Problems 11–21.
11. y′ + y = xy2 12. y′ + 3y = y4

13. y′ + 2xy = 4y 14. y′ − xy = xy3

15. xydy = (y2 + x)dx 16. xy′ + 2y + x5y3ex = 0
17. xy′ − 2x2√y = 4y 18. y′ = y4 cosx+ y tanx
19. xy2y′ = x2 + y3 20. (x+ 1)(y′ + y2) = −y
21. Solve the logistic equation dN

dt = rN
(
1− N

K

)
.

For Problems 22–34, solve the homogeneous differential equation analytically.
22. (x+ y) dx− x dy = 0 23. (x+ 2y)dx− xdy = 0
24. (y2 − 2xy)dx+ x2dy = 0 25. 2x3y′ = y(2x2 − y2)
26. 2x2 dy

dx = x2 + y2 27. dydx = y2+2xy
x2

28. xy′ − y = x tan( yx ) 29. (x2 + y2)y′ = 2xy
30. ydx = (2x+ y)dy 31. (x− y)dx+ (x+ y)dy = 0
32. y′ = 2( y

x+y )2 33. y2 + x2y′ = xyy′

34. (x+ 4y)y′ = 2x+ 3y

35. A function F is called homogeneous of degree n if

F (tx, ty) = tnF (x, y) for all x and y.

That is, if tx and ty are substituted for x and y in F (x, y) and if tn is then factored
out, we are left with F (x, y). For instance, if F (x, y) = x2 + y2, we note that

F (tx, ty) = (tx)2 + (ty)2 = t2F (x, y)

so that F is homogeneous of degree 2. Homogeneous differential equations and functions
that are homogeneous of degree n are related in the following manner. Suppose the
functions M and N in the differential equation

M(x, y) dx+N(x, y) dy = 0

are both homogeneous of the same degree n.
(a) Show, using the change of variables t = 1/x, that

M
(

1,
y

x

)
=

(
1

x

)n
M(x, y),

which implies that

M(x, y) =

(
1

x

)−n
M
(

1,
y

x

)
.

(b) Show, using a similar calculation, that

N(x, y) =

(
1

x

)−n
N
(

1,
y

x

)
,

so that the differential equation

M(x, y) dx+N(x, y) dy = 0

becomes
dy

dx
=
−M(x, y)

N(x, y)
= −

(
1
x

)−n
M(1, yx )(

1
x

)−n
N(1, yx )

.
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Simplifying gives

dy

dx
= −M(1, yx )

N(1, yx )
.

(c) Show that both numerator and denominator of the right-hand side of

dy

dx
= −M(1, yx )

N(1, yx )

are in the form g(y/x) and conclude that, if M and N are both homogeneous functions
of the same degree n, then the differential equation

M(x, y) dx+N(x, y) dy = 0

is a homogeneous differential equation.

36. Using the idea presented in Problem 35, show that each of the equations in Problems
22–34 are homogeneous.

37. Suppose that the equation M(x, y) dx+N(x, y) dy = 0 is homogeneous. Show that the
transformation x = r cos t, y = r sin t reduces this equation to a separable equation in
the variables r and t.

Use the method of Problem 37 to solve Problems 38 and 39.

38. (x− y)dx+ (x+ y)dy = 0 39. (x+ y) dx− x dy = 0

40. (a) Solve

dy

dx
=
y − x
y + x

.

(b) Now consider

dy

dx
=
y − x+ 1

y + x+ 5
. (1.47)

(i) Show that this equation is NOT homogeneous.
How can we solve this? Consider the equations y−x = 0 and y+x = 0. They represent
two straight lines through the origin. The intersection of y−x+1 = 0 and y+x+5 = 0
is (−2,−3). Check it! Let x = X − 2 and y = Y − 3. This amounts to taking new axes
parallel to the old with an origin at (−2,−3).
(ii) Use this transformation to obtain the differential equation

dY

dX
=
Y −X
Y +X

.

(iii) Using the solution from part (a), obtain the solution to (1.47).

Use the technique of Problem 40 to solve Problems 41–45.

41. (2x+ y + 1)dx− (4x+ 2y − 3)dy = 0
42. x− y − 1 + (y − x+ 2)y′ = 0
43. (x+ 4y)y′ = 2x+ 3y − 5
44. (y + 2)dx = (2x+ y − 4)dy
45. y′ = 2( y+2

x+y−1 )2
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Chapter 1 Review

In Problems 1–7, determine whether the statement is true or false. If it is true, give reasons
for your answer. If it is false, give a counterexample or other explanation of why it is false.

