

Introduction to

Recursive
Programming

http://taylorandfrancis.com

Introduction to

Recursive
Programming

Manuel Rubio-Sánchez

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170817

International Standard Book Number-13: 978-1-4987-3528-5 (Paperback)
International Standard Book Number-13: 978-1-138-10521-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

To the future generations

http://taylorandfrancis.com

Contents

PREFACE xv

LIST OF FIGURES xxi

LIST OF TABLES xxxi

LIST OF LISTINGS xxxiii

Chapter 1 � Basic Concepts of Recursive Programming 1

1.1 RECOGNIZING RECURSION 1

1.2 PROBLEM DECOMPOSITION 7

1.3 RECURSIVE CODE 14

1.4 INDUCTION 20

1.4.1 Mathematical proofs by induction 20

1.4.2 Recursive leap of faith 22

1.4.3 Imperative vs. declarative programming 25

1.5 RECURSION VS. ITERATION 25

1.6 TYPES OF RECURSION 27

1.6.1 Linear recursion 27

1.6.2 Tail recursion 27

1.6.3 Multiple recursion 28

1.6.4 Mutual recursion 28

1.6.5 Nested recursion 29

1.7 EXERCISES 29

Chapter 2 � Methodology for Recursive Thinking 31

2.1 TEMPLATE FOR DESIGNING RECURSIVE ALGO-
RITHMS 31

vii

viii � Contents

2.2 SIZE OF THE PROBLEM 32

2.3 BASE CASES 34

2.4 PROBLEM DECOMPOSITION 37

2.5 RECURSIVE CASES, INDUCTION, AND DIAGRAMS 41

2.5.1 Thinking recursively through diagrams 41

2.5.2 Concrete instances 45

2.5.3 Alternative notations 47

2.5.4 Procedures 47

2.5.5 Several subproblems 49

2.6 TESTING 52

2.7 EXERCISES 55

Chapter 3 � Runtime Analysis of Recursive Algorithms 57

3.1 MATHEMATICAL PRELIMINARIES 57

3.1.1 Powers and logarithms 58

3.1.2 Binomial coefficients 58

3.1.3 Limits and L’Hopital’s rule 59

3.1.4 Sums and products 60

3.1.5 Floors and ceilings 66

3.1.6 Trigonometry 66

3.1.7 Vectors and matrices 67

3.2 COMPUTATIONAL TIME COMPLEXITY 70

3.2.1 Order of growth of functions 71

3.2.2 Asymptotic notation 73

3.3 RECURRENCE RELATIONS 76

3.3.1 Expansion method 80

3.3.2 General method for solving difference equations 89

3.4 EXERCISES 101

Chapter 4 � Linear Recursion I: Basic Algorithms 105

4.1 ARITHMETIC OPERATIONS 106

Contents � ix

4.1.1 Power function 106

4.1.2 Slow addition 110

4.1.3 Double sum 113

4.2 BASE CONVERSION 115

4.2.1 Binary representation of a nonnegative integer 115

4.2.2 Decimal to base b conversion 117

4.3 STRINGS 119

4.3.1 Reversing a string 119

4.3.2 Is a string a palindrome? 120

4.4 ADDITIONAL PROBLEMS 121

4.4.1 Selection sort 121

4.4.2 Horner’s method for evaluating polynomials 124

4.4.3 A row of Pascal’s triangle 125

4.4.4 Ladder of resistors 127

4.5 EXERCISES 129

Chapter 5 � Linear Recursion II: Tail Recursion 133

5.1 BOOLEAN FUNCTIONS 134

5.1.1 Does a nonnegative integer contain a partic-
ular digit? 134

5.1.2 Equal strings? 136

5.2 SEARCHING ALGORITHMS FOR LISTS 139

5.2.1 Linear search 139

5.2.2 Binary search in a sorted list 142

5.3 BINARY SEARCH TREES 143

5.3.1 Searching for an item 144

5.3.2 Inserting an item 147

5.4 PARTITIONING SCHEMES 148

5.4.1 Basic partitioning scheme 149

5.4.2 Hoare’s partitioning method 150

5.5 THE QUICKSELECT ALGORITHM 155

5.6 BISECTION ALGORITHM FOR ROOT FINDING 157

x � Contents

5.7 THE WOODCUTTER PROBLEM 158

5.8 EUCLID’S ALGORITHM 164

5.9 EXERCISES 167

Chapter 6 � Multiple Recursion I: Divide and Conquer 171

6.1 IS A LIST SORTED IN ASCENDING ORDER? 172

6.2 SORTING 173

6.2.1 The merge sort algorithm 174

6.2.2 The quicksort algorithm 177

6.3 MAJORITY ELEMENT IN A LIST 180

6.4 FAST INTEGER MULTIPLICATION 183

6.5 MATRIX MULTIPLICATION 186

6.5.1 Divide and conquer matrix multiplication 187

6.5.2 Strassen’s matrix multiplication algorithm 190

6.6 THE TROMINO TILING PROBLEM 191

6.7 THE SKYLINE PROBLEM 196

6.8 EXERCISES 203

Chapter 7 � Multiple Recursion II: Puzzles, Fractals, and
More. . . 205

7.1 SWAMP TRAVERSAL 205

7.2 TOWERS OF HANOI 209

7.3 TREE TRAVERSALS 213

7.3.1 Inorder traversal 215

7.3.2 Preorder and postorder traversals 216

7.4 LONGEST PALINDROME SUBSTRING 217

7.5 FRACTALS 220

7.5.1 Koch snowflake 220

7.5.2 Sierpiński’s carpet 224

7.6 EXERCISES 226

Contents � xi

Chapter 8 � Counting Problems 235

8.1 PERMUTATIONS 236

8.2 VARIATIONS WITH REPETITION 238

8.3 COMBINATIONS 240

8.4 STAIRCASE CLIMBING 242

8.5 MANHATTAN PATHS 244

8.6 CONVEX POLYGON TRIANGULATIONS 245

8.7 CIRCLE PYRAMIDS 248

8.8 EXERCISES 250

Chapter 9 � Mutual Recursion 253

9.1 PARITY OF A NUMBER 254

9.2 MULTIPLAYER GAMES 255

9.3 RABBIT POPULATION GROWTH 256

9.3.1 Adult and baby rabbit pairs 257

9.3.2 Rabbit family tree 258

9.4 WATER TREATMENT PLANTS PUZZLE 263

9.4.1 Water flow between cities 263

9.4.2 Water discharge at each city 265

9.5 CYCLIC TOWERS OF HANOI 268

9.6 GRAMMARS AND RECURSIVE DESCENT PARSERS 273

9.6.1 Tokenization of the input string 274

9.6.2 Recursive descent parser 279

9.7 EXERCISES 288

Chapter 10 � Program Execution 291

10.1 CONTROL FLOW BETWEEN SUBROUTINES 292

10.2 RECURSION TREES 297

10.2.1 Runtime analysis 303

10.3 THE PROGRAM STACK 305

xii � Contents

10.3.1 Stack frames 306

10.3.2 Stack traces 309

10.3.3 Computational space complexity 310

10.3.4 Maximum recursion depth and stack over-
flow errors 312

10.3.5 Recursion as an alternative to a stack data
structure 313

10.4 MEMOIZATION AND DYNAMIC PROGRAMMING 317

10.4.1 Memoization 317

10.4.2 Dependency graph and dynamic programming 322

10.5 EXERCISES 325

Chapter 11 � Tail Recursion Revisited and Nested Recursion 333

11.1 TAIL RECURSION VS. ITERATION 333

11.2 TAIL RECURSION BY THINKING ITERATIVELY 337

11.2.1 Factorial 337

11.2.2 Decimal to base b conversion 340

11.3 NESTED RECURSION 342

11.3.1 The Ackermann function 342

11.3.2 The McCarthy 91 function 342

11.3.3 The digital root 343

11.4 TAIL AND NESTED RECURSION THROUGH FUNC-
TION GENERALIZATION 344

