
Data Mining and Knowledge Discovery

Although there are already some books published on Big Data, most of them only cover basic
concepts and society impacts and ignore the internal implementation details—making them
unsuitable to R&D people. To fill such a need, Big Data: Storage, Sharing, and Security
examines Big Data management from an R&D perspective. It covers the 3S designs—
storage, sharing, and security—through detailed descriptions of Big Data concepts and
implementations.

Written by well-recognized Big Data experts around the world, the book contains more than
450 pages of technical details on the most important implementation aspects regarding Big
Data. After reading this book, you will understand how to

•	 Aggregate heterogeneous types of data from numerous sources, and then use
efficient database management technology to store the Big Data

•	 Use cloud computing to share the Big Data among large groups of people

•	 Protect the privacy of Big Data during network sharing

With the goal of facilitating the scientific research and engineering design of Big Data systems,
the book consists of two parts. Part I, Big Data Management, addresses the important topics of
spatial management, data transfer, and data processing. Part II, Security and Privacy Issues,
provides technical details on security, privacy, and accountability.

Examining the state of the art of Big Data over clouds, the book presents a novel architecture
for achieving reliability, availability, and security for services running on the clouds. It supplies
technical descriptions of Big Data models, algorithms, and implementations, and considers
the emerging developments in Big Data applications. Each chapter includes references for
further study.

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

ISBN: 978-1-4987-3486-8

9 781498 734868

90000

K26395

w w w . c r c p r e s s . c o m

Big Data
Storage, Sharing,

and Security

Edited by Fei Hu
B

IG
 D

A
T
A

H
u

K26395 cvr mech.indd 1 3/9/16 8:42 AM

Big Data
Storage, Sharing,

and Security

OTHER BOOKS BY FEI HU
Associate Professor

Department of Electrical and Computer Engineering
The University of Alabama

Cognitive Radio Networks
with Yang Xiao

ISBN 978-1-4200-6420-9

Wireless Sensor Networks: Principles and Practice
with Xiaojun Cao

ISBN 978-1-4200-9215-8

Socio-Technical Networks: Science and Engineering Design
with Ali Mostashari and Jiang Xie

ISBN 978-1-4398-0980-8

Intelligent Sensor Networks: The Integration of Sensor Networks,
Signal Processing and Machine Learning

with Qi Hao
ISBN 978-1-4398-9281-7

Network Innovation through OpenFlow and SDN: Principles and Design
ISBN 978-1-4665-7209-6

 Cyber-Physical Systems: Integrated Computing and Engineering Design
ISBN 978-1-4665-7700-8

Multimedia over Cognitive Radio Networks: Algorithms, Protocols,
and Experiments
with Sunil Kumar

ISBN 978-1-4822-1485-7

Wireless Network Performance Enhancement via Directional Antennas:
Models, Protocols, and Systems

with John D. Matyjas and Sunil Kumar
ISBN 978-1-4987-0753-4

Security and Privacy in Internet of Things (IoTs): Models, Algorithms,
and Implementations

ISBN 978-1-4987-2318-3

Spectrum Sharing in Wireless Networks: Fairness, Efficiency, and Security
with John D. Matyjas and Sunil Kumar

ISBN 978-1-4987-2635-1

Big Data: Storage, Sharing, and Security
ISBN 978-1-4987-3486-8

Opportunities in 5G Networks: A Research and Development Perspective
ISBN 978-1-4987-3954-2

Big Data
Storage, Sharing,

and Security

Edited by Fei Hu

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20160226

International Standard Book Number-13: 978-1-4987-3487-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

For Gloria, Edwin & Edward (twins).

This page intentionally left blankThis page intentionally left blank

Contents

Preface . ix

Editor . xi

Contributors . xiii

SECTION I: BIG DATA MANAGEMENT: STORAGE, SHARING,
AND PROCESSING 1

1 Challenges and Approaches in Spatial Big Data Management 3
Ablimit Aji and Fusheng Wang

2 Storage and Database Management for Big Data 15
Vijay Gadepally, Jeremy Kepner, and Albert Reuther

3 Performance Evaluation of Protocols for Big Data Transfers 43
Se-young Yu, Nevil Brownlee, and Aniket Mahanti

4 Challenges in Crawling the Deep Web . 97
Yan Wang and Jianguo Lu

5 Big Data and Information Distillation in Social Sensing 121
Dong Wang

6 Big Data and the SP Theory of Intelligence . 143
J. Gerard Wolff

7 A Qualitatively Different Principle for the Organization
of Big Data Processing . 171
Duoduo Liao, Maryam Yammahi, Adi Alhudhaif, Faisal Alsaby,
Usamah AlGemili, and Simon Y. Berkoich

vii

viii � Contents

SECTION II: BIG DATA SECURITY: SECURITY, PRIVACY,
AND ACCOUNTABILITY 199

8 Integration with Cloud Computing Security . 201
Ibrahim A. Gomaa and Emad Abd-Elrahman

9 Toward Reliable and Secure Data Access for Big Data Service 227
Fouad Amine Guenane, Michele Nogueira, Donghyun Kim,
and Ahmed Serhrouchni

10 Cryptography for Big Data Security . 241
Ariel Hamlin, Nabil Schear, Emily Shen, Mayank Varia, Sophia Yakoubov,
and Arkady Yerukhimovich

11 Some Issues of Privacy in a World of Big Data and Data Mining 289
Daniel E. O’Leary

12 Privacy in Big Data . 303
Benjamin Habegger, Omar Hasan, Thomas Cerqueus, Lionel Brunie,
Nadia Bennani, Harald Kosch, and Ernesto Damiani

13 Privacy and Integrity of Outsourced Data Storage and Processing 325
Dongxi Liu, Shenlu Wang, and John Zic

14 Privacy and Accountability Concerns in the Age of Big Data 341
Manik Lal Das

15 Secure Outsourcing of Data Analysis . 357
Jun Sakuma

16 Composite Big Data Modeling for Security Analytics 373
Yuh-Jong Hu and Wen-Yu Liu

17 Exploring the Potential of Big Data for Malware Detection and Mitigation
Techniques in the Android Environment . 397
Rasheed Hussain, Donghyun Kim, Michele Nogueira, Junggab Son,
and Heekuck Oh

Index . 431

Preface

Big Data is one of the hottest topics today because of the large-scale data generation and
distribution in computing products. It is tightly integrated with other cutting-edge network-
ing technologies, including cloud computing, social networks, Internet of things, and sensor
networks. Characteristics of Big Data may be summarized as four Vs, that is, volume (great
volume), variety (various modalities), velocity (rapid generation), and value (huge value but
very low density). Many countries are paying high attention to this area. As an example, in
the United States in March 2012, the Obama Administration announced a US$200 million
investment to launch the “Big Data Research and Development Plan,” which was a second
major scientific and technological development initiative after the “Information Highway”
initiative in 1993.

Because Big Data is a relatively new field, there are many challenging issues to be addressed
today: (1) Storage—How do we aggregate heterogeneous types of data from numerous sources,
and then use fast database management technology to store the Big Data? (2) Sharing—How
do we use cloud computing to share the Big Data among large groups of people? (3) Security—
How do we protect the privacy of Big Data during the network sharing? This book will cover
the above 3S designs, through the detailed description of the concepts and implementations.

This book is unlike any other similar books. Because Big Data is such a new field, there
are very few books covering its implementation. Although a few similar books are already
published, they are mostly about the basic concepts and society impacts. They are thus not
suitable for R&D people. Instead, this book will discuss Big Data management from an R&D
perspective.

Targeted Audiences: (1) Industry—company engineers can use this book as a reference for
the design of Big Data processing and protection. There are many practical design principles
covered in the chapters. (2) Academia—researchers can gain much knowledge on the latest
research topics in this area. Graduate students can resolve many issues by reading the chapters.
They will gain a good understanding of the status and trend of Big Data management.

Book Architecture: The book consists of two sections:

� Section I. Big Data management: In this section we cover the following important
topics:

� Spatial management: In many applications and scientific studies, there is a grow-
ing need to manage spatial entities and their topological, geometric, or geographic
properties. Analyzing such large amounts of spatial data to derive values and guide
decision making has become essential to business success and scientific progress.

ix

x � Preface

� Data transfer: A content delivery network with large data centers located around
the world requires Big Data transfer for data migration, updates, and backups. As
cloud computing becomes common, the capacity of the data centers and both the
intranetwork and internetwork of those data centers increase.

� Data processing: Dealing with “Big Data” problems requires a radical change
in the philosophy of the organization of information processing. Primarily, the
Big Data approach has to modify the underlying computational model to manage
uncertainty in the access to information items in a huge nebulous environment.

� Section II. Big Data Security: Security is a critical aspect after Big Data is integrated
with cloud computing. We will provide technical details on the following aspects:

� Security: To achieve a secure, available, and reliable Big Data cloud-based service,
we not only present the state-of-the-art of Big Data cloud-based services, but
also a novel architecture to manage reliability, availability, and performance for
accessing Big Data services running on the cloud.

� Privacy: We will examine privacy issues in the context of Big Data and poten-
tial data mining of that data. Issues are analyzed based on the emerging unique
characterizations associated with Big Data: the Big Data Lake, “thing” data, the
quantified self, repurposed data, and the generation of knowledge from unstruc-
tured communication data, that is, Twitter Tweets. Each of those sets of emerging
issues is analyzed in detail for their potential impact on privacy.

� Accountability: Accountability of user data access on a specific application helps
in monitoring, controlling, and assessing data usage by the user for the application.
Data loss is the main source of leaking information that may possibly compromise
the privacy of individual and/or organization. Therefore, the naive question is,
“how can data leakages be controlled and detected?” The simple answer to this
would be audit logs and effective measures of data usage.

