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Preface
In 1988, Tsallis began to study a new form of entropy, called the Tsallis entropy, and 
in subsequent years, he developed the whole theory, which can be rightly referred to 
as the Tsallis entropy theory. This theory has since been applied to a wide spectrum 
of areas in physics and chemistry, and new topics applying this entropy are emerging 
each year. In the area of water engineering, the past few years have witnessed a range 
of applications of the Tsallis entropy. The literature shows the theory has enormous 
potential.

Currently, there seems to be no book on the Tsallis entropy for water engineering 
readership. Therefore, there exists a need for a book that deals with basic concepts 
of the Tsallis entropy theory and applications of these concepts to a range of water 
engineering problems. This book is an attempt to cater to this need.

The subject matter of the book is divided into 14 chapters organized in 4 sections. 
Section I, comprising two chapters, deals with preliminaries. Chapter 1 discusses the 
Tsallis entropy theory for both discrete and continuous variables. It then goes on to 
discuss the properties of the Tsallis entropy, partial Tsallis entropy, and constrained 
Tsallis entropy. The chapter is concluded with a discussion of generalized entropies. 
Frequency analysis constitutes the subject matter of Chapter 2. Beginning with a dis-
cussion of the procedure for deriving probability distributions, it goes on to present 
maximum entropy–based distributions with regular moments as constraints, the use 
of m-expectation, and choosing expectation value.

Section II consists of six chapters dealing with some aspects of hydraulics. 
 One-dimensional velocity distributions are discussed in Chapter 3, which presents 
velocity distributions based on different constraints or the specification of informa-
tion. It also discusses the relation between mean velocity and maximum velocity, 
simplification of the velocity distribution, and estimation of mean velocity. Chapter 4 
presents two-dimensional velocity distributions using the Chiu coordinate system 
and the generalized framework. It deals with different characteristics of the velocity 
distribution.

Chapter 5 discusses sediment concentration. Starting with a discussion of the 
methods for determining sediment concentration, it presents a step-by-step  procedure 
for the derivation of entropy-based suspended sediment concentration and the 
 characteristics of the derived distribution. Chapter 6 treats the subject of sediment 
discharge in three ways. First, it considers velocity as entropy based but not sediment 
concentration. The second considers sediment concentration as entropy-based but not 
entropy-based velocity. The third considers both velocity and sediment concentration 
as entropy-based. The sediment concentration in debris flow is presented in Chapter 7. 
It presents a step-by-step methodology for determining the debris flow concentration 
and concludes with the treatment of reparameterization and equilibrium debris flow 
concentration. Chapter 8 deals with the stage–discharge rating curve. It first discusses 
errors and randomness in rating curves and forms thereof. It then discusses the deriva-
tion of rating curves, reparameterization, relation between maximum discharge and 
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drainage area, relation between mean discharge and drainage area, relation between 
entropy parameter and drainage area, and extension of rating curves.

Hydrology is the subject of Section III, which comprises four chapters. Chapter 9 
discusses precipitation variability and deals with intensity entropy, apportionment 
entropy, entropy scaling, hydrological zoning, and the assessment of water resources 
availability. Infiltration is discussed in Chapter 10, which presents the derivation of 
six infiltration equations, including the equations of Horton, Kostiakov, Philip, Green 
and Ampt, Overton, and Holtan. Chapter 11 is on soil moisture. Providing a short 
introduction to soil moisture profiles and their estimation, it presents the derivation 
of soil moisture profiles for wetting, drying, and mixed phases and the variation of 
soil moisture in time. Chapter 12 deals with flow duration curves. Discussing first 
the use and construction of flow duration curves, it presents a step-by-step procedure 
for deriving flow duration curves, reparameterization, mean flow and ratio of mean 
to maximum flow, prediction of flow duration curves for ungagged sites, forecasting 
of flow duration curve, and variation of entropy with time scale.

The concluding Section IV is on water resources engineering; it contains two 
chapters. Eco-index constitutes the subject matter of Chapter 13, containing indica-
tors of hydrologic alteration (IHA), probability distributions of IHA parameters, and 
computation of nonsatisfaction eco-level and eco-index. Chapter 14 discusses mea-
sures of redundancy for water distribution networks. Presenting the optimization of 
water distribution networks, it deals with reliability, the Tsallis entropy, redundancy 
measures, the development of redundancy measures under different conditions, and 
the relation between redundancy and reliability.

Vijay P. Singh
College Station, Texas

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

http://www.mathworks.com
mailto:info@mathworks.com
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3

1 Introduction to Tsallis 
Entropy Theory

The concept of entropy originated in thermodynamics and has a history of over a 
century and half dating back to Clausius in 1850. In 1870, Boltzmann developed 
a statistical definition of entropy and hence connected it to statistical mechanics. The 
concept of entropy was further advanced by Gibbs in thermodynamics and by von 
Neumann in quantum mechanics. Outside of the world of physics, it is Shannon who 
developed, in the late 1940s, the mathematical foundation of entropy and connected 
it to information. The informational entropy is now frequently called Shannon 
entropy or sometimes called Boltzmann–Gibbs–Shannon entropy. Kullback and 
Leibler (1951) developed the principle of minimum cross entropy (POMCE) and 
in the late 1950s Jaynes (1957a,b) developed the principle of maximum entropy 
(POME). Koutsoyiannis (2013, 2014) has given an excellent historical perspective 
on entropy. The Shannon entropy, POME, and POMCE constitute the entropy theory 
that has witnessed a wide spectrum of applications in virtually every field of science 
and engineering and social and economic sciences, and each year new applications 
continue to be reported (Singh, 2013, 2014, 2015). A review of entropy applications 
in hydrological and earth sciences is given in Singh (1997, 2010, 2011).

