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Preface

Recursion is one of the most fundamental concepts in computer science
and a key programming technique that, similarly to iteration, allows
computations to be carried out repeatedly. It accomplishes this by em-
ploying methods that invoke themselves, where the central idea consists
of designing a solution to a problem by relying on solutions to smaller
instances of the same problem. Most importantly, recursion is a powerful
problem-solving approach that enables programmers to develop concise,
intuitive, and elegant algorithms.

Despite the importance of recursion for algorithm design, most pro-
gramming books do not cover the topic in detail. They usually devote
just a single chapter or a brief section, which is often insufficient for
assimilating the concepts needed to master the topic. Exceptions in-
clude Recursion via Pascal, by J. S. Rohl (Cambridge University Press,
1984); Thinking Recursively with Java, by E. S. Roberts (Wiley, 2006);
and Practicing Recursion in Java, by I. Pevac (CreateSpace Indepen-
dent Publishing Platform, 2016), which focus exclusively on recursion.
The current book provides a comprehensive treatment of the topic, but
differs from the previous texts in several ways.

Numerous computer programming professors and researchers in the
field of computer science education agree that recursion is difficult for
novice students. With this in mind, the book incorporates several ele-
ments in order to foster its pedagogical effectiveness. Firstly, it contains
a larger collection of simple problems in order to provide a solid foun-
dation of the core concepts, before diving into more complex material.
In addition, one of the book’s main assets is the use of a step-by-step
methodology, together with specially designed diagrams, for guiding and
illustrating the process of developing recursive algorithms. The book also
contains specific chapters on combinatorial problems and mutual recur-
sion. These topics can broaden students’ understanding of recursion by
forcing them to apply the learned concepts differently, or in a more so-
phisticated manner. Lastly, introductory programming courses usually
focus on the imperative programming paradigm, where students primar-

xv



xvi � Preface

ily learn iteration, understanding and controlling how programs work. In
contrast, recursion requires adopting a completely different way of think-
ing, where the emphasis should be on what programs compute. In this
regard, several studies encourage instructors to avoid, or postpone, cov-
ering how recursive programs work (i.e., control flow, recursion trees, the
program stack, or the relationship between iteration and tail recursion)
when introducing recursion, since the concepts and abilities learned for
iteration may actually hamper the acquisition of skills related to recur-
sion and declarative programming. Therefore, topics related to iteration
and program execution are covered towards the end of the book, when
the reader should have mastered the design of recursive algorithms from
a purely declarative perspective.

The book also includes a richer chapter on the theoretical analysis
of the computational cost of recursive programs. On the one hand, it
contains a broad treatment of mathematical recurrence relations, which
constitute the fundamental tools for analyzing the runtime or recursive
algorithms. On the other hand, it includes a section on mathematical
preliminaries that reviews concepts and properties that are not only
needed for solving recurrence relations, but also for understanding the
statements and solutions to the computational problems in the book.
In this regard, the text also offers the possibility to learn some basic
mathematics along the way. The reader is encouraged to embrace this
material, since it is essential in many fields of computer science.

The code examples are written in Python 3, which is arguably today’s
most popular introductory programming language in top universities. In
particular, they were tested on Spyder (Scientific PYthon Development
EnviRonment). The reader should be aware that the purpose of the book
is not to teach Python, but to transmit skills associated with recursive
thinking for problem solving. Thus, aspects such as code simplicity and
legibility have been prioritized over efficiency. In this regard, the code
does not contain advanced Python features. Therefore, students with
background in other programming languages such as C++ or Java should
be able to understand the code without effort. Of course, the methods
in the book can be implemented in several ways, and readers are encour-
aged to write more efficient versions, include more sophisticated Python
constructs, or design alternative algorithms. Lastly, the book provides
recursive variants of iterative algorithms that usually accompany other
well-known recursive algorithms. For instance, it contains recursive ver-
sions of Hoare’s partition method used in the quicksort algorithm, or of
the merging method within the merge sort algorithm.
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The book proposes numerous exercises at the end of the chapters,
whose fully worked-out solutions are included in an instructor’s manual
available at the book’s official website (see www.crcpress.com). Many of
them are related to the problems analyzed in the main text, which make
them appropriate candidates for exams and assignments.

The code in the text will also be available for download at the book’s
website. In addition, I will maintain a complementary website related
to the book: https://sites.google.com/view/recursiveprogrammingintro/.
Readers are more than welcome to send me comments, suggestions for
improvements, alternative (clearer or more efficient) code, versions in
other programming languages, or detected errata. Please send emails to:
recursion.book@gmail.com.