11.4.1 Factorial 345

11.4.2 Decimal to base b conversion 348

11.5 EXERCISES 350

Chapter 12 � Multiple Recursion III: Backtracking 353

12.1 INTRODUCTION 354

12.1.1 Partial and complete solutions 354

12.1.2 Recursive structure 356

12.2 GENERATING COMBINATORIAL ENTITIES 358

Contents � xiii

12.2.1 Subsets 359

12.2.2 Permutations 364

12.3 THE N -QUEENS PROBLEM 368

12.3.1 Finding every solution 370

12.3.2 Finding one solution 372

12.4 SUBSET SUM PROBLEM 372

12.5 PATH THROUGH A MAZE 377

12.6 THE SUDOKU PUZZLE 384

12.7 0-1 KNAPSACK PROBLEM 388

12.7.1 Standard backtracking algorithm 389

12.7.2 Branch and bound algorithm 393

12.8 EXERCISES 397

FURTHER READING 403

Index 407

http://taylorandfrancis.com

Preface

Recursion is one of the most fundamental concepts in computer science
and a key programming technique that, similarly to iteration, allows
computations to be carried out repeatedly. It accomplishes this by em-
ploying methods that invoke themselves, where the central idea consists
of designing a solution to a problem by relying on solutions to smaller
instances of the same problem. Most importantly, recursion is a powerful
problem-solving approach that enables programmers to develop concise,
intuitive, and elegant algorithms.

Despite the importance of recursion for algorithm design, most pro-
gramming books do not cover the topic in detail. They usually devote
just a single chapter or a brief section, which is often insufficient for
assimilating the concepts needed to master the topic. Exceptions in-
clude Recursion via Pascal, by J. S. Rohl (Cambridge University Press,
1984); Thinking Recursively with Java, by E. S. Roberts (Wiley, 2006);
and Practicing Recursion in Java, by I. Pevac (CreateSpace Indepen-
dent Publishing Platform, 2016), which focus exclusively on recursion.
The current book provides a comprehensive treatment of the topic, but
differs from the previous texts in several ways.

Numerous computer programming professors and researchers in the
field of computer science education agree that recursion is difficult for
novice students. With this in mind, the book incorporates several ele-
ments in order to foster its pedagogical effectiveness. Firstly, it contains
a larger collection of simple problems in order to provide a solid foun-
dation of the core concepts, before diving into more complex material.
In addition, one of the book’s main assets is the use of a step-by-step
methodology, together with specially designed diagrams, for guiding and
illustrating the process of developing recursive algorithms. The book also
contains specific chapters on combinatorial problems and mutual recur-
sion. These topics can broaden students’ understanding of recursion by
forcing them to apply the learned concepts differently, or in a more so-
phisticated manner. Lastly, introductory programming courses usually
focus on the imperative programming paradigm, where students primar-

xv

xvi � Preface

ily learn iteration, understanding and controlling how programs work. In
contrast, recursion requires adopting a completely different way of think-
ing, where the emphasis should be on what programs compute. In this
regard, several studies encourage instructors to avoid, or postpone, cov-
ering how recursive programs work (i.e., control flow, recursion trees, the
program stack, or the relationship between iteration and tail recursion)
when introducing recursion, since the concepts and abilities learned for
iteration may actually hamper the acquisition of skills related to recur-
sion and declarative programming. Therefore, topics related to iteration
and program execution are covered towards the end of the book, when
the reader should have mastered the design of recursive algorithms from
a purely declarative perspective.

The book also includes a richer chapter on the theoretical analysis
of the computational cost of recursive programs. On the one hand, it
contains a broad treatment of mathematical recurrence relations, which
constitute the fundamental tools for analyzing the runtime or recursive
algorithms. On the other hand, it includes a section on mathematical
preliminaries that reviews concepts and properties that are not only
needed for solving recurrence relations, but also for understanding the
statements and solutions to the computational problems in the book.
In this regard, the text also offers the possibility to learn some basic
mathematics along the way. The reader is encouraged to embrace this
material, since it is essential in many fields of computer science.

The code examples are written in Python 3, which is arguably today’s
most popular introductory programming language in top universities. In
particular, they were tested on Spyder (Scientific PYthon Development
EnviRonment). The reader should be aware that the purpose of the book
is not to teach Python, but to transmit skills associated with recursive
thinking for problem solving. Thus, aspects such as code simplicity and
legibility have been prioritized over efficiency. In this regard, the code
does not contain advanced Python features. Therefore, students with
background in other programming languages such as C++ or Java should
be able to understand the code without effort. Of course, the methods
in the book can be implemented in several ways, and readers are encour-
aged to write more efficient versions, include more sophisticated Python
constructs, or design alternative algorithms. Lastly, the book provides
recursive variants of iterative algorithms that usually accompany other
well-known recursive algorithms. For instance, it contains recursive ver-
sions of Hoare’s partition method used in the quicksort algorithm, or of
the merging method within the merge sort algorithm.