The chapters have detailed technical descriptions of the models, algorithms, and implementa-
tions of Big Data management and security aspects. There are also accurate descriptions on
the state-of-the-art and future development trends of Big Data applications. Each chapter also
includes references for readers’ further studies.

Thank you for reading this book. We believe that it will help you with the scientific research
and engineering design of Big Data systems. We welcome your feedback.

Fei Hu
University of Alabama, Tuscaloosa, Alabama

Editor

Dr. Fei Hu is currently a professor in the Department
of Electrical and Computer Engineering at the Univer-
sity of Alabama, Tuscaloosa, Alabama. He earned his
PhD degrees at Tongji University (Shanghai, China) in
the field of signal processing (in 1999), and at Clark-
son University (New York) in electrical and computer
engineering (in 2002). He has published over 200 jour-
nal/conference papers and books. Dr. Hu’s research has
been supported by the U.S. National Science Foun-
dation, Cisco, Sprint, and other sources. His research
expertise can be summarized as 3S: Security, Signals,
Sensors: (1) Security—This deals with overcoming
different cyber attacks in a complex wireless or wired
network. His current research is focused on cyber-
physical system security and medical security issues.

(2) Signals—This mainly refers to intelligent signal processing, that is, using machine learning
algorithms to process sensing signals in a smart way to extract patterns (i.e., pattern recogni-
tion). (3) Sensors—This includes microsensor design and wireless sensor networking issues.

xi

This page intentionally left blankThis page intentionally left blank

Contributors

Emad Abd-Elrahman
RST Department
Telecom Sudparis
Evry, France

Ablimit Aji
Analytics Lab
Database Systems
Hewlett Packard Labs
Palo Alto, California

Usamah AlGemili
Department of Computer Science
George Washington University
Washington, DC

Adi Alhudhaif
Department of Computer Science
Prince Sattam bin Abdulaziz University
Al-Kharj, Saudi Arabia

Faisal Alsaby
Department of Computer Science
George Washington University
Washington, DC

Nadia Bennani
INSA-Lyon
LIRIS Department
University of Lyon
Lyon, France

Simon Y. Berkoich
COMStar Computing Technology Institute
and
Department of Computer Science
George Washington University
Washington, DC

Nevil Brownlee
Department of Computer Science
University of Auckland
Auckland, New Zealand

Lionel Brunie
INSA-Lyon
LIRIS Department
University of Lyon
Lyon, France

Thomas Cerqueus
INSA-Lyon
LIRIS Department
University of Lyon
Lyon, France

Ernesto Damiani
Department of Computer Technology
University of Milan
Milan, Italy

Manik Lal Das
Dhirubhai Ambani Institute

of Information and Communication
Technology

Gujarat, India

xiii

xiv � Contributors

Vijay Gadepally
MIT Lincoln Laboratory
Lexington, Massachusetts

Ibrahim A. Gomaa
Computer and Systems Department
National Telecommunication Institute
Cairo, Egypt

Fouad Amine Guenane
ENST
Telecom ParisTech
Paris, France

Benjamin Habegger
INSA-Lyon
LIRIS Department
University of Lyon
Lyon, France

Ariel Hamlin
MIT Lincoln Laboratory
Lexington, Massachusetts

Omar Hasan
INSA-Lyon
LIRIS Department
University of Lyon
Lyon, France

Yuh-Jong Hu
Department of Computer Science
National Chengchi University Taipei
Taipei, Taiwan

Rasheed Hussain
Department of Computer Science

and Engineering
Hanyang University
Ansan, South Korea

Jeremy Kepner
MIT Lincoln Laboratory
Lexington, Massachusetts

Donghyun Kim
Department of Mathematics and Physics
North Carolina Central University
Durham, North Carolina

Harald Kosch
Department of Informatics and Mathematics
University of Passau
Passau, Germany

Duoduo Liao
COMStar Computing Technology Institute
Washington, DC

Dongxi Liu
CSIRO
Clayton South Victoria, Australia

Wen-Yu Liu
Department of Computer Science
National Chengchi University Taipei
Taipei, Taiwan

Jianguo Lu
School of Computer Science
University of Windsor
Ontario, Canada

Aniket Mahanti
Department of Computer Science
University of Auckland
Auckland, New Zealand

Michele Nogueira
Department of Informatics
NR2—Federal University of Parana
Curitiba, Brazil

Heekuck Oh
Department of Computer Science

and Engineering
Hanyang University
Ansan, South Korea

Daniel E. O’Leary
University of Southern California
Los Angeles, California

Albert Reuther
MIT Lincoln Laboratory
Lexington, Massachusetts

Jun Sakuma
Department of Computer Science
University of Tsukuba
Tsukuba, Japan

Contributors � xv

Nabil Schear
MIT Lincoln Laboratory
Lexington, Massachusetts

Ahmed Serhrouchni
ENST
Telecom ParisTech
Paris, France

Emily Shen
MIT Lincoln Laboratory
Lexington, Massachusetts

Junggab Son
Department of Mathematics and Physics
North Carolina Central University
Durham, North Carolina

Mayank Varia
Boston University
Boston, Massachusetts

Dong Wang
Department of Computer Science

and Engineering
University of Notre Dame
Notre Dame, Indiana

Fusheng Wang
Department of Biomedical Informatics
and
Department of Computer Science
Stony Brook University
Stony Brook, New York

Shenlu Wang
School of Computer Science and Engineering
University of New South Wales
Sydney, Australia

Yan Wang
School of Information
Central University

of Finance and Economics
Beijing, China

J. Gerard Wolff
CognitionResearch.org
Menai Bridge, United Kingdom

Sophia Yakoubov
MIT Lincoln Laboratory
Lexington, Massachusetts

Maryam Yammahi
Department of Computer Science
George Washington University
Washington, DC

and

College of Information
Technology

United Arab Emirates University
Al Ain, United Arab Emirates

Arkady Yerukhimovich
MIT Lincoln Laboratory
Lexington, Massachusetts

Se-young Yu
Department of Computer Science
University of Auckland
Auckland, New Zealand

John Zic
CSIRO
Clayton South Victoria, Australia

This page intentionally left blankThis page intentionally left blank

BIG DATA
MANAGEMENT:
STORAGE,
SHARING, AND
PROCESSING

I

This page intentionally left blankThis page intentionally left blank

Chapter 1

Challenges and Approaches in
Spatial Big Data Management

Ablimit Aji

Fusheng Wang

CONTENTS
1.1 Introduction . 3
1.2 Big Spatial Data and Applications . 4

1.2.1 Spatial analytics for derived scientific data . 4
1.2.2 GIS and social media applications . 5

1.3 Challenges and Requirements . 6
1.4 Spatial Big Data Systems and Techniques . 7

1.4.1 MapReduce-based spatial query processing . 7
1.4.2 Effective spatial data partitioning . 8
1.4.3 Query co-processing with GPU and CPU . 10

1.4.3.1 Task assignment . 10
1.4.3.2 Effects of task granularity . 11

1.5 Discussion and Conclusion . 11
Acknowledgments . 11
References . 11

1.1 Introduction
Advancements in computer technology and the rapid growth of the Internet have brought many
changes to society. More recently, the Big Data paradigm has disrupted many industries ranging
from agriculture to retail business, and fundamentally changed how businesses operate and
make decisions at large. The rise of Big Data can be attributed to two main reasons:

3

4 � Big Data: Storage, Sharing, and Security

First, high volumes of data generated and collected from devices. The rapid improvement of
high-resolution data acquisition technologies and sensor networks have enabled us to capture
large amounts of data at an unprecedented scale and rate. For example, the GeoEye-1 satellite
has the highest resolution of any commercial imaging system and is able to collect images with
a ground resolution of 0.41 m in the panchromatic or black and white mode [1]; the Sloan
Digital Sky Survey (SDSS), with a rate of about 200 GB per night, has amassed more than
140 TB of information [5]; and the modern medical imaging scanners can capture the micro-
anatomical tissue details at the billion pixel resolution [13].

Second, traces of human activity and crowd-sourcing efforts facilitated by the Internet. The
proliferation of cost-effective and ubiquitous positioning technologies, mobile devices, and sen-
sors have enabled us to collect massive amounts of spatial information of human and wildlife
activity. For example, FourthSquare—a popular local search and discovery service—allow
users to check-in at more than 60 million venues, and so far has more than 6 billion check-ins
[2]. Driven by the business potential, more and more businesses are providing services that are
location-aware. At the same time, the Internet has made remote collaboration so easy that, now,
a crowd can even generate a free mapping of the world autonomously. OpenStreetMap [3] is a
large collaborative mapping project, which is generated by users around the globe, and it has
more than two million registered users as of this writing.

In many applications and scientific studies, there is a growing need to manage spatial enti-
ties and their topological, geometric, or geographic properties. Analyzing such large amounts of
spatial data to derive values and guide decision making have become essential to business suc-
cess and scientific progress. For example, location-based social networks (LBSNs) are utilizing
large amounts of user location information to provide geo-marketing and recommendation
services. Social scientists are relying on such data to study dynamics of social systems and
understand human behavior. Epidemiologists are combining such spatial data with public health
data to study the patterns of disease outbreak and spread. In all those domains, spatial Big Data
analytics infrastructure is a key enabler.

Over the last decade, the Big Data technology stack and the software ecosystem has evolved
to cope with most common use cases. However, modern data-intensive spatial applications
require a different approach to be able to handle unique requirements of spatial Big Data.

In the rest of this chapter, first we provide examples of data-intensive spatial applications,
and discuss the unique challenges that are common to them. Then, we present major research
efforts, data-intensive computing techniques, and software systems that are intended to address
these challenges. Lastly, we conclude the chapter with a discussion on future outlook of
this area.

1.2 Big Spatial Data and Applications
The rapid growth of spatial data is driven not only by conventional applications, but also by
emerging scientific applications and large internet services that have become data-intensive
and compute-intensive.