In 1988, Tsallis postulated a generalization of the Boltzmann–Gibbs–Shannon 
entropy, now popularly called the Tsallis entropy, and discussed its mathematical 
properties. The definition and properties of the Tsallis entropy constitute the Tsallis 
entropy theory. In physics, the Tsallis entropy has received tremendous attention 
(Tsallis, 2001). Recently, this entropy has been applied to a number of geophysi-
cal, hydrological, and hydraulic processes. Because of its interesting properties, it 
is expected to receive increasing attention in water engineering in the years ahead. 
This chapter introduces the Tsallis entropy and presents its properties that are of 
particular interest in environmental and water engineering.

1.1 DEFINITION OF TSALLIS ENTROPY

First, it is useful to define the Boltzmann–Gibbs–Shannon entropy (henceforth, 
 simply Shannon entropy). For a discrete random variable X = {xi, i = 1, 2, …, N} that 
has a probability distribution P = {pi, i = 1, 2, …, N} [pi is the probability of X = xi], 
the Shannon entropy Hs can be defined as

 

H k p ps i i

i

N

= -
=

å log
1

 (1.1)



4 Introduction to Tsallis Entropy Theory in Water Engineering

where k is a conventional positive constant and is often taken as unity and log is taken 
to the base of 2, e or 10, and accordingly, the unit of entropy becomes bit, nat, or docit.

Scaling pi to pi
m , where m is any real number, Tsallis (1988) postulated

 

H k
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m
p pm
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i

N

i i
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i

N

=
-

-
=

-
-éë ùû

=

=

å å
1

1 1
1

1

 (1.2)

where
Hm is the Tsallis entropy
k is often taken as unity

For m → 1, the Tsallis entropy reduces to the Shannon entropy. Quantity m is often 
referred to as nonextensivity index or Tsallis entropy index or simply entropy index. 
Entropy index m characterizes the degree of nonlinearity and is related to the micro-
scopic dynamics of the system. The value of m can be positive or negative. The Tsallis 
entropy is often referred to as nonextensive statistic, m-statistic, or Tsallis statistic. 
Tsallis (2002) noted that superextensivity, extensivity, and subextensivity occur when 
m < 1, m = 1, or m > 1, respectively. For m ≥ 0, m < 1 corresponds to the rare events and 
m > 1 corresponds to frequent events (Tsallis, 1998; Niven, 2004) pointing to the stretch-
ing or compressing of the entropy curve to lower or higher maximum entropy positions.

From an informational perspective, the information gain from the occurrence of 
any event i is a power function and can be expressed as

 

DI
m

p pi i
m

i

i

N

=
-

-( ) =-

=
å1

1
1 11

1

,  (1.3)

where
ΔIi is the gain in information from an event i that occurs with probability pi

m is any real number
N is the number of events

Equation 1.3 is a generalization of the Shannon gain function describing the infor-
mation from an event expressed in logarithmic terms. For N events, the average or 
expected gain function is the weighted average of Equation 1.3

 

H E I p
m

p
m

p pm i i i
m

i

N

i i
m

i

N

= =
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ëê

ù
ûú

=
-

-( )-

=
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=
å å[ ]D 1

1
1

1
1

11

1

1

1

 (1.4)

where Hm is designated as the Tsallis entropy or m-entropy.
In a similar manner, the information gain for the Shannon entropy, ΔHsi, can be 

written as

 DH psi i= - log  (1.5)
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Therefore,

 

H H p ps si

i

N

i i

i

N

= = -
= =

å å
1 1

log  (1.6)

If random variable X is nonnegative continuous with a probability density function 
(PDF), f(x), then the Shannon entropy can be written as

 

H X H f k f x f x dxs s( ) ( ) ( ) log ( )= = -
¥

ò
0

 (1.7)

Likewise, the Tsallis entropy can be expressed (Koutsoyiannis, 2005a,b,c) as

 

H X H f
k

m
f x f x dx

k

m
f xm m

m m( ) ( ) { ( ) [ ( )] } [ ( )]= =
-

- =
-

-
ì
í
ï

îï

ü¥ ¥

ò ò1 1
1

0 0

ýý
ï

þï
dx  (1.8)

Frequently, k is taken as 1. From now onward, subscript m will be deleted and Hm 
will be simply denoted by H.

A plot of H/k versus p for m = −1, −0.5, 0, 0.5, 1, and 2 is given in Figure 1.1. For 
m < 0, the Tsallis entropy is concave and for m > 0 it becomes convex. For m = 0, 
H = k(N − 1) for all pi. For m = 1, it converges to the Shannon entropy. For all cases, 
the Tsallis entropy decreases as m increases.