1. The equation y′′+xy′−y = x2 is a linear ordinary differential equation that is considered
an initial-value problem.

2. The equation y(4) − y2 = sinx is a nonlinear ordinary differential equation.

3. An implicit solution to y′ = f(x, y) can be written in the form y(x) = f(x).

4. With an appropriate substitution, any exact equation can be put in the form of a linear
equation.

5. A solution to the differential equation y′ = f(x, y) must be defined for all x.

6. An equation of the form M(x, y) +N(x, y)y′ = 0 is considered exact if

∂M(x, y)

∂y
=
∂N(x, y)

∂x
.

7. Every equation of the form y′ = f(y) is separable.

In Problems 8–11, verify that the given function is a solution (possibly implicit) to the
given differential equation. State the interval on which it is a solution and the C-values for
which the solution is valid.
8. y(x) = 1 + Cex

4

, y′ = 4x3(y − 1) 9. y(x) = Cex − x2 − 2x− 2, y′ = x2 + y

10. y2(x) =
1

C − 2x
, y′ = y3 11. y(x) =

3x− 1 + 3C

x+ C
, y′ = (y − 3)2

In Problems 12–16, solve each of the following separable differential equations.
12. y′ − xy2 = 2xy 13. 2x2yy′ + y2 = 2
14. e−x(1 + dx

dt ) = 1 15. xy′ + y = y2 y(1) = 0.5

16. y′ = 3 3
√
y2 y(2) = 0

In Problems 17–22, solve each of the following homogeneous differential equations.
17. xy′ = y − xey/x 18. xy′ − y = (x+ y) ln x+y

x
19. xy′ = y cos(ln( yx )) 20. (y +

√
xy)dx = xdy

21. xy′ =
√
x2 − y2 + y 22. (2x− 4y)dx+ (x+ y)dy = 0

In Problems 23–25, solve each of the following exact differential equations.

23.
y

x
+ (y3 + lnx)

dy

dx
= 0

24. 2x(1 +
√
x2 − y)−

√
x2 − y dy

dx
= 0

25.
3x2 + y2

y2
− 2x3 + 5y

y3

dy

dx
= 0

In Problems 26–28, solve each of the following differential equations by first finding an
integrating factor of a suitable form.
26. xy2(xy′ + y) = 1 27. y2dx− (xy + x3)dy = 0
28. (y − 1

x )dx+ dy
y = 0
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In Problems 29–34, solve the following linear or Bernoulli equations.
29. xy′ + y = x4 30. y′ − y = sinx
31. y′ + 4xy = 5x3 32. xy′ + y = xy4

33. y′ − y = xy3 34. 2y′ + xy = 4xy3

Solve the remaining problems using one of the methods of this chapter.

35. One Big Ol’ Pot of Soup Mike, a professor of mathematics and a part-time evening
cook at a local diner, prepares a big pot of soup late at night, just before closing
time. He does this so that there will be plenty of soup to feed customers the next day.
Being food safety cautious, he knows that refrigeration is essential to preserve the soup
overnight; however, the soup is too hot to be put directly into the fridge when it is
ready. (The soup had just boiled at 100 ◦C, and the fridge is not powerful enough to
accommodate a big pot of soup if it is any warmer than 20 ◦C.) Mike is resourceful (as
he is a student of M.M. Rao) and discovered that by cooling the pot in a sink full of
cold water (kept running, so that its temperature was roughly constant at 5 ◦C) and
stirring occasionally, he could bring the temperature of the soup to 60 ◦C in 10 min.
How long before closing time should the soup be ready so that Mike can put it in the
fridge?

36. A cup of very hot coffee from a fast food restaurant is at 120 ◦F when it is served. If left
on the table in a room with ambient temperature of 70 ◦F, it is found to have cooled
to 115 ◦F in 1 min. If burns can result from spilling coffee at a temperature greater
than 100 ◦F, how many minutes will the coffee have to sit before the management is
safe from lawsuits?

37. A 30-gal tank initially has 15 gal of saltwater containing 6 lb of salt. Saltwater contain-
ing 1 lb of salt per gallon is pumped into the top of the tank at the rate of 2 gal/min,
while a well-mixed solution leaves the bottom of the tank at a rate of 1 gal/min. De-
termine the amount of salt in the tank at time t. How long does it take for the tank
to fill? What is the amount of salt in the tank when it is full?