1.2.1 Spatial analytics for derived scientific data
With the rapid improvement of data acquisition technologies such as high-resolution tissue slide
scanners and remote sensing instruments, it has become more efficient to capture extremely
large spatial data to support scientific research. For example, digital pathology imaging has

Challenges and Approaches in Spatial Big Data Management � 5

become an emerging field in the past decade, where examination of high-resolution images of
tissue specimens enables novel, more effective ways of screening for disease, classifying dis-
ease states, understanding its progression, and evaluating the efficacy of therapeutic strategies.
In clinical environment, medical professionals have been relying on the manual judgment from
pathologists—a process inherently subject to human bias—to diagnose, and understand the
disease condition.

Today, in silico pathology image analysis offers a means of rapidly carrying out quantitative,
reproducible measurements of micro-anatomical features in high-resolution pathology images
and large image datasets. Medical professionals and researchers can use computer algorithms
to calculate the distribution of certain cell types, and perform associative analysis with other
data such as patient genetic composition and clinical treatment.

Figure 1.1 shows a protocol for in silico pathology image analysis pipeline. From left to
the right, the sub-figures represent: glass slides, high-resolution image scanning, whole slide
images, and automated image analysis. The first three steps are data acquisition processes
that are mostly done in a pathology laboratory environment, and the final step is where the
computerized analysis is performed. In the image analysis step, regions of micro-anatomical
objects (millions per image) such as nuclei and cells are computed through image segmentation
algorithms, represented with their boundaries, and image features are extracted from these
objects. Exploring the results of such analysis involves complex queries such as spatial cross-
matching, overlay of multiple sets of spatial objects, spatial proximity computations between
objects, and queries for global spatial pattern discovery. These queries often involve billions of
spatial objects and heavy geometric computations.

Scientific simulation also generates large amounts of spatial data. Scientists often use
models to simulate natural phenomena, and analyze the simulation process and data. For
example, earth science uses simulation models to help predict the ground motion during earth-
quakes. Ground motion is modeled with an octree-based hexahedral mesh, using soil density
as input. Simulation tools calculate the propagation of seismic waves through the Earth by
approximating the solution to the wave equation at each mesh node. During each time step,
for each node in the mesh, the simulator calculates the node velocity in spatial directions, and
records those information to the primary storage. The simulation result is a spatio temporal
earthquake data set describing the ground velocity response [6]. As the scale of the experiment
increases, the resulting dataset also increases, and scientists often struggle to query and manage
such large amounts of spatio temporal data in an efficient and cost-effective manner.

1.2.2 GIS and social media applications
Volunteered geographic information (VGI) further enriched global information system (GIS)
world with massive amounts of user-generated geographical and social data. VGI is a special
case of the larger Internet phenomenon—user-generated content—in the GIS domain. Every-
day Internet users can provide, modify, and share geographical data using interactive online

Figure 1.1: Derived spatial data in pathology image analysis.

6 � Big Data: Storage, Sharing, and Security

services such as OpenStreetMap [3], Wikimapia, GoogleMap, GoogleEarth, and Microsoft’s
Virtual Earth. The spatial information needs to be constantly analyzed and corroborated to
track changes, and understand the current status. Most often, a spatial database system is used
to perform such analysis.

Recently, the explosive growth of social media applications contributed massive amounts of
user-generated geographic information in the form of tweets, status updates, check-ins, Waze,
and traffic reports. Furthermore, if such geospatial information is not available, automated geo
tagging/coding tools can infer and assign an approximate location to those contents. Analysis
of such large amounts of data has implications for many applications—both commercial and
academic. In [11] authors have used the geospatial information to investigate the relationship
between the geographic location of protestors attending demonstrations in the 2013 Vinegar
protests in Brazil and the geographic location of users that tweeted the protests. Another exam-
ple is location-based targeted advertising [24] and recommendation [18]. Those online services
and GIS systems are backed by conventional spatial database systems that are optimized for
different application requirements.

1.3 Challenges and Requirements
Modern data-intensive spatial analytics applications are different from conventional applica-
tions in several aspects. They involve the following:

� Large volumes of multidimensional data: Conventional warehousing applications deal
with data generated from business transactions. As a result, the underlying data (such
as numbers and strings) tend to be relatively simple and flat. However, this is not
the case for the spatial applications which deal with massive amounts of geometry
shapes and spatial objects. For example, a typical whole slide pathology contains more
than 20 billion pixels, millions of objects, and 100 million derived image features. A
single study may involve thousands of images analyzed with dozens of algorithms—
with varying parameters—to generate many different result sets to be compared and
consolidated, at the scale of tens of terabytes. A moderate-size healthcare operation
can routinely generate thousands of whole slide images per day, leading to petabytes of
analytical results per year. A single 3D pathology image could come from a thousand
slices and take 1 TB storage, containing several millions to 10 millions of derived 3D
surface objects.

� High computation complexity: Most spatial queries involve multidimensional geometric
computations that are often compute-intensive. While spatial filtering through minimum
bounding rectangles (MBRs) can be accelerated through spatial access methods, spatial
refinements such as polygon intersection verification are highly expensive operations.
For example, spatial join queries such as spatial cross-matching or spatial overlay can
be very expensive to process. This is mainly due to the polynomial complexity of many
geometric computation methods. Such compute-intensive geometric computation, com-
bined with the large volumes of Big Data requires a high-performance solution.

� Complex spatial queries: Spatial queries are complex to express in current spatial data
analytics systems. Most scientific researchers and spatial application developers are
often interested in running queries that involve complex spatial relationships such as
nearest neighbor query, and spatial pattern queries. Such queries are not well supported
in current spatial database systems. Frequently, users are forced to write database
user-defined functions to be able to perform the required operations. SQL—structured
query language—has gained tremendous momentum in the relational database field

Challenges and Approaches in Spatial Big Data Management � 7

and become the de facto standard for querying the data. While most spatial queries
can be expressed in SQL, due to the structural differences in the programming model,
efficient SQL-based spatial queries are often hard to write and requires considerable
optimization efforts.

A major requirement for the spatial analytics systems is fast query response. Scientific research
or analytics in general, is an iterative and exploratory process in which large amounts of data
can be generated quickly for the initial prototyping and validation. This requires a scalable
architecture that can query spatial data on a large scale. Another requirement is to support
queries on a cost-effective architecture such as commodity clusters or cloud environments.
Meanwhile, scientific researchers and application developers often prefer expressive query
languages over programming API, without worrying about how the queries are translated,
optimized, and executed. With the rapid improvement of instrument resolutions, the increased
accuracy of data analysis methods, and the massive scale of observed data, complex spatial
queries have become increasingly compute-intensive and data-intensive.

1.4 Spatial Big Data Systems and Techniques
Two mainstream approaches for large-scale data analysis are parallel database systems [15]
and MapReduce-based systems [14]. Both approaches share certain common design elements:
they both employ a shared-nothing architecture [25], and deployed on a cluster of independent
nodes via a high-speed interconnecting network; both achieve parallelism by partitioning the
data and processing the query in parallel on each partition.

However, parallel database approach has major limitations on managing and querying
spatial data at massive scale. Parallel database management systems (DBMSs) tend to reduce
the I/O bottleneck through partitioning of data on multiple parallel disks and are not optimized
for computational-intensive operations such as spatial and geometric computations. Partitioned
parallel DBMS architecture often lacks effective spatial partitioning to balance data and task
loads across database partitions. While it is possible to induce a spatial partitioning, fixed grid
tiling, for example, and map such partitioning to one dimensional attribute distribution key,
such an approach fails to handle boundary objects for accurate query processing. Scaling out
spatial queries through a parallel database infrastructure is possible while being costly, and
such approach is explored in [27,28]. More recently, Spark [31] has emerged as a new data
processing framework for handling iterative and interactive workloads.

Due to both computational intensity and data intensity of spatial workloads, large-scale
parallelization often holds the key to achieving high-performance spatial queries. As the cloud-
based cluster computing technology gets mature and economically scalable, MapReduce-based
systems offer an alternative solution for data and compute-intensive spatial analytics at large
scale. Meanwhile, parallel processing of queries rely on effective data partitioning to scale.
Considering that spatial workloads are often compute-intensive [7,22], how to utilize hardware
accelerators for query co-processing is a very promising technique as modern computer systems
are embracing heterogeneous architecture that combines graphics processing unit (GPU) and
CPU [12]. In the rest of the chapter, we elaborate each of these techniques in greater detail, and
summarize state-of-the-art approaches and systems.

1.4.1 MapReduce-based spatial query processing
MapReduce is a very scalable parallel processing framework that is designed to process flat
unstructured data. However, it is not particularly well suited to process multidimensional spatial

8 � Big Data: Storage, Sharing, and Security

objects, and several systems have emerged over the past few years to fill this gap. Well-
known systems and prototypes include HadoopGIS [8–10], SpatialHadoop [16,17], Parallel
Secondo [20,21], and GIS tools for Hadoop [4,30]. These systems are based on the open source
implementation of MapReduce—Hadoop, and provides similar analytics functionality. How-
ever, they differ in implementation details and architecture: HadoopGIS and SpatialHadoop
are pure MapReduce-based query evaluation systems; Parallel Secondo is a hybrid system
that combines a database engine with MapReduce; and GIS tools for Hadoop is a functional
extension of Hive [26] with user-defined functions.

MapReduce relies on the partitioning of data to process them in parallel, and it is the key
for a high-performance system. In the context of large-scale spatial data analytics, an intuitive
approach is to partition the dataset based on the spatial attribute, and assign spatial objects to
partitioned regions (or tiles). Consequently, generated tiles form a parallelization unit that can
be processed independently in parallel. A MapReduce-based spatial query processing system
takes advantage of such partitioning to achieve high performance. Algorithm 1.1 illustrates a
general design framework for such systems, and all the above-mentioned systems follow this
framework while implementation details may vary.