0
0

0.2

0.4

0.6

0.8

1H
/k

1.2

1.4

1.6

1.8

2

0.2
p

m = –1
m = –0.5
m = 0
m = 0.5
m = 1
m = 2

0.4 0.6 0.8 1

FIGURE 1.1 Plot of H/k for N = 2 for m = −1, −0.5, 0, 0.5, 1, and 2.
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Example 1.1

Plot the gain function defined by the Tsallis entropy for different values of 
 probability: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Take k as 1, and m as 
−1, 0, 1, and 2. What do you conclude from this plot?

Solution

Using Equation 1.3 the gain function is computed, as shown in Table 1.1. Figure 1.2 
shows the gain function for m = −1, 0, m = 1, and 2. It is seen from the figure that 
the gain in information decreases with the increase in the probability value regard-
less of the value of m. For increasing value of m, the gain diminishes for the same 

TABLE 1.1
Computation of Gain Function

p

∆i 

m = −1 m = 0 m = 1 m = 2

0.1 49.50 9.00 2.30 0.90

0.2 12.00 4.00 1.61 0.80

0.3 5.06 2.33 1.20 0.70

0.4 2.63 1.50 0.92 0.60

0.5 1.50 1.00 0.69 0.50

0.6 0.89 0.67 0.51 0.40

0.7 0.52 0.43 0.36 0.30

0.8 0.28 0.25 0.22 0.20

0.9 0.12 0.11 0.11 0.10

1 0.00 0.00 0.00 0.00

0
0

0.2

0.4

0.6

0.8

1

1.2

ΔI

1.4

1.6

1.8

2

0.2 0.4 0.6 0.8 1

m= –1
m= 0
m= 1
m= 2

p

FIGURE 1.2 Gain function for m = −1, 0, 1, and 2. 
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probability value. For m = 1, the Tsallis entropy converges to the Shannon entropy. 
The two gain functions are shown in Figure 1.3. The Tsallis gain function has a 
much longer tail showing very low values of gain as the probability increases.

Example 1.2

Consider a two-state variable taking on values x1 and x2. Assume that p(x1) = 0.0, 
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Note that p(x2) = 1 − p(x1). Compute 
and plot the Tsallis entropy. Take m as 1.5 and 2.0. What do you conclude from 
the plot?

Solution

The Tsallis entropy is given by Equation 1.2. Let a = p(x1). For any given value of p, 
one can write the Tsallis entropies H1 and H2, respectively, for x1 and x2 as

 H
k

m
a am

1
1

1
1=

-
- -( )

 H
k

m
a a m

2
1

1
1 1 1=

-
- - - -( )[ ( ) ]

Then, the Tsallis entropy is

 H H H= +1 2

where each component is a weighted gain function. Thus, the Tsallis entropy is com-
puted as shown in Table 1.2. The computed Tsallis entropy for k = 1 and m = 1.5 and 
2 is shown in Figure 1.4. The Tsallis entropy plot shows a little skewness from the 
Shannon entropy and also predicts the maximum entropy at p(x) = 0.5. It also can be 
observed that the Tsallis entropy value decreases with an increase in the value of m.

0.2 0.4 0.6 0.8

Tsallis entropy
Shannon entropy

p
10

0

ΔI

1

2

3

4

5

6

8

9

10

7

FIGURE 1.3 Comparison of the Shannon and Tsallis gain functions. 
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1.2  DERIVATION OF SHANNON ENTROPY 
FROM TSALLIS ENTROPY

It may be useful to show that the Tsallis entropy is a generalization of the Shannon 
entropy. One can express

 p p m pi
m

i i= -exp[( ) ln ]1  (1.9)

0
0

0.1

0.2

0.3

0.5

0.6

0.7

H

0.4

0.2 0.4 0.6 0.8 1

m = 1.5
m = 2

p

FIGURE 1.4 Tsallis entropy for k = 1 and m = 1.5, 2.0.

TABLE 1.2
Computation of the Tsallis Entropy for k = 1, m = 1.5, and m = 2

p(x) 1 − p(x) 

m = 1.5 m = 2.0 

H1 H2 H = H1 + H2 H1 H2 H = H1 + H2

0 1 0 0 0 0 0 0

0.1 0.9 0.137 0.092 0.229 0.090 0.090 0.180

0.2 0.8 0.221 0.169 0.390 0.160 0.160 0.320

0.3 0.7 0.271 0.229 0.500 0.210 0.210 0.420

0.4 0.6 0.294 0.270 0.565 0.240 0.240 0.480

0.5 0.5 0.293 0.293 0.586 0.250 0.250 0.500

0.6 0.4 0.270 0.294 0.565 0.240 0.240 0.480

0.7 0.3 0.229 0.271 0.500 0.210 0.210 0.420

0.8 0.2 0.169 0.221 0.390 0.160 0.160 0.320

0.9 0.1 0.092 0.137 0.229 0.090 0.090 0.180

1 0 0 0 0 0 0 0
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The Tsallis entropy given by Equation 1.2 can be written as

 

H
k

m
p m pi i

i

N

=
-

- -
ì
í
ï

îï

ü
ý
ï

þï=
å1

1 1
1

exp[( ) ln ]  (1.10)

It must now be shown that when m tends to unity

 
H k

p m p

mm

i i
i

N

=
- -

-®

=å
lim

exp[( ) ln ]