Preface � xvii

The book proposes numerous exercises at the end of the chapters,
whose fully worked-out solutions are included in an instructor’s manual
available at the book’s official website (see www.crcpress.com). Many of
them are related to the problems analyzed in the main text, which make
them appropriate candidates for exams and assignments.

The code in the text will also be available for download at the book’s
website. In addition, I will maintain a complementary website related
to the book: https://sites.google.com/view/recursiveprogrammingintro/.
Readers are more than welcome to send me comments, suggestions for
improvements, alternative (clearer or more efficient) code, versions in
other programming languages, or detected errata. Please send emails to:
recursion.book@gmail.com.

INTENDED AUDIENCE

The main goal of the book is to teach students how to think and program
recursively, by analyzing a wide variety of computational problems. It is
intended mainly for undergraduate students in computer science or re-
lated technical disciplines that cover programming and algorithms (e.g.,
bioinformatics, engineering, mathematics, physics, etc.). The book could
also be useful for amateur programmers, students of massive open online
courses, or more experienced professionals who would like to refresh the
material, or learn it in a different or clearer way.

Students should have some basic programming experience in order
to understand the code in the book. The reader should be familiar with
notions introduced in a first programming course such as expressions,
variables, conditional and loop constructs, methods, parameters, or el-
ementary data structures such as arrays or lists. These concepts are
not explained in the book. Also, the code in the book is in accordance
with the procedural programming paradigm, and does not use object
oriented programming features. Regarding Python, a basic background
can be helpful, but is not strictly necessary. Lastly, the student should
be competent in high school mathematics.

Computer science professors can also benefit from the book, not just
as a handbook with a large collection and variety of problems, but also
by adopting the methodology and diagrams described to build recursive
solutions. Furthermore, professors may employ its structure to organize
their classes. The book could be used as a required textbook in introduc-
tory (CS1/2) programming courses, and in more advanced classes on the
design and analysis of algorithms (for example, it covers topics such as

www.crcpress.com
https://sites.google.com/view/recursiveprogrammingintro/
mailto:recursion.book@gmail.com

xviii � Preface

divide and conquer, or backtracking). Additionally, since the book pro-
vides a solid foundation of recursion, it can be used as a complementary
text in courses related to data structures, or as an introduction to func-
tional programming. However, the reader should be aware that the book
does not cover data structures or functional programming concepts.

BOOK CONTENT AND ORGANIZATION

The first chapter assumes that the reader does not have any previous
background on recursion, and introduces fundamental concepts, nota-
tion, and the first coded examples.

The second chapter presents a methodology for developing recursive
algorithms, as well as diagrams designed to help thinking recursively,
which illustrate the original problem and its decomposition into smaller
instances of the same problem. It is one of the most important chapters
since the methodology and recursive diagrams will be used throughout
the rest of the book. Readers are encouraged to read the chapter, re-
gardless of their previous background on recursion.

Chapter 3 reviews essential mathematical fundamentals and nota-
tion. Moreover, it describes methods for solving recurrence relations,
which are the main mathematical tools for theoretically analyzing the
computational cost of recursive algorithms. The chapter can be skipped
when covering recursion in an introductory course. However, it is in-
cluded early in the book in order to provide a context for characteriz-
ing and comparing different algorithms regarding their efficiency, which
would be essential in a more advanced course on design and analysis of
algorithms.

The fourth chapter covers “linear recursion.” This type of recursion
leads to the simplest recursive algorithms, where the solutions to com-
putational problems are obtained by considering the solution to a single
smaller instance of the problem. Although the proposed problems can
also be solved easily through iteration, they are ideal candidates for in-
troducing fundamental recursive concepts, as well as examples of how to
use the methodology and recursive diagrams.

The fifth chapter covers a particular type of linear recursion called
“tail recursion,” where the last action performed by a method is a re-
cursive call, invoking itself. Tail recursion is special due to its relation-
ship with iteration. This connection will nevertheless be postponed until
Chapter 11. Instead, this chapter focuses on solutions from a purely
declarative approach, relying exclusively on recursive concepts.

Preface � xix

The advantages of recursion over iteration are mainly due to the use
of “multiple recursion,” where methods invoke themselves several times,
and the algorithms are based on combining several solutions to smaller
instances of the same problem. Chapter 6 introduces multiple recursion
through methods based on the eminent “divide and conquer” algorithm
design paradigm. While some examples can be used in an introductory
programming course, the chapter is especially appropriate in a more ad-
vanced class on algorithms. Alternatively, Chapter 7 contains challenging
problems, related to puzzles and fractal images, which can also be solved
through multiple recursion, but are not considered to follow the divide
and conquer approach.

Recursion is used extensively in combinatorics, which is a branch
of mathematics related to counting that has applications in advanced
analysis of algorithms. Chapter 8 proposes using recursion for solving
combinatorial counting problems, which are usually not covered in pro-
gramming texts. This unique chapter will force the reader to apply the
acquired recursive thinking skills to a different family of problems. Lastly,
although some examples are challenging, many of the solutions will have
appeared in earlier chapters. Thus, some examples can be used in an
introductory programming course.

Chapter 9 introduces “mutual recursion,” where several methods in-
voke themselves indirectly. The solutions are more sophisticated since it
is necessary to think about several problems simultaneously. Neverthe-
less, this type of recursion involves applying the same essential concepts
covered in earlier chapters.

Chapter 10 covers how recursive programs work from a low-level
point of view. It includes aspects such as tracing and debugging, the
program stack, or recursion trees. In addition, it contains a brief intro-
duction to memoization and dynamic programming, which is another
important algorithm design paradigm.

Tail-recursive algorithms can not only be transformed to iterative
versions; some are also designed by thinking iteratively. Chapter 11 ex-
amines the connection between iteration and tail recursion in detail. In
addition, it provides a brief introduction to “nested recursion,” and in-
cludes a strategy for designing simple tail-recursive functions that are
usually defined by thinking iteratively, but through a purely declarative
approach. These last two topics are curiosities regarding recursion, and
should be skipped in introductory courses.

The last chapter presents backtracking, which is another major al-
gorithm design technique that is used for searching for solutions to com-

xx � Preface

putational problems in large discrete state spaces. The strategy is usu-
ally applied for solving constraint satisfaction and discrete optimization
problems. For example, the chapter will cover classical problems such as
the N-queens puzzle, finding a path through a maze, solving sudokus, or
the 0-1 knapsack problem.