Algorithm 1.1: Typical workflow of spatial query processing on MapReduce

1 A. Data/space partitioning
2 B. Data storage of partitioned data on HDFS
3 for tile in input collection do
4 Indexing building for objects in the tile
5 Tile based spatial querying processing

6 E. Boundary object handling
7 G. Data aggregation
8 H. Result storage on HDFS

Initially the dataset is spatially partitioned to generate tiles as shown in step A. In step B, spatial
objects are assigned unique tile identifiers (UIDs), merged, and stored into Hadoop Distributed
File System (HDFS). Step C is for pre-processing queries, which could be queries that do
global index-based filtering. Step D does tile-based spatial query processing independently
and parallelized across a large number of cluster nodes. Step E provides handling of boundary
objects that arise from the partitioning. Step F is for post-query processing, and step G performs
data aggregation. Finally, the query results are persisted to HDFS, which can be input to the
next query operator.

Following such framework, spatial queries such as spatial join query, spatial range query,
and nearest neighbor query can be implemented efficiently. Reference implementations are
provided in HadoopGIS, SpatialHadoop, and Parallel Secondo.

1.4.2 Effective spatial data partitioning
Spatial data partitioning is an essential initial step to define, generate, and represent partitioned
data. Effective data partitioning is critical for task parallelization, load balancing, and directly
affects system performance. Generally a space-oriented partitioning can be applied to generate
data partitions, and the concept is illustrated in Figure 1.2 in which the spatial data is partitioned
into uniform grids.

However, there are several problems with this approach: (1) As spatial objects (e.g.,
polygons and polylines) are extent, regular grid-based spatial partitioning would undesirably

Challenges and Approaches in Spatial Big Data Management � 9

Figure 1.2: An example of spatial data partitioning.

produce objects spanning multiple cell grids, which need to be replicated and post-processed.
If such objects account for a considerable fraction of the dataset, the overall query performance
would suffer from such boundary handling overhead. (2) Fixed grid partitioning is skew-averse,
whereas data in most real-world spatial applications are inherently highly skewed. In such case,
it is very likely that parallel processing nodes assigned to process those dense regions will
become the stragglers, and the overall query processing efficiency will suffer [23].

The boundary problem can be addressed in two different ways—multi-assignment, single-
join (MASJ) and single-assignment, multi-join (SAMJ) [19,32]. In MASJ approach, each
boundary object is replicated to each tile that overlaps with the object. During the query
processing phase, each partition is processed only once without considering the boundary
objects. Then a de-duplication step is initiated to remove the redundancies that resulted from
the replication. However, in SAMJ approach, each boundary object is only assigned to one tile.
Therefore, during the query processing phase, each tile is processed multiple times to account
for the boundary objects.

Both approaches introduce extra query processing overhead. In MASJ, the replication of
boundary objects incurs extra storage cost and computation cost. In SAMJ, however, only extra
computation cost is incurred by processing the same partition multiple times. Hadoop-GIS
and SpatialHadoop takes the MASJ approach and modify, query processing steps account for
replicated objects. However, depending on the application requirement, such design choice can
be re-evaluated and modified to achieve better performance.

The data skew problem can be mitigated through skew-aware partitioning approaches that
can create balanced partitions. HadoopGIS uses a multi-step approach named SATO which can
partition a geospatial dataset into balanced regions while minimizing the number of boundary
objects. SATO represents the four main steps in this framework for spatial data partitioning:
Sample, Analyze, Tear, and Optimize. First, a small fraction of the dataset is sampled to
identify overall global data distribution with potential dense regions. The sampled data is
analyzed with a partition analyzer that produces a coarse partition scheme in which each
partition region is expected to contain roughly equal amounts of spatial objects. Later, these
coarse partition regions are further processed with a partitioning component that tears the
regions into more granular partitions that are much less skewed. Finally, generated partition
meta-information is aggregated to produce multilevel partition indexes and additional partition
statistics that are used to optimize spatial queries.

10 � Big Data: Storage, Sharing, and Security

SpatialHadoop also creates balanced partitions in similar manner. Specifically, an appro-
priate partition size is estimated, and rectangular boundaries are generated according to such
partition parameter. Then, a MapReduce job is initiated to create spatial partitions that corre-
sponds to such configuration. An R+-Tree-based partitioning is used to ensure the partition
size constraint.

1.4.3 Query co-processing with GPU and CPU
Most spatial queries are compute-intensive [7,22], as they involve geometric computations
on complex multidimensional spatial objects. While spatial filtering through MBRs can be
accelerated through spatial access methods, spatial refinements such as polygon intersection
verification are highly expensive operations. For example, spatial join queries such as spatial
cross-matching or overlaying multiple sets of spatial objects on an image or map can be very
expensive to process.

GPUs have been successfully utilized in numerous applications that require high-
performance computation. Mainstream general purpose GPUs come with hundreds of cores,
and can run thousands of threads in parallel. Compared to the multi-core computer systems
(dozens of cores), GPUs can scale to large number of threads in a cost-effective manner. In the
coming years, such heterogeneous parallel architecture will become dominant, and software
systems must fully exploit such heterogeneity to deliver performance growth [12].

In most cases, spatial algorithms are designed for executing on the CPUs, and the branch-
intensive nature of CPU-based algorithms require the algorithm to be rewritten for GPUs for
satisfactory performance. For such need, PixelBox is proposed in [29]. PixelBox is an algorithm
specifically designed for accelerating cross-matching queries on the GPUs. It first transforms
the vector-based geometry representation into raster representation using a pixelization method,
and performs operations on such representations in parallel. The pixelization method reduces
the geometry calculation problem into simple pixel position checking problem, and it is very
suitable for execution on GPUs. Since testing the position of one pixel is totally independent
of another, it can parallelize the computation by having multiple threads process the pixels in
parallel. Furthermore, since the position of different pixels are computed against the same pair
of polygons, the operations performed by different threads follow the single instruction multiple
data (SIMD) fashion, a parallel computation model that GPUs are designed for. Experimental
results [29] suggest that PixelBox achieves almost an orders of magnitude speedup compared
to the CPU implementation, and significantly reduces the cost of computation.

1.4.3.1 Task assignment

One critical issue for GPU-based parallelization is task assignment. For example, in a recent
approach that combines MapReduce and GPU-based query processing [7], tasks arrive in the
form of data partitions along with spatial query operation on the data. Given a partition, the
query optimizer has to decide which device should be assigned to execute the task. Such
decision is not simple, and it depends on how much speedup can be obtained by assigning it to
CPU or GPU. If we schedule a small task on GPU, we may not only get very little speedup, the
opportunity cost of executing some other high speedup task on GPU can be high.

In such cases, a predictive modeling approach can offer a reasonable solution. Similar to
the speculative execution model in Hadoop, a fraction of data (10%, for example) is used for
performance profiling and model training. Then, regression or machine learning approaches are
used to derive the performance model, and corresponding model parameters. Later during the
runtime, the derived model is used to predict the potential speedup factor for current task, and
tasks are scheduled to execute on GPU if the speedup factor is higher than certain threshold.

Challenges and Approaches in Spatial Big Data Management � 11

1.4.3.2 Effects of task granularity

Data need to be shipped to the device memory to be executed on the GPU device. Such data
transfer incurs certain I/O cost. While the memory bandwidth between GPU and CPU is much
higher compared to the bandwidth between memory and the disk, it should be minimized to
achieve optimal performance. To achieve optimal speedup, the compute-to-transfer ratio needs
to be high for GPU applications. Therefore, applications need to adjust the partition granularity
to fully utilize system resources. While larger partitioning is ideal for achieving higher speedup
on GPU, it causes data skew which is detrimental for MapReduce system performance. At the
same time, a very small partition is not a good candidate for hardware acceleration.

1.5 Discussion and Conclusion
In this chapter, we have discussed several representative spatial Big Data applications, common
challenges in this domain, and potential solutions toward those challenges. Spatial Big Data
from various application domains share many similar requirements with enterprise Big Data,
but has its own unique characteristics—spatial data are multidimensional, spatial queries are
complex, and spatial query processing comes with high computational complexity. As the
volume of data grow continuously, we need efficient Big Data systems and data management
techniques to be able to cope with such challenges. MapReduce-based massively parallel query
processing systems offer a scalable, yet cost-effective solution for processing large amounts
of spatial data. While relying on such framework, effective data partitioning techniques can
be critical for facilitating massive parallelism, and achieving satisfactory query performance.
Meanwhile, as multi-core computer architecture and programming techniques become mature,
hardware-accelerated query co-processing on GPUs can further improve query performance
for large-scale spatial analytics tasks.

Acknowledgments
Fusheng Wang acknowledges that this material is based on work supported in part by NSF
CAREER award IIS 1350885, NSF ACI 1443054, and by the National Cancer Institute under
grant No. 1U24CA180924-01A1.

References
1. Satellite imagery. https://en.wikipedia.org/wiki/Satellite imagery.

2. Foursquare Labs, Inc. https://foursquare.com/about.

3. OpenStreetMap: A map of the world, free to use. http://www.openstreetmap.org.

4. GIS tools for Hadoop, Big Data spatial analytics. http://esri.github.io/gis-tools-for-hadoop.

5. York DG, Adelman J, Anderson Jr. JE, Anderson SF, Annis J, Bahcall NA, Bakken JA et al.
The sloan digital sky survey: Technical summary. The Astronomical Journal, 120(3):1579,
2000.

12 � Big Data: Storage, Sharing, and Security

6. Anastasia Ailamaki, Verena Kantere, and Debabrata Dash. Managing scientific data. Com-
mun. ACM, 53(6):68–78, 2010.

7. Ablimit Aji, Teodoro George, and Fusheng Wang. Haggis: Turbocharge a mapreduce
based spatial data warehousing system with gpu engine. In Proceedings of the 3rd ACM
SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pp. 15–20,
Dallas, TX, 2014.