1

1
1 1

1
 (1.11)

leads to the Shannon entropy given by Equation 1.1.
Now, consider L’Hospital’s rule for the division of two arbitrary functions f(a) 

and g(a):

 
lim

( )
( )

, lim ( ) , lim ( )
a b a b a b

f a

g a
g a g a

® ® ®
= ¥ = ¥if or or0 0  (1.12)

where b is some value and may even approach infinity. For example,

 

lim ( ) lim
m m

i
m

i

N

i

i

N

f m p p
® ®

= =

= -
æ

è
çç

ö

ø
÷÷ = - =å å1 1

1 1

1 1 0  (1.13)

 
lim ( ) lim( )
m m

g m m
® ®

= - =
1 1

1 0  (1.14)

Now

 

f m p m pi i

i

N

( ) exp[( ) ln ]= - -
=

å1 1
1

 (1.15)

or

 

¢ = - - = -
= =

å åf m p p m p p pi i i

i

N

i
m

i

i

N

( ) ln exp[( ) ln ] ln1
1 1

 (1.16)

 g m m( ) = -1  (1.17)

 ¢ =g m( ) 1  (1.18)
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Therefore, taking the limit on Equation 1.11,

 

lim lim
( )
( )

lim
( )
( )

lim ( ) ln
m m m m

i
m

i

i

H
f m

g m

f m

g m
p p

® ® ® ®
= =

¢
¢

= -
1 1 1 1

1
==

®
==

å

åå= - = -

1

1
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N

m
i
m

i i i

i

N

i

N

p p p plim ln ln  (1.19)

which is the Shannon entropy.

1.3 PROPERTIES OF TSALLIS ENTROPY

Following Tsallis (1988, 2004), some interesting and useful properties of the Tsallis 
entropy are briefly summarized here.

1.3.1 m-Entropy

Analogous to surprise or unexpectedness defined in the Shannon entropy, the 
m- surprise or m-unexpectedness is defined as logm(1/pi). Hence, the m-entropy can 
be defined as

 
H E

p
m

i

=
é

ë
ê

ù

û
úlog

1
 (1.20)

which coincides with the Tsallis entropy:

 

H E
p

m
i
m

= -
-

é

ë
ê

ù

û
ú

-1
1

1

 (1.21)

in which E is the expectation. Recalling the definition

 

lim log
n

nw

n
w

®

-é

ë
ê

ù

û
ú =

0

1
 (1.22)

where
n is any number
w is any variable

Then, Equation 1.21 is the same as Equation 1.20. For small values of n, wn will 
behave as log w. A plot of function (wn − 1)/n is shown in Figure 1.5 that shows its 
approximation by the logarithmic function.
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1.3.2 MaxiMuM ValuE

Equation 1.2 attains an extreme value for all values of m when all pi are equal, that is, 
pi = 1/N. For m > 0, it attains a maximum value and for m < 0, it attains a minimum 
value. The extremum of H becomes

 
H k

N

m

m

= -
-

-1 1
1

 (1.23)

If m = 1, applying L’Hopsital’s rule to Equation 1.23 or 1.22, one gets

 H k N= ln  (1.24)

which is the Boltzmann entropy, HB. Plotting H/k versus N using Equation 1.23, as 
shown in Figure 1.6, it is seen that H diverges for m < 1. The Tsallis entropy, given 

1
0
5

10
15
20
25
30
35
40
45
50

m = –1
m = –0.5
m = 0
m = 0.5
m = 1
m = 2

H
/k

3 5 7
N

9

FIGURE 1.6 Plot of H/k versus N for m = −1, −0.5, 0, 0.5, 1, 2 when all pi are equal (from 
Equation 1.18). 

0
0
1
2
3
4
5
6
7
8
9

10

log(w)

n = 3
n = 2
n = 1
n = 0.5
n = 0

(w
n –

1)
/n

2 4 6 8
w

10

FIGURE 1.5 Plot of function (wn − 1)/n versus w for various values of n.
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by Equation 1.23, diverges if m < 1, is maximum for m > 1 and is minimum for 
m < 1, and is k(N − 1) for all equal pi. Interestingly, for any value of m, the entropy 
extreme can be expressed in terms of the entropy for m = 1 as follows. For m = 1, 
Equation 1.24 can be written as N = exp(H/k). Substituting it into Equation 1.23, 
the result is

 

H

k

m H k

m
m B= - -

-
exp[( ) ]1 1

1
/

 (1.25)

1.3.3 ConCaVity

Consider two probability distributions P = {pi, i = 1, 2, …, N} and Q = {qi, i = 1, 2, …, N} 
corresponding to a unique set of N possibilities. Then, an intermediate probability 
distribution G = {gi, i = 1, 2, …, N} can be defined for a real a such that 0 < a < 1 as

 g ap a qi i i= + -( )1  (1.26)

for all i. It can be shown that for m > 0,

 H G aH P a H Q[ ] [ ] ( ) [ ]³ + -1   (1.27)

and for m < 0,

 H G aH P a H Q[ ] [ ] ( ) [ ]£ + -1   (1.28)

Functional H(G) ≥ 0 if m > 0 and is hence concave; H(G) = 0 if m = 0; and H(G) ≤ 0 
if m < 0 and is, therefore, convex. These inequalities, given by Equations 1.27 and 
1.28, are true for m ≠ 0 and pi = qi, ∀ i.