POSSIBLE COURSE ROAD MAPS

It is possible to cover only a subset of the chapters. The road map for
introductory programming courses could be Chapters 1, 2, 4, 5, and 10.
The instructor should decide whether to include examples from Chap-
ters 6–9, and whether to cover the first section of Chapter 11.

If students have previously acquired skills to develop linear-recursive
methods, a more advanced course on algorithm analysis and design could
cover Chapters 2, 3, 5, 6, 7, 9, 11, and 12. Thus, Chapters 1, 4, and 10
could be proposed as readings for refreshing the material. In both of
these suggested road maps Chapter 8 is optional. Finally, it is important
to cover Chapters 10 and 11 after the previous ones.

ACKNOWLEDGEMENTS

The content of this book has been used to teach computer programming
courses at Universidad Rey Juan Carlos, in Madrid (Spain). I am grate-
ful to the students for their feedback and suggestions. I would also like
to thank Ángel Velázquez and the members of the LITE (Laboratory
of Information Technologies in Education) research group for providing
useful insights regarding the content of the book. I would also like to
express my gratitude to Luís Fernández, computer science professor at
Universidad Politécnica de Madrid, for his advice and experience related
to teaching recursion. A special thanks to Gert Lanckriet and members
of the Computer Audition Laboratory at University of California, San
Diego.

Manuel Rubio-Sánchez
July, 2017

List of Figures

1.1 Examples of recursive entities. 2

1.2 Recursive decomposition of lists and trees. 6

1.3 Family tree representing the descendants of a per-
son, which are its children plus the descendants of
its children. 7

1.4 Recursive problem solving. 8

1.5 Decompositions of the sum of the first positive integers. 9

1.6 Decompositions of the sum of the elements in a list,
denoted as a, of (n = 9) numbers. 12

1.7 Functions that compute the sum of the first n nat-
ural numbers in several programming languages. 15

1.8 Data structures similar to lists, and parameters nec-
essary for defining sublists. 18

1.9 Thought experiment in a classroom, where an in-
structor asks a student to add the first 100 positive
integers. S(n) represents the sum of the first n pos-
itive integers. 23

2.1 General template for designing recursive algorithms. 32

2.2 Additional diagrams that illustrate the decomposi-
tion of the sum of the first positive integers when
the problem size is decreased by a unit. 38

2.3 When thinking recursively we generally do not need
to decompose a problem into every instance of
smaller size. 39

2.4 Decompositions of the Fibonacci function. 40

xxi

xxii � List of Figures

2.5 General diagram for thinking about recursive cases
(when a problem is decomposed into a single self-
similar subproblem). 42

2.6 Diagram showing a decomposition of the sum of the
first n positive integers S(n) that uses two subprob-
lems of half the size as the original. 45

2.7 Diagram showing a decomposition of the problem
consisting of printing the digits of a nonnegative in-
teger on the console, in reversed order, and verti-
cally. A particular (n = 2743) and a general m-digit
(n = dm−1 ⋯ d1d0) case are shown in (a) and (b),
respectively. 49

2.8 General diagram for thinking about recursive cases,
when a problem is decomposed into several (N) self-
similar subproblems. 50

2.9 Alternative diagram showing a divide and conquer
decomposition, and the recursive thought process,
for the problem of finding the largest value in a list.
The thick and thin arrows point to the solutions of
the problem and subproblems, respectively. 50

2.10 Diagram showing a decomposition of the sum of the
first n positive integers S(n) that uses two subprob-
lems of (roughly) half the size as the original, when
n is odd. 54

3.1 Graphical mnemonic for determining the quadratic
formula for the sum of the first n positive integers (S(n)). 63

3.2 Right triangle used for showing trigonometric definitions. 67

3.3 Geometric interpretation of vector addition and sub-
traction. 69

3.4 Rotation matrix (counterclockwise). 70

3.5 The highest-order term determines the order of
growth of a function. For T(n) = 0.5n2 + 2000n +
50000 the order is quadratic, since the term 0.5n2

clearly dominates the lower-order terms (even added
up) for large values of n. 71

List of Figures � xxiii

3.6 Orders of growth typically used in computational
complexity. 72

3.7 Graphical illustrations of asymptotic notation defi-
nitions for computational complexity. 74

3.8 Sequence of operations carried by the function in
Listing 1.1 in the base case. 77

3.9 Sequence of operations carried by the function in
Listing 1.1 in the recursive case. 78

3.10 Summary of the expansion method. 81

3.11 An algorithm processes the shaded bits of numbers
from 1 to 2n − 1 (for n = 4). 102

4.1 Conversion of 142 into its representation (1032) in
base 5. 118

4.2 Pascal’s triangle. 126

4.3 Decomposition and recovery of a row of Pascal’s triangle. 126

4.4 Ladder of resistors problem. 127

4.5 Equivalence of circuits with resistors. 127

4.6 Decomposition of the ladder of resistors problem,
and derivation of the recursive case through induction. 128

4.7 The product of two nonnegative integers n and m

can be represented as the number of unit squares
that form an n ×m rectangle. 130

4.8 Step of the insertion sort algorithm. 132

5.1 Decomposition related to the binary search algorithm. 141

5.2 Binary search tree that stores information about a
birthday calendar. 145

5.3 Binary search tree in Figure 5.2 and (5.1), where
each node is a list of four elements: name (string),
birthday (string), left subtree (list), and right sub-
tree (list). 145