8. Ablimit Aji, Xiling Sun, Hoang Vo, Qioaling Liu, Rubao Lee, Xiaodong Zhang, Joel Saltz
et al. Demonstration of hadoop-gis: A spatial data warehousing system over mapreduce.
In SIGSPATIAL/GIS, pp. 518–521. ACM, New York, 2013.

9. Ablimit Aji, Fusheng Wang, and Joel H. Saltz. Towards building a high performance spatial
query system for large scale medical imaging data. In SIGSPATIAL/GIS, pp. 309–318.
ACM, New York, 2012.

10. Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,
and Joel Saltz. Hadoop-GIS: A high performance spatial data warehousing system over
MapReduce. Proc. VLDB Endow., 6(11):1009–1020, August 2013.

11. Marco Bastos, Raquel Recuero, and Gabriela Zago. Taking tweets to the streets:
A spatial analysis of the vinegar protests in Brazil. First Monday, 19(3), 2014.
http://firstmonday.org/ojs/index.php/fm/article/view/5227/3843.

12. Shekhar Borkar and Andrew A Chien. The future of microprocessors. Commun. ACM,
54(5):67–77, 2011.

13. Lee AD Cooper, Alexis B Carter, Alton B Farris, Fusheng Wang, Jun Kong, David A Gut-
man, Patrick Widener et al. Digital pathology: Data-intensive frontier in medical imaging.
Proc. IEEE, 100(4):991–1003, 2012.

14. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

15. David DeWitt and Jim Gray. Parallel database systems: The future of high performance
database systems. Commun. ACM, 35(6):85–98, 1992.

16. Ahmed Eldawy and Mohamed F Mokbel. A demonstration of spatialhadoop: An efficient
mapreduce framework for spatial data. Proc. VLDB Endow., 6(12):1230–1233, 2013.

17. Ahmed Eldawy and Mohamed F Mokbel. Spatialhadoop: A mapreduce framework for
spatial data. In Proceedings of the IEEE International Conference on Data Engineering.
IEEE, Seol, Korea, 2015.

18. Justin J Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F Mokbel. Lars:
A location-aware recommender system. In IEEE 28th International Conference on Data
Engineering, pp. 450–461. IEEE, Arlington, VA, 2012.

19. Ming-Ling Lo and Chinya V Ravishankar. Spatial hash-joins. In ACM SIGMOD Record,
pp. 247–258. ACM, Montreal, Canada, 1996.

20. Jiamin Lu and Ralf H Guting. Parallel secondo: Practical and efficient mobility data
processing in the cloud. In IEEE International Conference on Big Data, pp. 107–125.
IEEE, Silicon Valley, CA, 2013.

Challenges and Approaches in Spatial Big Data Management � 13

21. Jiamin Lu and Ralf Hartmut Guting. Parallel secondo: A practical system for large-scale
processing of moving objects. In IEEE 30th International Conference on Data Engineer-
ing, pp. 1190–1193. IEEE, Chicago, IL, 2014.

22. Bogdan Simion, Suprio Ray, and Angela D Brown. Surveying the landscape: An in-depth
analysis of spatial database workloads. In SIGSPATIAL, pp. 376–385. ACM, New York,
2012.

23. Benjamin Sowell, Marcos V Salles, Tuan Cao, Alan Demers, and Johannes Gehrke. An
experimental analysis of iterated spatial joins in main memory. Proc. VLDB Endow.,
6(14):1882–1893, 2013.

24. Jack Steenstra, Alexander Gantman, Kirk Taylor, and Liren Chen. Location based ser-
vice (lbs) system and method for targeted advertising, March 23, 2006. US Patent App.
10/931,309.

25. Michael Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9(1):4–9,
1986.

26. Ashish Thusoo, Joydeep S Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu et al. Hive: A warehousing solution over a map-reduce framework.
Proc. VLDB Endow., 2(2):1626–1629, August 2009.

27. Fusheng Wang, Jun Kong, Lee Cooper, Tony Pan, Tahsin Kurc, Wenjin Chen, Ashish
Sharma et al. A data model and database for high-resolution pathology analytical image
informatics. J. Pathol. Inform., 2(1):32, 2011.

28. Fusheng Wang, Jun Kong, Jingjing Gao, Lee Cooper, Tahsin M Kurc, Zhengwen Zhou,
David Adler et al. A high-performance spatial database based approach for pathology
imaging algorithm evaluation. J. Pathol. Inform., 4:5, 2013.

29. Kaibo Wang, Yin Huai, Rubao Lee, Fusheng Wang, Xiaodong Zhang, and Joel H Saltz.
Accelerating pathology image data cross-comparison on CPU-GPU hybrid systems. Proc.
VLDB Endow., 5(11):1543–1554, 2012.

30. Randall T Whitman, Michael B Park, Sarah M Ambrose, and Erik G Hoel. Spatial indexing
and analytics on hadoop. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 73–82. ACM, New York,
2014.

31. Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX Confer-
ence on Hot Topics in Cloud Computing, p. 10. USENIX Association, Berkeley, CA, 2010.

32. Xiaofang Zhou, David J Abel, and David Truffet. Data partitioning for parallel spatial join
processing. GeoInformatica, 2(2):175–204, 1998.

This page intentionally left blankThis page intentionally left blank

Chapter 2

Storage and Database
Management for Big Data∗

Vijay Gadepally

Jeremy Kepner

Albert Reuther

CONTENTS
2.1 Introduction . 16
2.2 Big Data Challenge . 16
2.3 Systems Engineering for Big Data . 18
2.4 Disks and File Systems . 19

2.4.1 Serial memory and storage . 19
2.4.2 Parallel storage: Lustre . 20
2.4.3 Parallel storage: HDFS . 21

2.5 Database Management Systems . 22
2.5.1 Database management systems and features . 22
2.5.2 History of open source databases and parallel processing 23
2.5.3 CAP theorem . 25
2.5.4 Relational databases . 27
2.5.5 NoSQL databases . 28
2.5.6 New relational databases . 28
2.5.7 Deep dive into NoSQL technology . 29

2.5.7.1 Data model . 30
2.5.7.2 Design . 31
2.5.7.3 Performance . 31

∗This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract
#FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not
necessarily endorsed by the United States Government.

15

16 � Big Data: Storage, Sharing, and Security

2.5.8 Deep dive into NewSQL technology . 32
2.5.8.1 Data model . 32
2.5.8.2 Design . 33
2.5.8.3 Performance . 33

2.6 How to Choose the Right Technology . 34
2.7 Case Study of DBMSs with Medical Big Data . 36
2.8 Conclusions . 37
Acknowledgments . 37
References . 37

2.1 Introduction
The ability to collect and analyze large amounts of data is a growing problem within the
scientific community. The growing gap between data and users calls for innovative tools that
address the challenges faced by big data volume, velocity, and variety. While there has been
great progress in the world of database technologies in the past few years, there are still
many fundamental considerations that must be made by scientists. For example, which of the
seemingly infinite technologies are the best to use for my problem? Answers to such questions
require a careful understanding of the technology field in addition to the types of problems
that are being solved. This chapter aims to address many of the pressing questions faced by
individuals interested in using storage or database technologies to solve their big data problems.

Storage and database management is a vast field with many decades of results from very
talented scientists and researchers. There are numerous books, courses, and articles dedicated
to the study. This chapter attempts to highlight some of these developments as they relate to the
equally vast field of big data. However, it would be unfair to say that this chapter provides a
comprehensive analysis of the field—such a study would require many volumes. It is our hope
that this chapter can be used as a launching pad for researchers interested in the study. Where
possible, we highlight important studies that can be pursued for further reading.

In Section 2.2, we discuss the big data challenge as it relates to storage and database
engines. The chapter goes on to discuss database utility compared to large parallel storage
arrays. Then, the chapter discusses the history of database management systems with special
emphasis on current and upcoming database technology trends. In order to provide readers with
a deeper understanding of these technologies, the chapter will provides a deep dive into two
canonical open source database technologies: Apache Accumulo [1], which is based on the
popular Google BigTable design, and a NewSQL array database called SciDB [59]. Finally,
we will provide insight into technology selection and walk readers through a case study which
highlights the use of various database technologies to solve a medical big data problem.

2.2 Big Data Challenge
Working with big data is prone to a variety of challenges. Very often, these challenges are
referred to as the three Vs of big data: Volume, Velocity and Variety [45]. Most recently, there
has been a new emergent challenge (perhaps a fourth V): Veracity. These combined challenges
constitute a large reason why big data is so difficult to work with.

Big data volume stresses the storage, memory, and computational capacity of a computing
system and often requires access to a computing cloud. The National Institute of Science
and Technology (NIST) defines cloud computing to be “a model for enabling ubiquitous,

Storage and Database Management for Big Data � 17

convenient, on-demand network access to a shared pool of configurable computing resources
... that can be rapidly provisioned and released with minimal management effort or service
provider interaction” [47]. Within this definition, there are different cloud models that satisfy
different problem characteristics and choosing the right cloud model is problem specific.
Currently, there are four multibillion dollar ecosystems that dominate the cloud-computing
landscape: enterprise clouds, big data clouds, Structured Query Language (SQL) database
clouds, and supercomputing clouds. Each cloud ecosystem has its own hardware, software,
conferences, and business markets. The broad nature of business big data challenges makes
it unlikely that one cloud ecosystem can meet its needs, and solutions are likely to require the
tools and techniques from more than one cloud ecosystem. For this reason, at the Massachusetts
Institute of Technology (MIT) Lincoln Laboratory, we developed the MIT SuperCloud archi-
tecture [51] that enables the prototyping of four common computing ecosystems on a shared
hardware platform as depicted in Figure 2.1. The velocity of big data stresses the rate at which
data can be absorbed and meaningful answers produced. Very often, the velocity challenge is
mitigated through high-performance databases, file systems, and/or processing. Big data variety
may present the largest challenge and greatest opportunities. The promise of big data is the
ability to correlate diverse and heterogeneous data to form new insights. A new fourth V [26],
veracity, challenges our ability to perform computation on data while preserving privacy.