Example 1.3

Consider N = 3, m = 3, and P = {0.2,0.4,0.4} and G = {0.1, 0.3, 0.6} and a = 0.3. 
Compute H(P) and H(G), and then show if Equation 1.27 holds. If m = −0.5, then 
show if Equation 1.28 holds.

Solution

 H E I p
m

p
m

p pm i i i
m

i

N

i i
m

i

N

= =
-

-( )é
ëê

ù
ûú

=
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-éë ùû
-

=

-

=
å[ ]D

1
1

1
1

1
11

1

1

1
åå

Given a = 0.3, from Equation 1.26, Q can be computed as

 q
g ap

a
i

i i=
-
-( )1
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q1

0 1 0 3 0 2
1 0 3

0 06=
- ´

-
=

. . .
.

.

 
q2

0 3 0 3 0 4
1 0 3

0 26=
- ´

-
=

. . .
.

.

 
q3

0 6 0 3 0 4
1 0 3

0 68=
- ´

-
=

. . .
.

.

When m = 3,

 H P( ) [( . . ) ( . . ) ( . . )] .=
-

- + - + - =
1

3 1
0 2 0 2 0 4 0 4 0 4 0 4 0 4323 3 3

 H Q( ) [( . . ) ( . . ) ( . . )] .=
-

- + - + - =
1

3 1
0 06 0 06 0 26 0 26 0 68 0 68 0 3303 3

 H G( ) [( . . ) ( . . ) ( . . )] .=
-

- + - + - =
1

3 1
0 1 0 1 0 3 0 3 0 6 0 6 0 3783 3 3

 H G aH P a H Q[ ] [ ] ( ) [ ] . . ( . ) . .³ + - = ´ + - ´ =1 0 3 0 432 1 0 3 0 330 0 361

Equation 1.27 holds.

When m = −0.5

 H P( )
.

[( . . ) ( . . ) ( . . )] .. . .=
- -

- + - + - =- - -1
0 5 1

0 2 0 2 0 4 0 4 0 4 0 4 20 5 0 5 0 5 9932

 H Q( )
.

[( . . ) ( . . ) ( . .. . .=
- -

- + - + -- - -1
0 5 1

0 06 0 06 0 26 0 26 0 68 0 680 5 0 5 0 55 4 242)] .=

 H G( )
.

[( . . ) ( . . ) ( . . )] .. . .=
- -

- + - + - =- - -1
0 5 1

0 1 0 1 0 3 0 3 0 6 0 6 30 5 0 5 0 5 5519

 H G aH P a H Q[ ] [ ] ( ) [ ] . . ( . ) . .£ + - = ´ + - =1 0 3 2 932 1 0 3 4 242 3 849

Equation 1.28 holds.

1.3.4 additiVity

Let there be two independent systems A and B with ensembles of configurational 
possibilities EA = {1, 2, …, N} with probability distribution P p i NA

i
A= ={ , , , , }1 2 …  

and configurational possibilities EB = {1, 2, …, M} with probability distribution 
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P p j MB
j
B= ={ , , , , }.1 2 …  Then, one needs to deal with the union of two systems 

A ∪ B and their corresponding ensembles of possibilities EA ∪ B = {(1,1), (1,2), …, 

(i, j), …, (N, M)}. If pij
A BÈ  represents the corresponding probabilities then by virtue 

of  indepen dence the joint probability will be equal to the product of individual 

 probabilities, that is p p pij
A B

i
A

j
BÈ =  or pij(A + B) = pi(A)pj(B) for all i and j. Hence, 
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 (1.29)

Taking the logarithms of Equation 1.29, one obtains
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Each term of Equation 1.30 is now considered. The left side of Equation 1.30 can be 
written in terms of the Tsallis entropy as 
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(1.31)

Similarly, terms on the right side of Equation 1.31 can be written as
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= - -log[ ( ) ]1 1m H B  (1.33)

Equation 1.31 is equal to the sum of Equations 1.32 and 1.33:

 log[ ( ) ] log[ ( ) ] log[ ( ) ]1 1 1 1 1 1- - = - - + - -Èm H m H m HA B A B  (1.34)
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Equation 1.34 can be recast as

 1 1 1 1 1 1- - = - - - -È( ) [ ( ) ][ ( ) ]m H m H m HA B A B  (1.35)

Equation 1.35 can be simplified as

 1 1 1 1 1 1 2- - = - - - - + -È( ) [ ( ) ( ) ( ) ]m H m H m H m H HA B A B A B  (1.36)

Equation 1.36 reduces to

 H H H m H HA B A B A BÈ = + - -[( ) ]1  (1.37)

Equation 1.37 is often expressed as 

 H A B H A H B m H A H B( ) ( ) ( ) ( ) ( ) ( )+ = + + -1  (1.38)

Equation 1.38 can also be expressed as 

 

log[ ( ) ( )] log[ ( ) ( )] log[ ( ) ( )]1 1
1

1 1
1

1 1+ - +
-

= + -
-

+ + -m H A B

m

m H A

m

m H B

11- m
 (1.39)