INTENDED AUDIENCE

The main goal of the book is to teach students how to think and program
recursively, by analyzing a wide variety of computational problems. It is
intended mainly for undergraduate students in computer science or re-
lated technical disciplines that cover programming and algorithms (e.g.,
bioinformatics, engineering, mathematics, physics, etc.). The book could
also be useful for amateur programmers, students of massive open online
courses, or more experienced professionals who would like to refresh the
material, or learn it in a different or clearer way.

Students should have some basic programming experience in order
to understand the code in the book. The reader should be familiar with
notions introduced in a first programming course such as expressions,
variables, conditional and loop constructs, methods, parameters, or el-
ementary data structures such as arrays or lists. These concepts are
not explained in the book. Also, the code in the book is in accordance
with the procedural programming paradigm, and does not use object
oriented programming features. Regarding Python, a basic background
can be helpful, but is not strictly necessary. Lastly, the student should
be competent in high school mathematics.

Computer science professors can also benefit from the book, not just
as a handbook with a large collection and variety of problems, but also
by adopting the methodology and diagrams described to build recursive
solutions. Furthermore, professors may employ its structure to organize
their classes. The book could be used as a required textbook in introduc-
tory (CS1/2) programming courses, and in more advanced classes on the
design and analysis of algorithms (for example, it covers topics such as

www.crcpress.com
https://sites.google.com/view/recursiveprogrammingintro/
mailto:recursion.book@gmail.com
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divide and conquer, or backtracking). Additionally, since the book pro-
vides a solid foundation of recursion, it can be used as a complementary
text in courses related to data structures, or as an introduction to func-
tional programming. However, the reader should be aware that the book
does not cover data structures or functional programming concepts.

BOOK CONTENT AND ORGANIZATION

The first chapter assumes that the reader does not have any previous
background on recursion, and introduces fundamental concepts, nota-
tion, and the first coded examples.

The second chapter presents a methodology for developing recursive
algorithms, as well as diagrams designed to help thinking recursively,
which illustrate the original problem and its decomposition into smaller
instances of the same problem. It is one of the most important chapters
since the methodology and recursive diagrams will be used throughout
the rest of the book. Readers are encouraged to read the chapter, re-
gardless of their previous background on recursion.

Chapter 3 reviews essential mathematical fundamentals and nota-
tion. Moreover, it describes methods for solving recurrence relations,
which are the main mathematical tools for theoretically analyzing the
computational cost of recursive algorithms. The chapter can be skipped
when covering recursion in an introductory course. However, it is in-
cluded early in the book in order to provide a context for characteriz-
ing and comparing different algorithms regarding their efficiency, which
would be essential in a more advanced course on design and analysis of
algorithms.

The fourth chapter covers “linear recursion.” This type of recursion
leads to the simplest recursive algorithms, where the solutions to com-
putational problems are obtained by considering the solution to a single
smaller instance of the problem. Although the proposed problems can
also be solved easily through iteration, they are ideal candidates for in-
troducing fundamental recursive concepts, as well as examples of how to
use the methodology and recursive diagrams.

The fifth chapter covers a particular type of linear recursion called
“tail recursion,” where the last action performed by a method is a re-
cursive call, invoking itself. Tail recursion is special due to its relation-
ship with iteration. This connection will nevertheless be postponed until
Chapter 11. Instead, this chapter focuses on solutions from a purely
declarative approach, relying exclusively on recursive concepts.
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The advantages of recursion over iteration are mainly due to the use
of “multiple recursion,” where methods invoke themselves several times,
and the algorithms are based on combining several solutions to smaller
instances of the same problem. Chapter 6 introduces multiple recursion
through methods based on the eminent “divide and conquer” algorithm
design paradigm. While some examples can be used in an introductory
programming course, the chapter is especially appropriate in a more ad-
vanced class on algorithms. Alternatively, Chapter 7 contains challenging
problems, related to puzzles and fractal images, which can also be solved
through multiple recursion, but are not considered to follow the divide
and conquer approach.

Recursion is used extensively in combinatorics, which is a branch
of mathematics related to counting that has applications in advanced
analysis of algorithms. Chapter 8 proposes using recursion for solving
combinatorial counting problems, which are usually not covered in pro-
gramming texts. This unique chapter will force the reader to apply the
acquired recursive thinking skills to a different family of problems. Lastly,
although some examples are challenging, many of the solutions will have
appeared in earlier chapters. Thus, some examples can be used in an
introductory programming course.

