

START
PROGRAMMING
using HTML, CSS,
and JAVASCRIPT

CHAPMAN & HALL/CRC
TEXTBOOKS IN COMPUTING

Series Editors

Published Titles

Paul Anderson, Web 2.0 and Beyond: Principles and Technologies

Henrik Bærbak Christensen, Flexible, Reliable Software: Using Patterns and Agile Development

John S. Conery, Explorations in Computing: An Introduction to Computer Science

John S. Conery, Explorations in Computing: An Introduction to Computer Science and Python
Programming

Iztok Fajfar, Start Programming Using HTML, CSS, and JavaScript

Jessen Havill, Discovering Computer Science: Interdisciplinary Problems, Principles, and
Python Programming

Ted Herman, A Functional Start to Computing with Python

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph, Foundations of Semantic Web
Technologies

Mark J. Johnson, A Concise Introduction to Data Structures using Java

Mark J. Johnson, A Concise Introduction to Programming in Python

Lisa C. Kaczmarczyk, Computers and Society: Computing for Good

Mark C. Lewis, Introduction to the Art of Programming Using Scala

Efrem G. Mallach, Information Systems: What Every Business Student Needs to Know

Bill Manaris and Andrew R. Brown, Making Music with Computers: Creative Programming in
Python

Uvais Qidwai and C.H. Chen, Digital Image Processing: An Algorithmic Approach with MATLAB®

David D. Riley and Kenny A. Hunt, Computational Thinking for the Modern Problem Solver

Henry M. Walker, The Tao of Computing, Second Edition

John Impagliazzo
Professor Emeritus, Hofstra University

Andrew McGettrick
Department of Computer
and Information Sciences
University of Strathclyde

Aims and Scope

This series covers traditional areas of computing, as well as related technical areas, such as
software engineering, artificial intelligence, computer engineering, information systems, and
information technology. The series will accommodate textbooks for undergraduate and gradu-
ate students, generally adhering to worldwide curriculum standards from professional societ-
ies. The editors wish to encourage new and imaginative ideas and proposals, and are keen to
help and encourage new authors. The editors welcome proposals that: provide groundbreaking
and imaginative perspectives on aspects of computing; present topics in a new and exciting
context; open up opportunities for emerging areas, such as multi-media, security, and mobile
systems; capture new developments and applications in emerging fields of computing; and
address topics that provide support for computing, such as mathematics, statistics, life and
physical sciences, and business.

Chapman & Hall/CRC
TEXTBOOKS IN COMPUTING

START
PROGRAMMING
using HTML, CSS,
and JAVASCRIPT

Iztok Fajfar
University of Ljubljana

Slovenia

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20150904

International Standard Book Number-13: 978-1-4987-3145-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my family

Contents

Acknowledgments xi

Introduction xiii

About the Author xvii

1 Content and Structure 1

1.1 Opening . 1
1.2 Introducing HTML . 2
1.3 The Tools . 3
1.4 Minimal HTML Document . 4
1.5 Formatting a Page . 8
1.6 Homework . 12

2 Building a Sound Structure 15

2.1 Homework Discussion . 15
2.2 Lists and Tables . 18
2.3 Generic <div> and Elements 21
2.4 Sectioning Elements . 23
2.5 Hyperlinks . 26
2.6 Character Entities . 31
2.7 Homework . 33

3 Presentation 35

3.1 Homework Discussion . 35
3.2 Setting up a Web Server . 36
3.3 Introducing CSS . 38
3.4 CSS Values . 42
3.5 CSS Properties . 46
3.6 CSS Pixel Unit . 47
3.7 Homework . 48

4 More Control over Style 51

4.1 Homework Discussion . 51

vii

4.2 Class Selectors . 54
4.3 ID Selectors . 56
4.4 Grouping Selectors . 57
4.5 Nesting Selectors . 58
4.6 The HTML Ancestry Tree . 61
4.7 Inheritance . 62
4.8 Determining Style Specificity . 64
4.9 Relative Sizes . 66
4.10 Homework . 70

5 Understanding CSS Boxes 71

5.1 Homework Discussion . 71
5.2 CSS Box Model . 74
5.3 Element Display . 79
5.4 Positioning and Element Flow . 80
5.5 Containing Block . 83
5.6 Hiding Elements . 85
5.7 Floated Elements . 85
5.8 Special Selectors . 93
5.9 Homework . 98

6 Behavior 101

6.1 Homework Discussion . 101
6.2 Server Side Includes . 104
6.3 Introducing JavaScript . 105
6.4 Values and Types . 110
6.5 Operators and Expressions . 114
6.6 Concluding Remarks and Homework 124

7 Controlling Program Flow 127

7.1 Homework Discussion . 127
7.2 Statements . 128
7.3 Design a Simple Program . 136
7.4 Type Conversions . 140
7.5 Homework . 146