As a simple example of the scale of data and how it has changed in the recent past,
consider the social media analysis developed by [24]. In 2011, Facebook had approximately
700,000 pieces of content per minute; Twitter had approximately 100,000 tweets per minute;
and YouTube had approximately 48 hours of video per minute. By 2015, just 4 years later,
Facebook had 2.5 million pieces of content per minute; Twitter had approximately 277,000
tweets per minute; and YouTube had approximately 72 hours of new video per minute. This
increase in data generated can be roughly approximated to be 350 MB/min for Facebook,
50 MB/min for Twitter, and 24–48 GB/min for YouTube! In terms of the sheer volume of
data, IDC estimates that from the year 2005 to the year 2020, there will an increase in the
amount of data generated from 130 EB to 40,000 EB [30].

One of the greatest big data challenges is in determining the ideal storage engine for a
large dataset. Databases and file systems provide access to vast amounts of data but differ at a
fundamental level. File system storage engines are designed to provide access to a potentially
large subset of the full dataset. Database engines are designed to index and provide access to
a smaller, but well defined, subset of data. Before looking at particular storage and database

Enterprise

Big data

– Interactive
– On-demand
– Virtualization

– Java
– Distributed
– Easy admin

VMware

Hadoop

MPI

SQL

Database

Supercomputing

– High performance
– Scientific computing
– Batch jobs

– Indexing
– Search
– Atomic

MIT SuperCloud

Figure 2.1: The MIT SuperCloud infrastructure allows multiple cloud environments to be launched
on the same hardware and software platform in order to address big data volume.

18 � Big Data: Storage, Sharing, and Security

engines, it is important to take a look at where these systems fall within the larger big data
system.

2.3 Systems Engineering for Big Data
Systems engineering studies the development of complex systems. Given the many challenges
of big data as described in Section 2.2, systems engineering has a great deal of applicability
to developing a big data system. One convenient way to visualize a big data system is as a
pipeline. In fact, most big data systems consist of different steps which are connected to each
other to form a pipeline (sometimes, they may not be explicitly separated though that is the
function they are performing). Figure 2.2 shows a notional pipeline for big data processing.

First, raw data is often collected from sensors or other such sources. These raw files often
come in a variety of formats such as comma-separated values (CSVs), JavaScript Object
Notation (JSON) [21], or other proprietary sensor formats. Most often, this raw data is collected
by the system and placed into files that replicate the formatting of the original sensor. Retrieval
of raw data may be done by different interfaces such as cURL (http://curl.haxx.se/) or other
messaging paradigms such as publish/subscribe. The aforementioned formats and retrieval
interfaces are by no means exhaustive but highlight some of the popular tools being used.

Once the raw data is on the target system, the next step in the pipeline is to parse these
files into a more readable format or to remove components that are not required for the end-
analytic. Often, this step involves removing remnants of the original data collection step such
as unique identifiers that are no longer needed for further processing. The parsed files are often
kept on a serial or parallel file system and can be used directly for analytics by scanning files.
For example, a simple word count analytic can be done by using the Linux grep command on
the parsed files, or more complex analytics can be performed by using a parallel processing
framework such as Hadoop MapReduce or the Message Passing Interface (MPI). As an exam-
ple of an analytic which works best directly with the file system, dimensional analysis [27]
performs aggregate statistics on the full dataset and is much more efficient working directly
from a high-performance parallel file system.

For other analytics (especially those that wish to access only a small portion of the entire
dataset), it is convenient to ingest this data into a suitable database. An example of such an
analytic is given in [28], which performs an analysis on the popularity of particular entities in
a database. This example takes only a small, random piece of the dataset (the counts of words
is much smaller than the full dataset) and is well suited for database usage. Once data is in the
database or on the file system, a user can write queries or scans depending on their use case to
produce results that can then be used for complex analytics such as topic modeling.

Each step of the pipeline involves a variety of choices and decisions. These choices may
depend on hardware, software, or other factors. Many of these choices will also make a

0. Raw 1. Parse 2. Ingest 3a. Query

3b. Scan

4. Analyze

Raw
data
files

Parsed
files Database

Query/
Scan

results

Figure 2.2: A standard big data pipeline consists of five steps to go from raw data to useful analytics.

Storage and Database Management for Big Data � 19

difference to the later parts of the pipeline and it is important to make informed decisions.
Some of the choices that one may have at each step include the following:

� Step 0: Size of individual raw data files, output format

� Step 1: Parsed data contents, data representation, parser design

� Step 2: Size of database, number of parallel processors, pre-processing

� Step 3: Scan or query for data, use of parallel processing

� Step 4: Visualization tools, algorithms

For the remainder of this chapter, we will focus on some of the decisions in steps two and three
of the pipeline. By the end of the chapter, we hope that readers will have an understanding of
different storage and database engines, the right time to use technology, and how these pieces
can come together.

2.4 Disks and File Systems
One of the most common ways to store a large quantity of data is through the use of traditional
storage media such as hard drives. There are many storage options that must be carefully
considered that depend upon various parameters such as total data volume and desired read
and write rates. In the pipeline of Figure 2.2, the storage engine plays an important part of steps
two and three.

In order to deal with many challenges such as preserving data through failures, the past
decades have seen the development of many technologies such as RAID (redundant array
of independent disks) [17], NFS (network file system), HDFS (Hadoop Distributed File
System) [11], and Lustre [67]. These technologies aim to abstract the physical hardware away
from application developers in order to provide an interface for an operating system to keep
track of a large number of files while allowing support for data failure, high-speed seeks, and
fast writes. In this section, we will focus on two leading technologies, Lustre and HDFS.

2.4.1 Serial memory and storage
The most prevalent form of data storage is provided by an individual’s laptop or desktop system.
Within these systems, there are different levels of memory and storage that trade off speed with
cost calculated as bytes per dollar. The fastest memory provided by a system (apart from the
relatively low capacity system cache) is the main memory or random access memory (RAM).
This volatile memory provides relatively high speed (10s of GB/s in 2015) and is often used
to store data up to hundreds of gigabytes in 2015. When the data size is larger than the main
memory, other forms of storage are used. Within serial storage technologies, some of the most
common are traditional spinning magnetic disc hard drives and solid-state drives (solid-state
drives may be designed to use volatile RAM or nonvolatile flash technology). The capacity of
these technologies can be in the 10s of TB each and can support transfer rates anywhere from
approximately 100 MB/s to GB/s in 2015.

20 � Big Data: Storage, Sharing, and Security

2.4.2 Parallel storage: Lustre
Lustre is designed to meet the highest bandwidth file requirements on the largest systems in
the world [12] and is used for a variety of scientific workloads [49]. The open source Lustre
parallel file system presents itself as a standard POSIX, general-purpose file system and is
mounted by client computers running the Lustre client software. Files stored in Lustre contain
two components—metadata and object data. Metadata consists of the fields associated with
each file such as i-node, filename, file permissions, and timestamps. Object data consists of
the binary data stored in the file. File metadata is stored in the Lustre metadata server (MDS).
Object data is stored in object storage servers (OSSes) shown in Figure 2.3. When a client
requests data from a file, it first contacts the MDS, which returns pointers to the appropriate
objects in the OSSes. This movement of information is transparent to the user and handled
fully by the Lustre client. To an application, Lustre operations appear as standard file system
operations and require no modification of application code.

A typical Lustre installation might have many OSSes. In turn, each OSS can have a large
number of drives that are often formatted in a RAID configuration (often RAID6) to allow for
the failure of any two drives in an OSS. The many drives in an OSS allows data to be read in
parallel at high bandwidth. File objects are striped across multiple OSSes to further increase
parallel performance. The above redundancy is designed to give Lustre high availability while
avoiding a single point of failure. Data loss can only occur if three drives fail in the same
OSS prior to any one of the failures being corrected. For Lustre, the typical storage penalty to
provide this redundancy is approximately 35%. Thus, a system with 6 PB of raw storage will
provide 4 PB of data capacity to its users.

Lustre is designed to deliver high read and write performance to many simultaneous large
files. Lustre systems offer very high bandwidth access to data. For a typical Lustre configu-
ration, this bandwidth may be approximately 12 GB/s in 2015 [2]. This is achieved by the
clients having a direct connection to the OSSes via a well-designed high-speed network. This
connection is brokered by the MDS. The peak bandwidth of Lustre is determined by the
aggregate network bandwidth to the client systems, the bisection bandwidth of the network
switch, the aggregate network connection to the OSSes, and the aggregate bandwidth of all

Compute cluster

Metadata servers

Object storage servers Data storage
array

Data storage
array

Metadata
storage
array

High-speed

network

Figure 2.3: A Lustre installation consists of metadata servers and object storage servers. These
are connected to a compute cluster via a high-speed interconnect such as at 10 GB Ethernet or
Infiniband.

Storage and Database Management for Big Data � 21

the disks [42]. Like most file systems, Lustre is designed for sequential read access and not
random lookups of data (unlike a database). To find a particular data value in Lustre requires, on
average, scanning through half the file system. For a typical system with approximately 12 GB/s
of maximum bandwidth and 4 PB of user storage, this may require approximately 4 days.

2.4.3 Parallel storage: HDFS
Hadoop is a fault-tolerant, distributed file system and distributed computation system. An
important component of the Hadoop ecosystem is the supporting file system called the HDFS
that enables MapReduce [22] style jobs. HDFS is modeled after the Google File System
(GFS) [33] and is a scalable distributed file system for large, distributed, and data-intensive
applications. GFS and HDFS provide fault tolerance while running on inexpensive off-the-shelf
hardware, and deliver high aggregate performance to a large number of clients. The Hadoop
distributed computation system uses the MapReduce parallel programming model for distribut-
ing computation onto the data nodes.