Chapter 9 introduces “mutual recursion,” where several methods in-
voke themselves indirectly. The solutions are more sophisticated since it
is necessary to think about several problems simultaneously. Neverthe-
less, this type of recursion involves applying the same essential concepts
covered in earlier chapters.

Chapter 10 covers how recursive programs work from a low-level
point of view. It includes aspects such as tracing and debugging, the
program stack, or recursion trees. In addition, it contains a brief intro-
duction to memoization and dynamic programming, which is another
important algorithm design paradigm.

Tail-recursive algorithms can not only be transformed to iterative
versions; some are also designed by thinking iteratively. Chapter 11 ex-
amines the connection between iteration and tail recursion in detail. In
addition, it provides a brief introduction to “nested recursion,” and in-
cludes a strategy for designing simple tail-recursive functions that are
usually defined by thinking iteratively, but through a purely declarative
approach. These last two topics are curiosities regarding recursion, and
should be skipped in introductory courses.

The last chapter presents backtracking, which is another major al-
gorithm design technique that is used for searching for solutions to com-
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putational problems in large discrete state spaces. The strategy is usu-
ally applied for solving constraint satisfaction and discrete optimization
problems. For example, the chapter will cover classical problems such as
the N-queens puzzle, finding a path through a maze, solving sudokus, or
the 0-1 knapsack problem.

POSSIBLE COURSE ROAD MAPS

It is possible to cover only a subset of the chapters. The road map for
introductory programming courses could be Chapters 1, 2, 4, 5, and 10.
The instructor should decide whether to include examples from Chap-
ters 6–9, and whether to cover the first section of Chapter 11.

If students have previously acquired skills to develop linear-recursive
methods, a more advanced course on algorithm analysis and design could
cover Chapters 2, 3, 5, 6, 7, 9, 11, and 12. Thus, Chapters 1, 4, and 10
could be proposed as readings for refreshing the material. In both of
these suggested road maps Chapter 8 is optional. Finally, it is important
to cover Chapters 10 and 11 after the previous ones.
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C H A P T E R 1

Basic Concepts of

Recursive Programming

To iterate is human, to recurse divine.
— Laurence Peter Deutsch

R
ECURSION is a broad concept that is used in diverse disciplines
such as mathematics, bioinformatics, or linguistics, and is even

present in art or in nature. In the context of computer programming,
recursion should be understood as a powerful problem-solving strategy
that allows us to design simple, succinct, and elegant algorithms for
solving computational problems. This chapter presents key terms and
notation, and introduces fundamental concepts related to recursive pro-
gramming and thinking that will be further developed throughout the
book.

1.1 RECOGNIZING RECURSION

An entity or concept is said to be recursive when simpler or smaller
self-similar instances form part of its constituents. Nature provides nu-
merous examples where we can observe this property (see Figure 1.1).
For instance, a branch of a tree can be understood as a stem, plus a
set of smaller branches that emanate from it, which in turn contain
other smaller branches, and so on, until reaching a bud, leaf, or flower.
Blood vessels or rivers exhibit similar branching patterns, where the
larger structure appears to contain instances of itself at smaller scales.
Another related recursive example is a romanesco broccoli, where it is

1
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Tree branches Branching rivers

Romanesco broccoli Spiral Droste effect

Sierpiński’s triangle Matryoshka dolls

Figure 1.1 Examples of recursive entities.
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apparent that the individual florets resemble the entire plant. Other ex-
amples include mountain ranges, clouds, or animal skin patterns.

Recursion also appears in art. A well-known example is the Droste
effect, which consists of a picture appearing within itself. In theory the
process could be repeated indefinitely, but naturally stops in practice
when the smallest picture to be drawn is sufficiently small (for example,
if it occupies a single pixel in a digital image). A computer-generated
fractal is another type of recursive image. For instance, Sierpiński’s tri-
angle is composed of three smaller identical triangles that are subse-
quently decomposed into yet smaller ones. Assuming that the process is
infinitely repeated, each small triangle will exhibit the same structure as
the original’s. Lastly, a classical example used to illustrate the concept
of recursion is a collection of matryoshka dolls. In this craftwork each
doll has a different size and can fit inside a larger one. Note that the
recursive object is not a single hollow doll, but a full nested collection.
Thus, when thinking recursively, a collection of dolls can be described
as a single (largest) doll that contains a smaller collection of dolls.