5.4 Decomposition associated with several algorithms
related to binary search trees. 146

5.5 Partitioning of a list used in the quicksort and quick-
select algorithms. 148

xxiv � List of Figures

5.6 Example of Hoare’s partition method. 151

5.7 Decomposition of Hoare’s partitioning problem. 153

5.8 Base case and problem decomposition used by the
quickselect algorithm. 155

5.9 Steps of the bisection algorithm. 158

5.10 Base case of the bisection algorithm (b − a ≤ 2ǫ). 159

5.11 Instance of the woodcutter problem. 160

5.12 Decomposition of the woodcutter problem. 162

5.13 Steps of the binary search algorithm related to an
instance of the woodcutter problem, for w = 10. 164

5.14 Steps in the counting sort algorithm. 167

5.15 Main idea behind Newton’s method. 169

6.1 Merge sort algorithm. 174

6.2 Decomposition of the quicksort algorithm. 178

6.3 Types of trominoes ignoring rotations and reflections. 192

6.4 Tromino tiling problem. 192

6.5 Decomposition of the tromino tiling problem. 192

6.6 L trominoes considering rotations. 195

6.7 The skyline problem. 197

6.8 Base case for the skyline problem with one building. 198

6.9 Recursive case for the skyline problem. 199

6.10 Possible situations when merging skylines that
change at the same location x. 200

6.11 Possible situations when merging skylines and x1 < x2. 202

7.1 Swamp traversal problem. 206

7.2 Decomposition of the swamp traversal problem. 207

7.3 The towers of Hanoi puzzle. 209

7.4 Solution to the towers of Hanoi puzzle for n = 2 disks. 210

7.5 Solution to the towers of Hanoi puzzle for n = 4 disks. 212

7.6 Decomposition of the towers of Hanoi problem. 213

7.7 Output of Listing 7.3, which represents the solution
to the towers of Hanoi puzzle for n = 4 disks. 214

List of Figures � xxv

7.8 Concrete example of the decomposition of the in-
order traversal problem. 215

7.9 Decomposition of the problem of finding the longest
palindrome substring. 218

7.10 Koch curve fractal. 221

7.11 Koch snowflake fractal. 222

7.12 Koch curve decomposition. 223

7.13 New endpoints of shorter segments when applying
an iteration related to the Koch curve. 224

7.14 Sierpiński’s carpet after 0, 1, 2, and 3 iterations. 226

7.15 Sierpiński’s carpet decomposition. 227

7.16 Simulation of tick marks on an English ruler. 229

7.17 Rules for the “sideways” variant of the towers of
Hanoi puzzle. 230

7.18 Sierpiński’s triangle after 0, 1, 2, and 3 iterations. 231

7.19 Hilbert curves of orders 1–6. 232

8.1 Possible permutations (lists) of the first four positive
integers. 236

8.2 Decomposition of the problem that counts the num-
ber of possible permutations of n different elements,
denoted as f(n). 237

8.3 Decomposition of the possible permutations of the
first four positive integers. 238

8.4 Example of a k-element variation with repetition of
n items. 239

8.5 Decomposition of the problem that counts the num-
ber of k-element variations with repetition of n items. 240

8.6 Decomposition of the problem that counts the num-
ber of k-element combinations of n items. 241

8.7 A possible way to climb a staircase by taking leaps
of one or two steps. 242

8.8 Decomposition of the problem that counts the num-
ber of ways to climb a staircase by taking leaps of
one or two steps. 243

xxvi � List of Figures

8.9 Manhattan paths problem. 244

8.10 Decomposition of the Manhattan paths problem. 245

8.11 Two possible triangulations of the same convex poly-
gon containing seven vertices. 246

8.12 Six (n−2) possible triangles associated with an edge
of an octagon (n = 8). 246

8.13 Decomposition of the convex polygon triangulation
problem for fixed triangles. 247

8.14 Total number of triangulations related to an octagon. 247

8.15 Valid and invalid circle pyramids. 248

8.16 Pyramids of n = 4 circles on the bottom row,
grouped according to how many circles appear in
the row immediately above it. 249

8.17 Decomposition of the circle pyramids problem for
subproblems of a fixed size. 250

8.18 Two-element variations with repetition of the four
items in {a,b,c,d}. 250

8.19 Tiling of a 2×10 rectangle with 1×2 or 2×1 domino tiles. 251

8.20 Five different binary trees that contain three nodes. 252

8.21 Pyramids of n = 4 circles on the bottom row,
grouped according to their height. 252

9.1 Calls of mutually recursive methods. 254

9.2 Illustration of the rabbit population growth rules. 257

9.3 Rabbit family tree after seven months. 259

9.4 Concrete example of the decomposition of the rabbit
population growth problem into self-similar subproblems. 260

9.5 Concrete decompositions of the problems that lead
to two mutually recursive methods for solving the
rabbit population growth problem. 261

9.6 Water treatment plants puzzle. 263

9.7 Decomposition of the water treatment plants puzzle
when modeling the water flow between cities. 264

9.8 Three problems for the mutually recursive solution
of the water treatment plants puzzle. 266

List of Figures � xxvii

9.9 Decompositions of the three problems for the mutu-
ally recursive solution of the water treatment plants
puzzle. 267

9.10 The cyclic towers of Hanoi puzzle. 268

9.11 Illustration of two different problems comprised in
the cyclic towers of Hanoi puzzle. 269

9.12 Three operations used to implement the recursive
methods for solving the cyclic towers of Hanoi puzzle. 270

9.13 Operations for moving n disks clockwise. 271

9.14 Operations for moving n disks counterclockwise. 272

9.15 Decomposition of a mathematical formula into cat-
egories such as expressions, terms, factors, or numbers. 280

9.16 Method calls of the mutually recursive functions
that implement the recursive descent parser asso-
ciated with the calculator program. 282

9.17 Possible decompositions of an expression. 284

9.18 Rules of the Spin-out® brainteaser challenge. 289

10.1 Sequence of method calls and returns for the code
in Listing 10.1. 293

10.2 Sequence of calls and returns for sum_first_naturals(4). 294

10.3 Sequence of calls and returns for the procedure
mystery_method_1(’Word’). 296

10.4 Sequence of calls and returns for the procedure
mystery_method_2(’Word’). 298

10.5 Recursion trees for sum_first_naturals(4). 299

10.6 Activation tree for sum_first_naturals(4). 299

10.7 Activation tree for gcd1(20,24). 300

10.8 Recursion (a) and activation (b) trees for fibonacci(6). 301

10.9 Activation tree for the mutually recursive functions
in Listing 9.1. 302

10.10 Recursion tree for the mutually recursive functions
in (1.17) and (1.18). 303

10.11 Activation tree for the nested recursive function in (1.19). 304

xxviii � List of Figures

10.12 Recursion tree associated with the recurrence
T(n) = 2T(n/2) + n2. 305

10.13 The stack and queue data structures. 306

10.14 Evolution of stack frames when running the code
in Listing 10.1, where cos, ∣ ⋅ ∣, and ⟨⋅, ⋅⟩ repre-
sent the methods cosine, norm_Euclidean, and
dot_product, respectively. 307

10.15 Program stack and data at step 5 in Figure 10.14. 308

10.16 Evolution of stack frames for sum_first_naturals(4). 309

10.17 Evolution of stack frames for fibonacci(5). 311

10.18 File system tree example. 313

10.19 State of a stack data structure when running the
iterative code in Listing 10.3, for the files and folders
in Figure 10.18. 315