The foundational assumptions of HDFS are that its hardware and applications have the
following properties [11]: high rates of hardware failures, special purpose applications, large
datasets, write-once-read-many data, and read-dominated applications. HDFS is designed for
an important, but highly specialized class of applications for a specific class of hardware. In
HDFS, applications primarily employ a co-design model whereby the HDFS is accessed via
specific calls associated with the Hadoop API.

A file stored in HDFS is broken into two pieces: metadata and data blocks as shown in
Figure 2.4. Similar to the Lustre file system, metadata consists of fields such as the filename,
creation date, and the number of replicas of a particular piece of data. Data blocks consist
of the binary data stored in the file. File metadata is stored in an HDFS name node. Block
data is stored on data nodes. HDFS is designed to store very large files that will be broken up
into multiple data blocks. In addition, HDFS is designed to support fault-tolerance in massive
distributed data centers. Each block has a specified number of replicas that are distributed
across different data nodes. The most common HDFS replication policy is to store three copies
of each data block in a location-aware manner so that one replica is on a node in the local rack,
the second replica on a node in a different rack, and the third replica on another node in the same
different rack [3]. With such a policy, the data will be protected from node and rack failure.

The storage penalty for a triple replication policy is 66%. Thus, a system with 6 PB of
raw storage will provide 2 PB of data capacity to its users with triple replication. Data loss
can only occur if three drives fail prior to any one of the failures being corrected. Hadoop is
written in Java and is installed in a special Hadoop user account that runs various Hadoop dae-
mon processes to provide services to connecting clients. Hadoop applications contain special

metadata: filename, replicas, ... Name node
File

blocks: 010110011001011010110 ... Data node

Data node

Data node

Figure 2.4: Hadoop splits a file into metadata and replicates it in data blocks.

22 � Big Data: Storage, Sharing, and Security

application program interface (API) calls to access the HDFS services. A typical Hadoop
application using the MapReduce programming model will distribute an application over the
file system so that each application is exclusively reading blocks that are local to the node on
which it is running. A well-written Hadoop application can achieve very high performance if
the blocks of the files are well distributed across the data nodes. Hadoop applications use the
same hardware for storage and computation. The bandwidth achieved out of HDFS is highly
dependent upon the computation to communication ratio of the Hadoop application. For a well-
designed Hadoop application, this aggregate bandwidth may be as high as 100 GB/s for a
typical HDFS setup. Like most other file systems, HDFS is designed for sequential data access
and no random access of data.

2.5 Database Management Systems
Relational or SQL databases [20,62] have been the de facto interface to databases since the
1980s and are the bedrock of electronic transactions around the world. For example, most
financial transactions in the world make use of technologies such as Oracle or dBase. With the
great rise in quantity of unstructured data and analytics based on the statistical properties of
datasets, NoSQL (Not Only SQL) database stores such as the Google BigTable [19] have been
developed. These databases are capable of processing the large heterogeneous data collected
from the Internet and other sensor platforms. One style of NoSQL databases that have become
used for applications that require support for high velocity data ingest and relatively simple
cell-level queries are key-value stores.

As a result, the majority of the volume of data on the Internet is now analyzed using
key-value stores such as Amazon Dynamo [23], Cassandra [44], and HBase [32]. Key-value
stores and other NoSQL databases compromise on data consistency in order to provide higher
performance. In response to this challenge, the relational database community has developed
a new class of relational databases (often referred to as NewSQL) such as SciDB [16],
H-Store [37], and VoltDB [64] to provide the features of relational databases while also
scaling to very large datasets. Very often, these newSQL databases make use of a differ-
ent datamodel [16] or advances in hardware architectures. For example, MemSQL [56] is a
distributed in-memory database that provides high-performance, atomicity, consistency, iso-
lation, and durability (ACID)-compliant relational database management. Another example,
BlueDBM [36], provides high-performance data access through flash storage and field pro-
grammable gate arrays (FPGA).

In this section, we provide an overview of database management systems, the different
generations of databases, and a deep dive into two newer technologies: a key-value store—
Apache Accumulo and an array database—SciDB.

2.5.1 Database management systems and features
A database is a collection of data and all of the supporting data structures. The software
interface between users and a database is known as the database management system. Database
management systems provide the most visible view into a dataset. There are many popular
database management systems such as MySQL [4], PostgreSQL [63], and Oracle [5]. Most
commonly, users interact with database management systems for a variety of reasons, which
are listed as follows:

1. To define data, schema, and ontologies

2. To update/modify data in the database

Storage and Database Management for Big Data � 23

3. To retrieve or query data

4. To perform database administration or modify parameters such as security settings

5. More recently, to perform analytics on the data within the database

Databases are used to support data collection, indexing, and retrieval through transactions.
A database transaction refers to the collection of steps involved in performing a single task [31].
For example, a single financial transaction such as credit $100 towards the account of John
Doe may involve a series of steps such as locating the account information for John Doe,
determining the current account value, adding $100 to the account, and ensuring that this
new value is seen by any other transaction in the future. Different databases provide different
guarantees on what happens during a transaction.

Relational databases provide ACID guarantees. Atomicity provides the guarantee that
database transactions either occur fully or completely fail. This property is useful to ensure
that parts of a transaction do not occur successfully if other parts fail, which may lead to
an unknown state. The second guarantee, consistency, is important to ensure that all parts
of the database see the same data. This guarantee is important to ensure that when different
clients perform transactions and query the database, they see the same results. For example, in
a financial transaction, a bank account may be debited before further transactions can occur.
Without consistency, parts of the database may see different amounts of money (not a great
database property!). Isolation in a database refers to a mechanism of concurrency control in a
database. In many databases, there may be numerous transactions occurring at the same time.
Isolation ensures that these transactions are isolated from other concurrent transactions. Finally,
database durability is the property that when a transaction has completed, it is persisted even if
the database has a system failure. Nonrelational databases such as NoSQL databases often
provide a relaxed version of ACID guarantees referred to as BASE guarantees in order to
support a distributed architecture or performance. This stands for Basically Available, Soft
State, Eventual Consistency guarantees [50]. As opposed to the ACID guarantees of relational
databases, nonrelational databases do not provide strict guarantees on the consistency of each
transaction but instead provide a looser guarantee that eventually one will have consistency in
the database. For many applications, this may be an acceptable guarantee.

For these reasons, financial transactions employ relational databases that have the strong
ACID guarantees on transactions. More recent trends that make use of the vast quantity
of data retrieval from the Internet can be done via nonrelational databases such as Google
BigTable [19], which are responsible for fast access to information. For instance, calculating
statistics on large datasets are not as susceptible to small eventual changes to the data.

While many aspects of learning how to use a database can be taught through books or guides
such as this, there is an artistic aspect to their usage as well. More practice and experience with
databases will help overcome common issues, improved performance tuning, and help with
improved database management system stability. Prior to using a database, it is important to
understand the choices available, properties of the data, and key requirements.

2.5.2 History of open source databases and parallel processing
Databases and parallel processing have developed together over the past few decades. Parallel
processing is the ability to take a given program and split it across multiple processors in order
to reduce computation time or resource availability for the application. Very often, advances in
parallel processing are directly used for the computational piece of databases such as sorting
and indexing datasets.

24 � Big Data: Storage, Sharing, and Security

Open source databases have been around since the mid-1990s. Some of the first rela-
tional databases were based on the design of the Ingres database [62] originally devel-
oped at UC Berkeley. During the same time period, there were many parallel processing or
high-performance computing paradigms [38,53] that were being developed by industry and
academia. The first few (popular) open source databases that were created were PostgreSQL
and MySQL. The earliest forms of parallel cluster processing take their root in the early 1990s
with the wide proliferation of *nix-based operating systems and parallel processing schedulers
such as Grid Engine. For about 10 years, until the mid-2000s, these technologies continued
to mature, and developers saw the need for greater adoption of distributed computing and
databases.

Based on a series of papers from Google in the mid-2000s, the MapReduce computing
paradigm was created which gained wide acceptance through the open source Apache Hadoop
soon after. These technologies, combined with the seminal Google BigTable [19] paper helped
spark the NoSQL movement in databases. Not long after this, numerous technologies such
as GraphLab [46], Neo4j [68], and Giraph [9] were developed to apply parallel processing
to large unstructured graphs such as those being collected and stored in NewSQL databases.
Since the year 2010, there has been renewed interest in developing technologies that offer
high performance along with some of the ACID guarantees of relational databases (which
will be discussed in Section 2.5.3). This requirement has driven the development of a new
generation of relational databases often called NewSQL. In the parallel processing world,
users are looking for better ways to deal with streaming data or machine learning and graph
algorithms than the Hadoop framework offered and are developing new technologies such
as Apache Storm [65] and Spark [69]. Of course, the worlds of parallel processing and
databases will continue to evolve, and it will be interesting to see what lies ahead! A brief
informational graphic of the history of parallel cluster processing and databases is provided in
Figure 2.5.

1995 20062004 2008 2010 2012

Cluster

MapReduce

Hadoop

D
at

ab
as

es

Pa
ra

lle
l p

ro
ce

ss
in

g

2014 2016

BigTable

Dremel

NoSQL

Pregel

D4M

Giraph

SQL NewSQL

Figure 2.5: An incomplete history of open source databases and parallel cluster computing tech-
nologies.