While the recursive entities in the previous examples were clearly
tangible, recursion also appears in a wide variety of abstract concepts.
In this regard, recursion can be understood as the process of defining
concepts by using the definition itself. Many mathematical formulas and
definitions can be expressed this way. Clear explicit examples include
sequences for which the n-th term is defined through some formula or
procedure involving earlier terms. Consider the following recursive defi-
nition:

sn = sn−1 + sn−2. (1.1)

The formula states that a term in a sequence (sn) is simply the sum of the
two previous terms (sn−1 and sn−2). We can immediately observe that the
formula is recursive, since the entity it defines, s, appears on both sides
of the equation. Thus, the elements of the sequence are clearly defined
in terms of themselves. Furthermore, note that the recursive formula in
(1.1) does not describe a particular sequence, but an entire family of
sequences in which a term is the sum of the two previous ones. In order
to characterize a specific sequence we need to provide more information.
In this case, it is enough to indicate any two terms in the sequence.
Typically, the first two terms are used to define this type of sequence.
For instance, if s1 = s2 = 1 the sequence is:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .
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which is the well-known Fibonacci sequence. Lastly, sequences may also
be defined starting at term s0.

The sequence s can be understood as a function that receives a posi-
tive integer n as an argument, and returns the n-th term in the sequence.
In this regard, the Fibonacci function, in this case simply denoted as F ,
can be defined as:

F(n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if n = 1,

1 if n = 2,

F(n − 1) +F(n − 2) if n > 2.

(1.2)

Throughout the book we will use this notation in order to describe func-
tions, where the definitions include two types of expressions or cases.
The base cases correspond to scenarios where the function’s output
can be obtained trivially, without requiring values of the function on
additional arguments. For Fibonacci numbers the base cases are, by def-
inition, F(1) = 1, and F(2) = 1. The recursive cases include more
complex recursive expressions that typically involve the defined function
applied to smaller input arguments. The Fibonacci function has one re-
cursive case: F(n) = F(n − 1) + F(n − 2), for n > 2. The base cases are
necessary in order to provide concrete values for the function’s terms
in the recursive cases. Lastly, a recursive definition may contain several
base and recursive cases.

Another function that can be expressed recursively is the factorial of
some nonnegative integer n:

n! = 1 × 2 × ⋯ × (n − 1) × n.

In this case, it is not immediately obvious whether the function can be
expressed recursively, since there is not an explicit factorial on the right-
hand side of the definition. However, since (n−1)! = 1×2× ⋯ × (n−1),
we can rewrite the formula as the recursive expression n! = (n − 1)! × n.
Lastly, by convention 0! = 1, which follows from plugging in the value
n = 1 in the recursive formula. Thus, the factorial function can be defined
recursively as:

n! =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 0,

(n − 1)! × n if n > 0.
(1.3)

Similarly, consider the problem of calculating the sum of the first n

positive integers. The associated function S(n) can be obviously defined
as:

S(n) = 1 + 2 + ⋯ + (n − 1) + n. (1.4)
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Again, we do not observe a term involving S on the right-hand side of
the definition. However, we can group the n − 1 smallest terms in order
to form S(n − 1) = 1 + 2 + ⋯ + (n − 1), which leads to the following
recursive definition:

S(n) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 1,

S(n − 1) + n if n > 1.
(1.5)

Note that S(n−1) is a self-similar subproblem to S(n), but is simpler,
since it needs fewer operations in order to calculate its result. Thus, we
say that the subproblem has a smaller size. In addition, we say we have
decomposed the original problem (S(n)) into a smaller one, in order
to form the recursive definition. Lastly, S(n − 1) is a smaller instance

of the original problem.
Another mathematical entity for which how it can be expressed re-

cursively may not seem immediately obvious is a nonnegative integer.
These numbers can be decomposed and defined recursively in several
ways, by considering smaller numbers. For instance, a nonnegative inte-
ger n can be expressed as its predecessor plus a unit:

n =
⎧⎪⎪
⎨
⎪⎪⎩

0 if n = 0,

predecessor(n) + 1 if n > 0.

Note that n appears on both sides of the equals sign in the recursive
case. In addition, if we consider that the predecessor function necessarily
returns a nonnegative integer, then it cannot be applied to 0. Thus, the
definition is completed with a trivial base case for n = 0.

Another way to think of (nonnegative) integers consists of consider-
ing them as ordered collections of digits. For example, the number 5342
can be the concatenation of the following pairs of smaller numbers:

(5, 342), (53, 42), (534, 2).

In practice, the simplest way to decompose these integers consists of
considering the least significant digit individually, together with the rest
of the number. Therefore, an integer can be defined as follows:

n =
⎧⎪⎪
⎨
⎪⎪⎩

n if n < 10,

(n//10) × 10 + (n%10) if n ≥ 10,

where // and % represent the quotient and remainder of an integer divi-
sion, respectively, which corresponds to Python notation. For example,