 

In the limit as m → 1, Equation 1.38 can be written as the sum of marginal entropies

 H H H H A B H A H BA B A BÈ = + = +or ( , ) ( ) ( )  (1.40)

Equations 1.37 through 1.39 describe the additivity property. This property can be 
extended to any number of systems. In all cases, H ≥ 0 (nonnegativity property). 
If systems A and B are correlated, then 
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for all (i, j). One may define mutual information or transinformation S as
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 (1.42)

Considering Equation 1.42, T(pij) = 0 for all m, if X and Y are independent, and 
Equation 1.42 will reduce to Equation 1.38. For correlated X and Y, T(pij) < 0 for 
m = 1, and T(pij) = 0 for m = 0. For arbitrary values of m, it will be sensitive to pij; it 
can take on negative or positive values for both m < 1 and m > 1 with no particular 
regularity and can exhibit more than one extremum. 
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Example 1.4

Consider a system A that has two states with probabilities pA
1 0 4= .  and pA

2 0 6= . .

Consider another system designated as B with two states having probabilities 
pB

1 0 3= .  and pB
1 0 7= . . Both systems are independent. Compute the joint Tsallis 

entropy of the two systems. Take m = 3. Also compute the Shannon entropy.

Solution

For system A, p pA A
1 2,  and p pA A

1 2 1 0+ = . . Therefore, 

 HA =
-

- + - =
1

3 1
0 4 0 4 0 6 0 6 0 363 3[( . . ) ( . . )] .

 HB =
-

- + - =
1

3 1
0 3 0 3 0 7 0 7 0 3153 3[( . . ) ( . . )] .

 H A B( ) . . ( ) . . .+ = + - - ´ ´ =0 36 0 315 3 1 0 36 0 315 0 448

The joint Shannon entropy can be computed as follows:

 HA = - + =[ . log . . log . ] .0 4 0 4 0 6 0 6 0 9712 2

 HB = - + =[ . log . . log . ] .0 3 0 3 0 7 0 7 0 8812 2

 H A B( ) . . .+ = + =0 971 0 881 1 852

In this case, the Shannon entropy is much larger than the Tsallis entropy because 
m is much greater than unity.

1.3.5 CoMposibility

The entropy H(A + B) of a system comprising two subsystems A and B can be com-
puted from the entropies of subsystems, H(A) and H(B), and the entropy index m.

1.3.6 intEraCting subsystEMs

Consider a set of N possibilities arbitrarily separated into two subsystems with N1 

and N2 possibilities, where N = N1 + N2. Defining P pN i
i

N

1

1

1
=

=å  and P pN j
j

N

2

2

1
=

=å ,
 

P P pN N k
k

N

1 2 1
1

+ = =
=å . It can be shown that 

 H P H P P P H p P P H p PN N N N
m

i N N
m

j N( ) ( , ) ({ }) ({ })= + +1 2 1 1 2 2| |  (1.43)
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where { }p Pi N| 1
 and { }p Pj N| 2

 are the conditional probabilities. Note that p pi
m

i>  for 

m < 1 and p pi
m

i<  for m > 1. Hence, m < 1 corresponds to rare events and m > 1 

frequent events (Tsallis, 2001). This property can be extended to any number R of 

interacting subsystems: N N j
j

R
=

=å 1
. Then, defining w p j Nj i

i

N

j

j

= =
=å 1

1 2, , , ,… , 

wj
j

N
=

=å 1
1

, Equation 1.43 can be generalized as

 

H p H w w H p wi j j
m

i j

j

R

({ }) ({ }) ({ })= +
=

å |
1

 (1.44)

Here, pj = wj.

Example 1.5

Consider a set of five possibilities, pi = {0.1, 0.15, 0.2, 0.25, 0.3}, separated into 
two subsets N1 = 3, pN1 0 1 0 15 0 2= { . , . , . }, and N2 = 2, pN2 0 25 0 3= { . , . }. Compute 
the Tsallis entropy for this system. Then, use Equation 1.43 to compute the Tsallis 
entropy and show that both ways the entropy is the same. 

Solution

First, the Tsallis entropy can be computed as

 

H PN( ) [( . . ) ( . . ) ( . . ) ( . . )=
-

- + - + - + -
1

3 1
0 1 0 1 0 15 0 15 0 2 0 2 0 25 0 253 3 3 3 ++ -

=

( . . )]

.

0 4 0 4

0 473

3

or consider as two subsystems as

 
P pN i

i

N

1

1

1

0 1 0 15 0 2 0 45= = + + =
=

å . . . .

 

P pN j

j

N

2

2

1

0 25 0 3 0 55= = + =
=

å . . .

 

H p Pi N({ })
.

.
.

.
.

.
.

| 1

1
3 1

0 1
0 45

0 1
0 45

0 1
0 45

0 1
3

=
-

- æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

+ -
00 45

0 1
0 45

0 1
0 45

3 3

.
.

.
.

.
æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

+ - æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ïï

þï

= 0 432.
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Thus, using Equation 1.43,

 

H P H P P P H p P P H p PN N N N
m

i N N
m

j N( ) ( , ) ({ }) ({ })

. .