Storage and Database Management for Big Data � 25

2.5.3 CAP theorem
The CAP theorem is a seminal theorem [13] used to specify what guarantees can be provided by
a distributed database. The CAP theorem states that no distributed database can simultaneously
provide strong guarantees on the consistency, availability, and partition tolerance of a database.
This is often stated as the two-out-of-three rule, though in reality it is more of a loose guarantee
rather than losing the guarantee completely. In practice partition tolerance is an important
aspect of NoSQL distributed databases; the two-out-of-three rule of the CAP theorem implies
that most such databases fall into a consistency-partition tolerance or availability-partition
tolerance style. Traditional relational databases are examples of choosing consistency and
availability as the two-out-of-three CAP theorem guarantees.

Unlike the definition of consistency in ACID (which refers to a single node view of data in a
database), consistency in the CAP theorem refers to the property that all nodes in a distributed
database see the same data and provide a client with the same results regardless of which
server is responding to a client request. Very often, a strong consistency guarantee is enforced
by placing locks on a table, column, row or cell until all parts of the transaction are performed.
While this property is very useful to ensure that all queries subsequent to the completion of the
transaction see the same value, locking can hinder performance and availability guarantees. For
example, in the case of a partition, enforcing consistency implies that certain nodes will not be
able to respond to requests until all nodes have a consistent view of the data; thus compromising
the availability of these nodes. A NoSQL database that prioritizes consistency over availability
is Google BigTable [19] (though it may still have relaxed consistency between data replicas
spread across database instances).

Database availability is a property in a distributed database which implies that every transac-
tion must receive a response about whether the transaction has succeeded or failed. Databases
that provide strong availability guarantees typically prioritize nodes responding to requests
over maintaining a consistent system-wide view of the data. This availability, however, often
comes at the cost of consistency. For example, in the event of a database partition, in order to
maintain availability, certain parts of a distributed database may provide different results until
a synchronization occurs. An example of a NoSQL database that provides a strong availability
guarantee is Amazon Dynamo [23], which provides a consistency model often called eventual
consistency [66].

Consider the example transaction given in Figure 2.6. In this example, the transaction is
to update the count of the word Apple in Doc1 to be 5 from an application that computes a
word count in documents. In a relational database, this transaction can occur within a single
transaction that locks the row (Doc1) and performs the update before relinquishing the lock. In
a highly available distributed database that supports eventual consistency, this update may be
performed in parallel and eventually combined to show the correct count of the word Apple
in Doc1 to be 5. For a short period of time, until this consistency is achieved, different
nodes may provide a different response when queried about the count of the word Apple
in Doc1.

The final aspect of the CAP theorem is database partition tolerance. Database partition
tolerance is a database property that allows a database to function even after system failures.
This property is often a fundamental requirement for large-scale distributed databases. In the
event of failure of a piece of a distributed database, a well-designed database will handle the
failure and move pieces of data to working components. This property is usually guaranteed by
most of NoSQL databases. Traditional relational databases do not rely on distributed networks
which are prone to disruption, thus avoiding the need for partition tolerance.

26 � Big Data: Storage, Sharing, and Security

Relational DB transaction

Streaming ingest for BigTable style NoSQL databases

Modify

Quality result

(doc1, apple) → 3

Write time

(doc1, apple) → 1
(doc1, apple) → 1
(doc1, apple) → 1

Entries combined
 (doc1, apple) → 1
 (doc1, apple) → 1
+ (doc1, apple) → 1
 (doc1, apple) → 3

count =
count + 1

Read Lock
row!

All 3
versions

are saved

Commit

Single triple
returned

Doc Word Count
Doc1 Apple 2
Doc1 Banana 5

Doc Word Count
Doc1 Apple 2
Doc1 Banana 5

Write

Figure 2.6: Relational update transaction compared with nonrelational database update tran-
saction.

Performance

Co
ns

ist
en

cy Relational DB
systems

NoSQL DB
systems

NewSQL DB
systems

Figure 2.7: Notional guide to implication of the CAP theorem for database design. Traditional
relational databases provide high consistency, NoSQL databases provide high performance at the
cost of consistency, and NewSQL databases attempt to bridge the gap.

In recent years, there has been some controversy [14,34,57] surrounding the use of the CAP
theorem as a fundamental rule in the design of modern databases. Most often, the CAP theorem
is used to imply that one can have an all or nothing of two of the three aspects. However, it has
been shown in [15] that careful partition and availability optimization may be able to achieve a
database that provides a version of all three guarantees. While the CAP theorem can be used for
high-level understanding of tradeoffs and design of current technologies, it is certainly possible
to design databases that provide versions of guarantees on all three properties through different
data models or hardware. In Figure 2.7, we provide a notional guide to the CAP theorem and
database classes and also show an example technology for each of these database classes.

Storage and Database Management for Big Data � 27

2.5.4 Relational databases
Relational databases such as MySQL, PostgreSQL, and Oracle form the bedrock of database
technologies today. They are by far the most widely used and accessed databases. We interact
with these databases daily: everywhere financial transactions, medical records, and purchases
are made. From the CAP theorem, relational databases provide strong consistency and avail-
ability; however, they do not support partition tolerance. In order to avoid issues with partition
tolerance in distributed databases, relational databases are often vertically scalable. Vertical
scalability refers to systems that scale by improving existing software or hardware. For exam-
ple, vertically scaling a relational database involved improving the resources of a single node
(more memory, faster processor, faster disk drive, etc.). Thus, relational databases often run on
high-end, expensive nodes and are often limited by the resources of a single node. This is in
contrast to nonrelational database that are designed to support horizontal scalability. Scaling
a database horizontally involves adding more nodes to the system. Most often, these nodes
can be inexpensive commercial off-the-shelf systems (COTS) that are easy to add as resource
requirements change.

Relational databases provide ACID guarantees and are used extensively in practice. Rela-
tional databases are called relational because of the underlying data model. A relational
database is a collection of tables that are connected to each other via relations expressed
as keys. The specification of tables and relations in a database is referred to as the schema.
Schema design requires thorough knowledge of the dataset. Consider a very simple example
of a relational database that maintains a record of purchases made by customers as depicted
in Figure 2.8. The main purchase table can be used to track purchases. This table is related to
a customer table via the customer ID key. The purchase table is also connected to a product
table via the product ID key. Using a combination of these tables, one can query the database
for information such as who purchased a banana on March 22, 2010?. Many databases may
contain tens to hundreds of tables and require careful thought during the design.

8977
8978

8979

Banana
TV

Watch

.79
400

50

24221

24222

24223

Bob

Alice

Martha

123 East
street

223 Main
street

465 North
street

Customer ID Customer Address Product ID Name Price

Customer table

Product table

Purchase table

1112

1113

1114

24221

24222

24223

8977

8978

8979

03-22-2010

Transaction ID Customer ID Product ID Purchange date

03-22-2010

03-22-2010

Figure 2.8: A simple relational database that contains information about purchases made. The
database consists of three tables: a purchase table, a customer table, and a product table.

28 � Big Data: Storage, Sharing, and Security

2.5.5 NoSQL databases
Since the mid-2000s and the Google BigTable paper, there has been a rise in popularity of
NoSQL databases. NoSQL databases support many of the large-scale computing activities with
which we interact regularly such as web searches, document indexing, large-scale machine
learning, and graph algorithms. NoSQL databases support horizontal scaling: you can increase
the performance through the addition of nodes. This allows for scaling through the addition
of inexpensive COTS as opposed to expensive hardware upgrades required for vertical scaling.
NoSQL databases often need to relax some of the consistency or availability guarantees of rela-
tional databases in order to take advantage of strong partition tolerance guarantees. In order to
keep up with rising data volumes, organizations such as Google looked for ways to incorporate
inexpensive off-the-shelf systems for scaling their hardware. However, incorporating such sys-
tems requires the use of networks which can be unreliable. Thus, partition tolerance to network
disruptions became an important design criteria. In keeping with the CAP theorem, either con-
sistency or availability must be relaxed to provide partition tolerance in a distributed database.

At a transaction level, NoSQL databases provide BASE guarantees. These guarantees may
not be suitable for many applications where strong consistency or availability is required.
However, for a variety of big data applications, BASE guarantees are sufficient for the purpose.
For example, recall the example transaction described in Figure 2.6. If the end analytic (step 5
in the big data pipeline) is an approximate algorithm to look for trends in word count, the exact
count of the word Apple in Doc1 may not be as important as the fact that the word Apple exists
in the document. In this case, BASE guarantees may be sufficient for the application. Of course,
before choosing a technology to use for an application, it is important to be aware of all design
constraints and the impact of technology choice on the final analytic requirements.

NoSQL database use a variety of data models and typically do not have a pre-defined
schema. This allows developers the flexibility to specify a schema that leverages the database
capabilities while supporting the desired analytics. Further, the lack of a well-defined schema
allows dynamic schemas that can be modified as data properties change. Certain graph
databases [8] use data structures based on graphs. In such databases, an implicit schema
is often generated based on the graph representation of the data in the database. Key-value
databases [35] take a given dataset and organize them as a list of keys and values. Document
stores such as those described in [6] may use a schema based on a JSON or XML representation
of a dataset. Figure 2.9 shows an example of a JSON-based schema applied to the dataset shown
in Figure 2.8.

2.5.6 New relational databases
The most recent trend in database design is often referred to as NewSQL databases. Given
the controversy surrounding the CAP theorem, such databases attempt to provide a version
of all three distributed database properties. These databases were created to approach the
performance of NoSQL databases while providing the ACID transaction guarantees of tra-
ditional relational databases [58]. In order to provide this combination, NewSQL databases
often employ different hardware or data models than traditional database management systems.
NewSQL databases may also make use of careful optimizations on partitioning and availability
in order to provide a version of all three aspects of the CAP theorem. NewSQL databases may
be considered as an alternative to both SQL and NoSQL style databases [43]. Most NewSQL
databases provide support for the SQL.

NewSQL databases, while showing great promise, are a relatively new technology area. In
the market now are databases designed for sensor processing [25], high-speed online transac-
tion processing (OLTP) [56], and streaming data and analytics [18].