10.20 Evolution of stack frames when running the code in
Listing 10.4, for the files and folders in Figure 10.18. 317

10.21 Overlapping subproblems when computing Fi-
bonacci numbers through F(n) = F(n − 1) + F(n − 2). 319

10.22 Dependency graph for F(n) = F(n − 1) + F(n − 2). 322

10.23 Dependency graph for Listing 10.6, which solves the
longest palindrome substring problem. 323

10.24 Matrix L after running Listing 10.7 with s = 'bcaac'. 325

10.25 Alternative binary search tree that stores informa-
tion about a birthday calendar. 326

10.26 Transformation of a line segment into five smaller
ones for a Koch curve variant. 330

10.27 “Koch square” variant for n = 4. 330

11.1 State of the program stack when running the base
case relative to a call to gcd1(20,24). 334

11.2 Similarities between the iterative and tail-recursive
codes that compute the factorial function. 339

11.3 McCarthy 91 function. 343

12.1 One solution to the four-queens puzzle. 354

List of Figures � xxix

12.2 Partial solutions within complete solutions that are
coded as lists or matrices. 355

12.3 Recursion tree of a backtracking algorithm that
finds one solution to the four-queens puzzle. 356

12.4 Binary recursion tree of an algorithm that generates
all of the subsets of three items. 359

12.5 Alternative binary recursion tree of an algorithm
that generates all of the subsets of three items. 362

12.6 Recursion tree of an algorithm that generates all of
the permutations of three items. 364

12.7 Pruning a recursion tree as soon as a partial solution
is not valid. 367

12.8 Indexing principal and secondary diagonals on a ma-
trix or chessboard. 369

12.9 Recursion tree of the procedure that solves the sub-
set sum problem for S = {2, 6, 3, 5} and x = 8. 376

12.10 Problem of finding a path through a maze, and solu-
tion through backtracking when searching in a par-
ticular order. 378

12.11 Different paths through a maze, depending on the
search order. 379

12.12 Decomposition of the problem of finding a path
through a maze. 380

12.13 An instance of the sudoku puzzle and its solution. 384

12.14 Recursive cases for the sudoku solver. 385

12.15 Recursion tree of a backtracking algorithm for the
0-1 knapsack problem. 390

12.16 Recursion tree of a branch and bound algorithm for
the 0-1 knapsack problem. 395

12.17 Alternative recursion tree of an algorithm that gen-
erates all of the subsets of three items. 398

12.18 One solution to the four-rooks puzzle. 398

12.19 A 3 × 3 magic square. 399

12.20 Chess knight moves. 399

xxx � List of Figures

12.21 An instance and solution to the traveling salesman
problem. 400

12.22 Two ways to represent a solution for the tug of war
problem. 401

List of Tables

3.1 Concrete values of common functions used in com-
putational complexity. 72

11.1 Program state related to the iterative factorial func-
tion when computing 4!. 338

11.2 Program state related to the iterative base conver-
sion function in Listing 11.5, when obtaining the
base-5 representation of 142, which is 1032. 340

xxxi

http://taylorandfrancis.com

List of Listings

1.1 Python code for adding the first n natural numbers. 16

1.2 Alternative Python code for adding the first n nat-
ural numbers. 16

1.3 Python code for computing the n-th Fibonacci number. 17

1.4 Alternative Python code for computing the n-th Fi-
bonacci number. 17

1.5 Recursive functions for adding the elements in a list
a, where the only input to the recursive function is
the list. 19

1.6 Alternative recursive functions for adding the ele-
ments in a sublist of a list a. The boundaries of the
sublist are specified by two input parameters that
mark lower and upper indices in the list. 21

2.1 Misconceptions regarding base cases through the
factorial function. 35

2.2 Code for computing the sum of the digits of a non-
negative integer. 47

2.3 Code for printing the digits of a nonnegative integer
vertically, and in reversed order. 49

2.4 Code for computing the maximum value in a list,
through a divide and conquer approach. 51

2.5 Erroneous Python code for determining if a nonneg-
ative integer n is even. 52

2.6 Correct Python code for determining if a nonnega-
tive integer n is even. 52

2.7 Erroneous Python code for adding the first n posi-
tive numbers, which produces infinite recursions for
most values of n. 53

xxxiii

xxxiv � List of Listings

2.8 Incomplete Python code for adding the first n posi-
tive numbers. 54

2.9 Python code for adding the first n positive numbers
based on using two subproblems of (roughly) half
the size as the original. 55