8 Introducing Objects 147

8.1 Homework Discussion . 147
8.2 switch Conditional . 150
8.3 Math Object . 152
8.4 do/while Loop . 156
8.5 Date Object . 158
8.6 Concluding Thoughts and Homework 164

9 Understanding Arrays and Strings 165

9.1 Homework Discussion . 165
9.2 Array Object . 169
9.3 for Loop . 173
9.4 Array Methods . 178

viii Contents

9.5 String Object . 180
9.6 Homework . 185

10 Understanding Functions 187

10.1 Homework Discussion . 187
10.2 Writing Function Definitions . 188
10.3 References to Function Objects . 195
10.4 Variable Scope . 196
10.5 Passing Function Arguments by Reference 200
10.6 The Scope Chain and Closures . 201
10.7 Homework . 204

11 Building Your Own Objects 205

11.1 Homework Discussion . 205
11.2 JavaScript Objects Revisited . 207
11.3 Classes . 209
11.4 Constructor Overloading . 211
11.5 Factory Methods . 212
11.6 The prototype Object . 214
11.7 More on Setting and Querying Object Properties 217
11.8 Sudoku Puzzle Helper . 219
11.9 Homework . 225

12 Using JavaScript to Control the Browser 227

12.1 Homework Discussion . 227
12.2 Deeper into the Browser . 229
12.3 Events . 230
12.4 Scripting Documents . 233
12.5 Timer Events . 236
12.6 Scripting Styles . 238
12.7 Introducing Forms . 242
12.8 Homework . 243

13 User Interface 245

13.1 Homework Discussion . 245
13.2 Using Family Relations to Manipulate Elements 247
13.3 Completing Math Worksheet Generator 249
13.4 Completing Sudoku Puzzle Helper 255
13.5 Homework . 262

A Solution to the Last Homework: Sudoku Generator 265

B Ways to Continue 271

B.1 Graphics with Canvas . 271
B.2 Local Data Storage through Web Storage 279
B.3 Ajax . 283
B.4 jQuery . 286
B.5 Go Mobile . 302

Contents ix

C HTML Mini Reference 305

C.1 Root Element . 305
C.2 Document Metadata . 305
C.3 Scripting . 309
C.4 Sections and Structure . 311
C.5 Grouping . 315
C.6 Text-Level Semantics . 321
C.7 Embedded Content . 325
C.8 Tabular Data . 327
C.9 Forms . 329
C.10 Global Attributes . 337
C.11 Event-Handler Attributes . 338

D CSS Mini Reference 339

D.1 CSS Data Types . 339
D.2 inherit keyword . 342
D.3 Text Properties . 342
D.4 List Properties . 349
D.5 Borders . 351
D.6 Spacing . 355
D.7 Background Properties . 357
D.8 Table Properties . 358
D.9 Size Properties . 360
D.10 Positioning . 361
D.11 Pseudo-Classes and Pseudo-Elements 367

E JavaScript Mini Reference 373

E.1 Operator Precedence and Associativity 373
E.2 arguments[] (Core JavaScript) . 374
E.3 Array (Core JavaScript) . 374
E.4 Boolean (Core JavaScript) . 379
E.5 console (Client-Side JavaScript) 380
E.6 Date (Core JavaScript) . 383
E.7 document (Client-Side JavaScript) 391
E.8 Element (Client-Side JavaScript) . 396
E.9 Event (Client-Side JavaScript) . 402
E.10 Function (Core JavaScript) . 405
E.11 Global Variables, Functions, and Objects (Core JavaScript) 406
E.12 Math (Core JavaScript) . 409
E.13 Node (Client-Side JavaScript) . 414
E.14 Number (Core JavaScript) . 416
E.15 Object (Core JavaScript) . 420
E.16 String (Core JavaScript) . 421
E.17 window (Client-Side JavaScript) . 427

x Contents

Acknowledgments

A huge thank you goes to the guys at Taylor and Francis, especially to my editor Randi
Cohen for her enthusiasm for the whole project, my project coordinator Ashley We-
instein, who oversaw production attentively, and technical reviewers for their detailed
comments making the whole book more enjoyable. Many thanks also to the proof-
reader for correcting typos and grammar. Indeed, it was a great pleasure to work with
such a professional team.

Honestly, all this wouldn’t have happened were it not for Igor and the other guys from
the morning-coffee crew, who suggested that I should really write a book. Thanks,
chaps, it cost me a year of my life. Thank you to all my amazing students for sitting
through my programming lectures and asking nasty questions. Man, how should I
know all that? I shall not forget to also thank the other teaching staff from the team.
The joy of working together is immeasurable. I’m deeply indebted to Žiga, who had
painstakingly read the whole manuscript before releasing it to the wild. (I sincerely
hope you spotted all the silly mistakes so I don’t make a fool of myself.) Thank you,
Andrej, for technical advice on preparing the camera-ready PDF. Those are really
details that make a difference. A thousand thanks go to Tanja and Tadej for that little
push that did the trick. You are terrific!