38. A 100-gal tank initially contains 100 gal of sugar-water at a concentration of 0.25 lb
of sugar per gallon. Suppose sugar is added to the tank at a rate of p lb/min, sugar-
water is removed at a rate of 1 gal/min, and the water in the tank is kept well mixed.
Determine the concentration of sugar at time t. What value of p should be chosen so
that, when 5 gal of sugar solution is left in the tank, the concentration is 0.5 lb of sugar
per gallon?

39. Find a curve such that the point of intersection of an arbitrary tangent with the x-axis
has an abscissa half as great as the abscissa of the point of tangency.

Chapter 1 Computer Labs

The reader should only complete the computer lab(s) after reading Appendix A, where
the introductory details and some basic commands and examples are given. Although
every attempt has been made to make the syntax given in this book applicable to a range
of versions/releases, certain syntax may be different for an earlier or later version of a given
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package. We assume the reader has no familiarity with any package but has access to at
least one of them. From this point, we will assume the reader is familiar with the relevant
section of Appendix A.

Chapter 1 Computer Lab: MATLAB

MATLAB Example 1: Enter the following code, which demonstrates how to dif-
ferentiate and integrate functions using the Symbolic Math Toolbox. It considers

f(x) = cosx + e2x + lnx and calculates f ′(x), f ′′(x), df(x)
dt ,

∫
f(x)dx,

∫ π
0
f(x)dx, and∫ x

0
f(t)dt.

>> clear all

>> syms x t

>> f(x)=cos(x)+exp(2*x)+log(x)

>> diff(f(x),x)

>> diff(f(x),x,2)

>> diff(f(x),t)

>> int(f(x),x)

>> int(f(x),x,0,pi)

>> quad(’cos(x)+exp(2*x)+log(x)’,0,pi) %definite int w/o syms

>> int(f(x),t)

>> f(t)=subs(f(x),x,t)

>> g(x)=int(f(t),0,x)

>> g(pi)

MATLAB Example 2: Enter the following code, which demonstrates how to verify
that a given function is a solution (possibly implicit) to the differential equation. The
Symbolic Math Toolbox is again needed. It considers y′′+ 2y′+ y = 0 with explicit solutions
y1 = e−x and y2 = xe−x, followed by (x − 4) y4 − x3 (y2 − 3)y′ = 0 with implicit solution
−1
x + 2

x2 = −1
y + 1

y3 + C.

>> clear all

>> syms x y(x) C

>> eq1=diff(y(x),x,2)+2*diff(y(x),x)+y(x)

>> subs(eq1,y(x),exp(-x))

>> subs(eq1,y(x),x*exp(-x))

>> subs(eq1,y(x),exp(x))

>> eq2=(x-4)*y(x)∧4-x∧3*(y(x)∧2-3)*diff(y(x),x)

>> sol2=-1/x+2/x∧2+1/y(x)-1/y(x)∧3-C

>> dsol2=diff(sol2,x)

>> collect(expand(y(x)∧4*x∧3*dsol2),diff(y(x),x))

MATLAB Example 3: Enter the following code, which demonstrates how to plot one
implicit function (in this case a solution to a differential equation) and then multiple plots
with the same function but different constants. It considers the implicit solution from
MATLAB Example 2, −1

x + 2
x2 = −1

y + 1
y3 + C.

>> clear all
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>> [X,Y]=meshgrid(-2:.01:2,-2:.01:2);

>> Z=-1./X+2./X.∧2+1./Y-1./Y.∧3;

>> contour(X,Y,Z,[-5 -5])

>> [C,h]=contour(X,Y,Z,[-5 -5]);

>> clabel(C,h)

>> axis([-2 2 0 0.6])

>> xlabel(’x’), ylabel(’y’)

>> title(’Implicit Plot with C=-5’)

>> [C,h]=contour(X,Y,Z,[-10,2,6,50]);

>> clabel(C,h)

>> xlabel(’x’), ylabel(’y’)

>> title(’Implicit Plot with C=-10,2,6,50’)

MATLAB Example 4: We will now numerically solve

(x2 + 1)y′ + 4xy = x, y(0) = 10.

In the code below, you will first create a MATLAB function (separate file) called Ex-
ample4.m. Then you will use MATLAB’s ode45 to plot the approximate numerical solution.