3.1 Measuring execution times through Python’s time

module. 70

3.2 Solving a system of linear equations, Ax = b, in Python. 94

4.1 Power function in linear time for nonnegative exponents. 107

4.2 Power function in linear time. 108

4.3 Power function in logarithmic time for nonnegative
exponents. 109

4.4 Inefficient implementation of the power function
that runs in linear time. 109

4.5 Slow addition of two nonnegative integers. 111

4.6 Quicker slow addition of two nonnegative integers. 112

4.7 Alternative quicker slow addition of two nonnegative
integers. 113

4.8 Recursive functions that compute the double sum in (4.3). 115

4.9 Binary representation of a nonnegative integer. 117

4.10 Conversion of a nonnegative integer n into its rep-
resentation in base b. 118

4.11 Conversion of a nonnegative integer n into its rep-
resentation in base b. 120

4.12 Function that determines if a string is a palindrome. 121

4.13 Recursive selection sort algorithm. 123

4.14 Recursive variant of the selection sort algorithm. 123

4.15 Horner’s method for evaluating a polynomial. 125

4.16 Function that generates the n-th row of Pascal’s triangle. 126

4.17 Function that solves the ladder of resistors problem. 129

5.1 Linear-recursive Boolean function that determines if
a nonnegative integer contains a digit. 135

5.2 Tail-recursive Boolean function that determines if a
nonnegative integer contains a digit. 136

List of Listings � xxxv

5.3 Linear-recursive function that determines if two
strings are identical. 138

5.4 Tail-recursive function that determines if two strings
are identical. 138

5.5 Tail-recursive linear search of an element in a list. 139

5.6 Linear-recursive linear search of an element in a list. 140

5.7 Alternative tail-recursive linear search of an element
in a list. 141

5.8 Binary search of an element in a list. 142

5.9 Algorithm for searching an item with a particular
key in a binary search tree. 146

5.10 Procedure for inserting an item with a particular key
in a binary search tree. 147

5.11 Auxiliary methods for partitioning a list. 150

5.12 Hoare’s iterative partitioning algorithm. 152

5.13 Alternative recursive version of Hoare’s partitioning
scheme. 154

5.14 Tail-recursive quickselect algorithm. 156

5.15 Bisection algorithm. 159

5.16 Function that computes the amount of wood col-
lected when cutting trees at height h. 160

5.17 Binary search algorithm for the woodcutter problem. 163

5.18 Euclid’s algorithm for computing the greatest com-
mon divisor of two nonnegative integers. 165

6.1 Function that determines whether a list is sorted in
ascending order. 172

6.2 Merge sort method. 175

6.3 Method for merging two sorted lists. 177

6.4 Variant of the quicksort algorithm. 179

6.5 In-place quicksort algorithm. 179

6.6 Code for counting the number of times an element
appears in a list. 182

6.7 Code for solving the majority element problem. 183

xxxvi � List of Listings

6.8 Karatsuba’s fast algorithm for multiplying two non-
negative integers. 185

6.9 Divide and conquer matrix multiplication. 188

6.10 Alternative divide and conquer matrix multiplication. 189

6.11 Auxiliary functions for drawing trominoes. 193

6.12 Recursive method for drawing trominoes. 194

6.13 Code for calling the trominoes method. 195

6.14 Main recursive method for computing skylines. 198

6.15 Recursive method for merging skylines. 201

7.1 Function that determines whether there exists a
path through a swamp. 207

7.2 Alternative function that determines whether there
exists a path through a swamp. 208

7.3 Towers of Hanoi procedure. 214

7.4 Inorder traversal of a binary tree. 216

7.5 Preorder and postorder traversals of a binary tree. 216

7.6 Code for finding the longest palindrome substring
(or sublist). 218

7.7 Alternative code for finding the longest palindrome
substring (or sublist). 220

7.8 Code for generating Koch curves and the Koch snowflake. 225

7.9 Code for generating Sierpiński’s carpet. 228

9.1 Mutually recursive functions for determining the
parity of a nonnegative integer n. 255

9.2 Mutually recursive procedures implementing Alice
and Bob’s strategies when playing a game. 256

9.3 Mutually recursive functions for counting the popu-
lation of baby and adult rabbits after n months. 258

9.4 Alternative mutually recursive functions for count-
ing the population of rabbits after n months. 262

9.5 Function based on multiple recursion for solving the
water treatment plants puzzle. 265

9.6 Mutually recursive procedures for the cyclic towers
of Hanoi puzzle. 273

List of Listings � xxxvii

9.7 Mutually recursive functions for tokenizing a math-
ematical expression. 275

9.8 Function that checks whether a string represents a
number. 276

9.9 Function that parses a mathematical expression of
additive terms. 283

9.10 Function that parses a term of multiplicative factors. 285

9.11 Function that parses a term of multiplicative factors,
where the first one is a parenthesized expression. 286

9.12 Function that parses a mathematical factor. 287

9.13 Function that parses a parenthesized expression. 287

9.14 Basic code for executing the calculator program. 287

10.1 Methods for computing the cosine of the angle be-
tween two vectors. 292

10.2 Similar recursive methods. What do they do? 295

10.3 Iterative algorithm for finding a file in a file system. 314

10.4 Recursive algorithm for finding a file in a file system. 316

10.5 Recursive algorithm for computing Fibonacci num-
bers in linear time, by using memoization. 320

10.6 Memoized version of Listing 7.7. 321

10.7 Code based on dynamic programming that com-
putes the longest palindrome substring within a
string s. 324

10.8 Methods that, supposedly, add and count the digits
of a nonnegative integer. Are they correct? 327

10.9 Erroneous code for computing the number of times
that two adjacent elements in a list are identical. 328

10.10 Code for computing the smallest prime factor of a
number n, which is greater than or equal to m. 328

10.11 Erroneous code for computing the floor of a logarithm. 328

10.12 Erroneous code for determining if a list contains an
element that is larger than the sum of all of the rest. 329

10.13 Erroneous code for finding the location of the “peak
element.” 330

xxxviii � List of Listings

10.14 Code for generating a Koch fractal based on the
transformation in Figure 10.26. 331

10.15 Code for computing the length of the longest palin-
drome subsequence of a list. 332

11.1 Iterative version of Euclid’s method (gcd1). 335

11.2 Iterative version of the bisection method. 336

11.3 Iterative factorial function. 338

11.4 Tail-recursive factorial function and wrapper method. 338

11.5 Iterative conversion of a nonnegative integer n into
its representation in base b. 340

11.6 Tail-recursive base conversion function and wrapper
method. 341

11.7 The Ackermann function implemented in Python. 341

11.8 Nested-recursive method for finding the digital root
of a nonnegative integer. 344

12.1 Code for printing all of the subsets of the elements
in a list. 360

12.2 Alternative code for printing all of the subsets of the
elements in a list. 363

12.3 Code for printing all of the permutations of the ele-
ments in a list. 366

12.4 Alternative code for printing all of the permutations
of the elements in a list. 368

12.5 Code for finding all of the solutions to the n-queens
puzzle. 371

12.6 Code for finding one solution to the n-queens puzzle. 373

12.7 Backtracking code for solving the subset sum problem. 375

12.8 Backtracking code for finding a path through a maze. 381

12.9 Auxiliary code related to the backtracking methods
for finding a path through a maze. 383

12.10 Code for solving a sudoku puzzle. 386

12.11 Auxiliary code for solving a sudoku puzzle. 387

12.12 Backtracking code for solving the 0-1 knapsack problem. 391

12.13 Auxiliary code related to the 0-1 knapsack problem. 393

List of Listings � xxxix

12.14 Branch and bound code for solving the 0-1 knapsack
problem. 396

12.15 Auxiliary code for the branch and bound algorithm
related to the 0-1 knapsack problem. 397

http://taylorandfrancis.com

C H A P T E R 1

Basic Concepts of

Recursive Programming

To iterate is human, to recurse divine.
— Laurence Peter Deutsch

R
ECURSION is a broad concept that is used in diverse disciplines
such as mathematics, bioinformatics, or linguistics, and is even

present in art or in nature. In the context of computer programming,
recursion should be understood as a powerful problem-solving strategy
that allows us to design simple, succinct, and elegant algorithms for
solving computational problems. This chapter presents key terms and
notation, and introduces fundamental concepts related to recursive pro-
gramming and thinking that will be further developed throughout the
book.