= + +

= +

1 2 1 1 2 2

0 371 0 4

| |

55 0 432 0 55 0 372 0 4733 3´ + ´ =. . . .

It shows that the entropy computed from Equation 1.43 is the same as given by 
the definition.

1.3.7 othEr FEaturEs

Many complex systems exhibit a power like behavior and they may be in station-
ary but nonequilibrium states. This may often be the case for geomorphological 
systems. The Tsallis statistics (Tsallis, 2004) is particularly useful for describing 
such systems. This statistics exhibits three interesting features (Ferri et al., 2010). 
First, the PDFs, based on the Tsallis entropy, that describe metastable or stationary 
systems are proportional to what is called m-exponential defined as

 exp ( ) [ ( ) ] /( )
m

mx m x- = - - -a a1 1 1 1  (1.45)

in which m and α are constants. Figure 1.7 shows a plot of Equation 1.45 for different 
values of α and m. In the limit m → 1, m-exponential becomes the ordinary exponen-
tial, that is exp1(x) = exp(x). Further, if m → 1 and x = y2 then expm(−αx) becomes an 
m-Gaussian. 

The inverse of m-exponential is referred to as m-logarithm defined as

 
ln ( ) , ln ( ) ln( ), ln [exp ( )] exp[ln ( )]m

m

m m mx
x

m
x x x x= -

-
= = =

-1

1
1

1
1  (1.46)

Stationary systems are characterized by nonextensivity index m = mstat. Figure 1.8 
shows a plot of Equation 1.46 for different values of m.

Second, stationary states show m-exponential sensitivity to initial conditions or 
weak chaos with a parameter m = msens. This means that small differences between 
adjacent states grow in an m-exponential fashion. Third, microscopic variables 
decrease m-exponentially with a parameter m = mrel.

In this manner, a stationary or metastable system can be characterized by a triplet 
of m values, often referred to as the Tsallis m-triplet, that is (mstat, msens, mrel) ≠ (1, 1, 1), 
in which mstat > 1, msens < 1, and mrel < 1 (Ferri et al., 2010). Ausloos and Petroni 
(2007) and Petroni and Ausloos (2007) reported the values of mstat for daily variation 
of the El Nino Southern Oscillation (ENSO) index.
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1.4 MODIFICATION OF TSALLIS ENTROPY

Yamano (2001a) provided a modification of the Tsallis entropy. It may be worth 
recalling that the Shannon entropy function is uniquely determined not because 
of the definition of the mean value of information but because of the additivity of 
the uncertainty of information that the source contains. Considering the amount of 
information as the m-logarithmic function of probability

 I p p xm m( ) ln ( )= -  (1.47) 

where 

 
ln ( )

( ( ) ) ( )
m

m m

p x
p x

m

p x

m
= -

-
= -

-

- -1 11
1

1
1

 (1.48)

Function Im(p) is a monotonically decreasing function and so is –ln p. The unit of 
measurement in this case is nat, not bit. In the limit, as m tends to 1, the information 
content becomes –ln p.

Taking the normalized m-average (or escort average) of the information content 
or entropy, one obtains

 

-
=

-

-
=

=

=

=

å
å

åp x p x

p x

p x

m p x

m
i m i

i

N

m
i

i

N

m
i

i

N

m
i

i

( ) ln ( )

( )

( )

( ) ( )

1

1

1
1

1
11

N mH X

å
= ( )  (1.49)

 

which is the modified form of the Tsallis entropy and is obtained by dividing the 

Tsallis entropy by factor p xm
i

i

N
( ).

=å 1

Example 1.6

Let N = 3 and p(xi) = {0.2, 0.3, 0.5}. Compute the m-average entropy and ordinary 
entropy.

Solution

Let m = 3, the m-average entropy is computed as

 H Xm( )
( . . . )

( )( . . . )
.=

- + +
- + +

=
1 0 2 0 3 0 5
3 1 0 2 0 3 0 5

2 625
3 3 3

3 3 3

and the ordinary entropy is

 
H X( )

( )
[( . . ) ( . . ) ( . . )] .=

-
- + - + - =

1
3 1

0 2 0 2 0 3 0 3 0 5 0 5 0 423 3 3
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where the factor

 
p x

H X
H X

m
i

i

N

m

( ) ( . . . ) .
( )
( )

=
å = + + = =

1

3 3 30 2 0 3 0 5 0 16

Yamano (2001b) discussed the properties of the modified Tsallis entropy, which are 
briefly presented in the following. For two random variables X and Y, their joint 
entropy can be expressed as

 

H X Y
p x y

m p x y
m

m

x y

m

x y

( , )
( , )

( ) ( , )

,

,

=
-

-

å
å

1

1
 (1.50)

and a nonadditive conditional entropy Hm(Y|x) can be written as

 

( ( ) / [ ( ) ( )])

( )
[ ( ) ( )]

p x m H Y x

p x
m H Y X

m
i m

i

N

m
i

i

N m

1 1
1 11

1

- -
= + -=

=

å
å

|
| --1  (1.51)

The mutual information Tm(Y; X) can now be defined in the usual way as common 
information between X and Y, which is equal to the reduction in uncertainty in one 
variable due to the knowledge of another variable:

 
T Y X H Y H Y X

H X H Y H X Y m H X H Y
m m m

m m m m m( ; ) ( ) ( )
( ) ( ) ( , ) ( ) ( ) ( )= - = + - + -

|
1

1++ -( ) ( )m H Xm1 
(1.52)

This will converge to the usual mutual information or transinformation in the 
 additive limit m tending to 1. Following Yamano (2001b), the following relations 
hold for X, Y, and Z random variables:

 1. H X Y H X H Y X m H X H Y Xm m m m m( ; ) ( ) ( ) ( ) ( ) ( )= + + -| |1  (1.53)

 2. H X X X m H X X H X X Xm n m i m i i

i

n

( , , , ) [ ( ) ( , , )] ( , , )1 2 1 1 1 1

1

1 1… … …= + - - -

=
å |  (1.54)

 3. H X X X m H X X H Xm n m i m i

i

n

( , , , ) [ ( ) ( , , )] ( )1 2 1 1

1

1 1… …£ + - -

=
å  (1.55)

 4. T X Y H X m H Y H X Ym m m m( ; ) ( ) [ ( ) ( ) ( )= - + -1 1 ] |  (1.56)

  The mutual information becomes symmetric in X and Y:

 T X Y T Y X H X H Y H X Ym m m m m( , ) ( , ) ( ) ( ) ( , )= = + -  (1.57)
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 5. [ ( ) ( )] ( )

( , ) ( , ) ( ){ ( ) ( ,

1 1

1

+ -

= - + -

m H X H Y X

H Y Z X H Z Y X m H X H Y

m m

m m m m

|

| | ZZ X H X Y H Z Y X Zm m| |) ( , ) ( , ) }-
 (1.58)

  It is seen that mutual information becomes symmetric in X and Y. In the limit 
m tending to 1, these relations reduce to the ones satisfied by the Shannon 
entropy.

 6. The Kullback–Leibler (KL) cross entropy between two distributions p(x) 
and q(x) can be written in a Tsallis entropy sense as 

 

D p x q x
q x q x
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 (1.59)

  The KL cross entropy satisfies

 
D p x q x

m

m
m[ ( ), ( )]

( )
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³ >
< <
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0 0

0
 (1.60)

  and equals 0 if p(x) = q(x).
 7. The generalized mutual information can be defined in terms of the general-

ized KL cross entropy as

 

T X Y D P x y P x P y

m p x y p x p y p x y
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 (1.61)

1.5 MAXIMIZATION

Consider a case where H given by Equation 1.2 is to be maximized subject to the 
following constraints:

 

Pi

i

N

=
=

å 1
1

 (1.62)

and

 

p x xi i

i

N

=
å =

1

 (1.63)
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where {xi} and x  are real numbers. Following the method of the Lagrange  multipliers, 

the Lagrange function can be defined as

 

L H p p x xi

i
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i i
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1
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1  (1.64)

where λ0 and λ1 are the Lagrange multipliers. Following Tsallis (1988), Equation 1.64 
can be recast as

 

L H p m p x m xi i i

i

N

i

N

= + + - - + -
==

åål l l l l l0 0 1

11

0 0 11 1( ) [ ( ) ]  (1.65)

It may be noted that the term within brackets on the right side of Equation 1.65 
does not influence the maximization of entropy. Therefore, for entropy maximizing 
Equation 1.65 can simply be written as

 

L H p m p xi i i

i

N

i

N

= + + -
==

åål l l0 0 1

11

1( )  (1.66)

Differentiating L in Equation 1.66 with respect to pi and equating to zero for all i, 
one obtains

 
p

m x

Z
i

i
m

= - - -[ ( ) ] /( )1 11
1 1l

 (1.67)

where Z is the partition function defined as 

 

Z m xi
m

i

N

= - - -

=
å[ ( ) ] /( )1 11

1 1

1

l  (1.68)

If m tends to one, Equation 1.67 reduces

 
p

Z
xi i= -1

1exp( )l  (1.69)

in which

 

Z xi
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Equation 1.67 expresses a power law distribution (Tsallis et al., 1998; Evans et al., 
2000). This suggests that one way to obtain a power distribution is to extremize the 

Tsallis entropy with the constraint: p x xi i
m m

i

N
=

=å 1
, instead of x . This distribution 

is plotted in Figure 1.9 for m = 0, 1, 1.5, 2, 3; the x-axis is taken as λ1xi and the y-axis 
is taken as Zpi. For m = 1, this leads to an exponential distribution. For m > 1, it shows 
a cutoff at λ1xi = 1/(m − 1), where the slope is 0 for m < 2, −1 for m = 2, and −∞ for 
m > 2 and diverges for λ1xi tending to −∞. For m < 1, the distribution diverges at 
λ1xi  = −1/(1 − m) and vanishes when λ1xi tends to +∞. 

1.6 PARTIAL TSALLIS ENTROPY

Let Hi denote the Tsallis entropy for the ith system state whose probability is pi. 
Then, the Tsallis entropy for the system can be expressed as

 

H H H p H H pi

i

N

i

i

N

i i= = =
= =

å å
1 1

( ), ( )  (1.71)

The partial Tsallis entropy can be defined as (Niven, 2004)
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FIGURE 1.9 Plot of distribution given by Equation 1.67 parameterized by m. 