%%% Create a function, Example4.m, and save it.

function dydx=Example4(xn,yn)

%

%Rewrite the original ode in the form y’=f(x,y)

%to obtain y’=(x-4xy)/(x∧2+1)

%

dydx=(xn-4*xn*yn)/(xn∧2+1);

% Now type the following in the command window.
>> clear all

>> [x,y]=ode45(@Example4,[0,4],10);

>> plot(x,y)

>> subplot(2,1,1),plot(x,y)

>> title(’Numerical Approximation of Soln of (x∧2+1)y{\prime}
+4xy=x, y(0)=10’)

>> xlabel(’x’), ylabel(’y’)

>> x1=0:.1:4;

>> y1=((1/4)*x1.∧4+(1/2)*x1.∧2+10)./(x1.∧2+1).∧2;

>> subplot(2,1,2),plot(x1,y1,’k’)

>> title(’Closed Form Soln of (x∧2+1)y{\prime}+4xy=x,y(0)=10’)
>> xlabel(’x’), ylabel(’y’)

MATLAB Exercises
Turn in both the commands that you enter for the exercises below as well as the out-
put/figures. These should all be in one document. Please highlight or clearly indicate all
requested answers. Some of the questions will require you to modify the above MATLAB
code to answer them.

1. Enter the commands given in MATLAB Example 1 and submit both your input and
output.
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2. Enter the commands given in MATLAB Example 2 and submit both your input and
output.

3. Enter the commands given in MATLAB Example 3 and submit both your input and
output.

4. Enter the commands given in MATLAB Example 4 and submit both your input and
output.

5. Find the derivative of t2 + cos t with respect to t.

6. Find the derivative of x2 + cosx with respect to x.

7. Find the second derivative of t2 + cos t with respect to t.

8. Find the second derivative of x2 + cosx with respect to x.

9. Find the antiderivative of t2 + cos t with respect to t.

10. Find the antiderivative of x2 + cosx with respect to x.

11. Find the derivative of ln(tx) + cos2 x+ sin t2 with respect to t.

12. Find the derivative of etx + cos2 x+ sin t2 with respect to x.

13. Find the antiderivative of ln(tx) + cos2 x+ sin t2 with respect to t.

14. Find the antiderivative of etx + cos2 x+ sin t2 with respect to x.

15. Find the definite integral of x2 + cosx from x = 0 to x = 3.

16. Find the definite integral of ln x from x = 1 to x = 5.

17. Find the definite integral of e−x
2

from x = −1 to x = 3. Give the answer as a decimal.
You may find it easier to use quad rather than the Symbolic Math Toolbox.

18. Find the definite integral of
sinx

x
from x = 1 to x = 10. Give the answer as a decimal.

You may find it easier to use quad rather than the Symbolic Math Toolbox.

19. Numerically verify that y(x) = sinx+ 2 cosx is a solution on (−∞,∞) to
d2y

dx2
+ y = 0.

20. Numerically verify that y1(x) = ex, y2(x) = xex are both solutions on (−∞,∞) to
y′′ − 2y′ + y = 0.

21. Solve y′ = sin(x2), y(0) = 0 by hand. Then use MATLAB to find y(1), y(3). (Hint:
remember, from calculus, that y(x) =

∫ x
0
f(t)dt is a function of x and thus y(1) is a

number that can be evaluated with the above code.) Use MATLAB to plot the solution
from x = 0 to x = 4.

22. Use MATLAB to numerically solve y′ = sin(x2), y(0) = 0. Plot this numerical solution
from x = 0 to x = 4.

23. Solve y′ =
sin(x)

x
, y(1) = 0 by hand. Then use MATLAB to find y(2), y(3). (Hint:

remember, from calculus, that y(x) =
∫ x

1
f(t)dt is a function of x and thus y(2) is a

number that can be evaluated with the above code.) Use MATLAB to plot the solution
from x = 1 to x = 6.

24. Use MATLAB to numerically solve y′ =
sin(x)

x
, y(1) = 0. Plot this numerical solution

from x = 1 to x = 6.

25. Numerically verify that y− y6 + cosx+ x sinx = C is an implicit solution to the ODE
(1− 6y5)y′ = −x cosx.

26. Solve y+ xy′ =
y

2y − 1
by hand. This solution is implicit. Choose 3 different C-values

and plot the implicit solutions.