1.1 RECOGNIZING RECURSION

An entity or concept is said to be recursive when simpler or smaller
self-similar instances form part of its constituents. Nature provides nu-
merous examples where we can observe this property (see Figure 1.1).
For instance, a branch of a tree can be understood as a stem, plus a
set of smaller branches that emanate from it, which in turn contain
other smaller branches, and so on, until reaching a bud, leaf, or flower.
Blood vessels or rivers exhibit similar branching patterns, where the
larger structure appears to contain instances of itself at smaller scales.
Another related recursive example is a romanesco broccoli, where it is

1

2 � Introduction to Recursive Programming

Tree branches Branching rivers

Romanesco broccoli Spiral Droste effect

Sierpiński’s triangle Matryoshka dolls

Figure 1.1 Examples of recursive entities.

Basic Concepts of Recursive Programming � 3

apparent that the individual florets resemble the entire plant. Other ex-
amples include mountain ranges, clouds, or animal skin patterns.

Recursion also appears in art. A well-known example is the Droste
effect, which consists of a picture appearing within itself. In theory the
process could be repeated indefinitely, but naturally stops in practice
when the smallest picture to be drawn is sufficiently small (for example,
if it occupies a single pixel in a digital image). A computer-generated
fractal is another type of recursive image. For instance, Sierpiński’s tri-
angle is composed of three smaller identical triangles that are subse-
quently decomposed into yet smaller ones. Assuming that the process is
infinitely repeated, each small triangle will exhibit the same structure as
the original’s. Lastly, a classical example used to illustrate the concept
of recursion is a collection of matryoshka dolls. In this craftwork each
doll has a different size and can fit inside a larger one. Note that the
recursive object is not a single hollow doll, but a full nested collection.
Thus, when thinking recursively, a collection of dolls can be described
as a single (largest) doll that contains a smaller collection of dolls.

While the recursive entities in the previous examples were clearly
tangible, recursion also appears in a wide variety of abstract concepts.
In this regard, recursion can be understood as the process of defining
concepts by using the definition itself. Many mathematical formulas and
definitions can be expressed this way. Clear explicit examples include
sequences for which the n-th term is defined through some formula or
procedure involving earlier terms. Consider the following recursive defi-
nition:

sn = sn−1 + sn−2. (1.1)

The formula states that a term in a sequence (sn) is simply the sum of the
two previous terms (sn−1 and sn−2). We can immediately observe that the
formula is recursive, since the entity it defines, s, appears on both sides
of the equation. Thus, the elements of the sequence are clearly defined
in terms of themselves. Furthermore, note that the recursive formula in
(1.1) does not describe a particular sequence, but an entire family of
sequences in which a term is the sum of the two previous ones. In order
to characterize a specific sequence we need to provide more information.
In this case, it is enough to indicate any two terms in the sequence.
Typically, the first two terms are used to define this type of sequence.
For instance, if s1 = s2 = 1 the sequence is:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

4 � Introduction to Recursive Programming

which is the well-known Fibonacci sequence. Lastly, sequences may also
be defined starting at term s0.

The sequence s can be understood as a function that receives a posi-
tive integer n as an argument, and returns the n-th term in the sequence.
In this regard, the Fibonacci function, in this case simply denoted as F ,
can be defined as:

F(n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if n = 1,

1 if n = 2,

F(n − 1) +F(n − 2) if n > 2.

(1.2)

Throughout the book we will use this notation in order to describe func-
tions, where the definitions include two types of expressions or cases.
The base cases correspond to scenarios where the function’s output
can be obtained trivially, without requiring values of the function on
additional arguments. For Fibonacci numbers the base cases are, by def-
inition, F(1) = 1, and F(2) = 1. The recursive cases include more
complex recursive expressions that typically involve the defined function
applied to smaller input arguments. The Fibonacci function has one re-
cursive case: F(n) = F(n − 1) + F(n − 2), for n > 2. The base cases are
necessary in order to provide concrete values for the function’s terms
in the recursive cases. Lastly, a recursive definition may contain several
base and recursive cases.

Another function that can be expressed recursively is the factorial of
some nonnegative integer n:

n! = 1 × 2 × ⋯ × (n − 1) × n.

In this case, it is not immediately obvious whether the function can be
expressed recursively, since there is not an explicit factorial on the right-
hand side of the definition. However, since (n−1)! = 1×2× ⋯ × (n−1),
we can rewrite the formula as the recursive expression n! = (n − 1)! × n.
Lastly, by convention 0! = 1, which follows from plugging in the value
n = 1 in the recursive formula. Thus, the factorial function can be defined
recursively as:

n! =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 0,

(n − 1)! × n if n > 0.
(1.3)

Similarly, consider the problem of calculating the sum of the first n

positive integers. The associated function S(n) can be obviously defined
as:

S(n) = 1 + 2 + ⋯ + (n − 1) + n. (1.4)

Basic Concepts of Recursive Programming � 5

Again, we do not observe a term involving S on the right-hand side of
the definition. However, we can group the n − 1 smallest terms in order
to form S(n − 1) = 1 + 2 + ⋯ + (n − 1), which leads to the following
recursive definition:

S(n) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if n = 1,

S(n − 1) + n if n > 1.
(1.5)

Note that S(n−1) is a self-similar subproblem to S(n), but is simpler,
since it needs fewer operations in order to calculate its result. Thus, we
say that the subproblem has a smaller size. In addition, we say we have
decomposed the original problem (S(n)) into a smaller one, in order
to form the recursive definition. Lastly, S(n − 1) is a smaller instance

of the original problem.
Another mathematical entity for which how it can be expressed re-

cursively may not seem immediately obvious is a nonnegative integer.
These numbers can be decomposed and defined recursively in several
ways, by considering smaller numbers. For instance, a nonnegative inte-
ger n can be expressed as its predecessor plus a unit:

n =
⎧⎪⎪
⎨
⎪⎪⎩

0 if n = 0,

predecessor(n) + 1 if n > 0.

Note that n appears on both sides of the equals sign in the recursive
case. In addition, if we consider that the predecessor function necessarily
returns a nonnegative integer, then it cannot be applied to 0. Thus, the
definition is completed with a trivial base case for n = 0.

Another way to think of (nonnegative) integers consists of consider-
ing them as ordered collections of digits. For example, the number 5342
can be the concatenation of the following pairs of smaller numbers:

(5, 342), (53, 42), (534, 2).

In practice, the simplest way to decompose these integers consists of
considering the least significant digit individually, together with the rest
of the number. Therefore, an integer can be defined as follows:

n =
⎧⎪⎪
⎨
⎪⎪⎩

n if n < 10,

(n//10) × 10 + (n%10) if n ≥ 10,

where // and % represent the quotient and remainder of an integer divi-
sion, respectively, which corresponds to Python notation. For example,