I also wish to extend my considerable gratitude to everyone that gave away their pre-
cious time, energy, and invaluable expertise answering questions on forums, posting
on blogs, and writing all those wonderful LATEXpackages. It’s impossible to list you
all by name because I’m contracted for only 400 or so pages.

A colossal thank you goes out to my mom and dad for instantiating and personalizing
me. It wasn’t the easiest assignment in the world but you did a marvelous job! Many
thanks to my second parents, Dana and Ivo, for telling me that I should also eat if I am
ever to finish the book. A zillion thanks go out to my close family. Thank you, Erik, for
patiently checking which page I am on with an I-want-my-daddy-back determination;
and thank you, Monika, for tons of understanding and supportive coffee mugs. I love
you!

I am also thankful for the support of the Ministry of Education, Science, and Sport of
the Republic of Slovenia within the research program P2-0246—Algorithms and Opti-

xi

mization Methods in Telecommunications, which made possible some of the research
for this book.

And, of course, thank you, the reader. Without you, this book wouldn’t make much
sense, would it?

—Iztok Fajfar (iztok.fajfar.eu), March 2015

xii Acknowledgments

Introduction

Easy to Use

Normally, putting honey in my tea is not a particularly demanding task, but that morn-
ing my hand was paralyzed in astonishment, trying to do its routine job of pouring
some honey in the steaming cup. Honey labels usually say things like “All Natural,”
“Contains Antioxidants,” or “With Grandma’s Recipe Book.” Over time, I’ve got used
to more absurd labels like “Improved New Flavor” or “Gathered by Real Bees.” The
label that knocked me out was surprisingly plain, with an award-winning message
printed on it: “Easy to Use.” I don’t recall honey ever being hard to use, except maybe
when it crystallizes, or when I was six months old, but that’s probably not exactly
what the author of the message had in mind.

You can also buy programming books that promise easy and quick learning, even as
fast as in 24 hours. An average adult can read a novel in 24 hours. But let’s face it, no
one can read—let alone understand and learn—a 500-page technical book in 24 hours.
While using honey is not difficult even when it doesn’t explicitly say so, learning to
program is not easy. It can be fun if you’re motivated and have decent material to
study from, but it’s also an effort. If you’re not ready to accept that, then this book
is not for you. Otherwise, I invite you to join Maria, Mike, and me at exploring the
exciting world of computer programming. It’s going to be fun but it’s also going to be
some work.

About the Book

This handbook is a manual for undergraduate students of engineering and natural
science fields written in the form of a dialog between two students and a professor
discovering how computer programming works. It is organized in 13 thematic meet-
ings with explanations and discussions, supported by gradual evolution of engaging
working examples of live web documents and applications using HTML, CSS, and
JavaScript. You will see how the three mainstream languages interact, and learn some
of the essential practices of using them to your advantage. At the end of each meeting
there is a practical homework, which is always discussed at the beginning of the next
meeting. There is also a list of related keywords to help you review important topics

xiii

of each meeting.

The general structure of the book is multilayered: the basic language syntax and rules
are fleshed out with contents and structure while still keeping things simple and man-
ageable, something that many introductory textbooks lack.

The main body of the text is accompanied by five appendices. The first of them con-
tains a solution of the last homework, the second summarizes (also with examples)
some major directions in which you can continue your study, including hints on some
of the relevant sources. The last three appendices are abbreviated references of the
three languages used in the book.

There will be situations when you need to use yet more languages and technologies in
order to get the job done. Some such situations are gently dealt with in this book. For
example, you will learn just enough about a Server Side Includes language to be able
to include external HTML code, which will save you a tremendous amount of time
and energy.

Is This Book for Me?

If you know absolutely nothing about computer programming and want to learn, this
is the book for you. It has been written with a complete beginner in mind in the first
place.

If you have been exposed to programming before, you might find the book useful
as well. Today, many people learn from examples and forums, and thus acquired
knowledge is mostly skills and not much theory. If you ever want to build more
serious software, you need a firm and systematic understanding of what is going on.
You need a framework to which you can systematically attach your partial skills to
form a sound structure of connected knowledge. Hopefully, this book can give you
this as well.

Last but not least, if you’re a teacher of an introductory programming course, you
might find a handful of useful examples and approaches for your classes on the few
hundred pages that follow.

But most likely, as there are as many learning styles as there are learners, you will
have to find out for yourself whether or not this book is for you.

How to Avoid Reading the Whole Book

Don’t panic! If you are only up to JavaScript programming, you can just read Meeting
1 to get a basic idea of what HTML is (you need this in order to be able to run the
JavaScript examples in this book), and then you can immediately skip to Meeting
6—more specifically, Section 6.3. There are some examples involving CSS in the
JavaScript part but they won’t stand in the way of your learning JavaScript. Later, if
you feel like it, you can just as well skim over Meeting 3, where you can get the basic
idea of what CSS is all about.

xiv Introduction

For Your Safety

This book is not about cutting-edge web technologies, so you don’t need any pro-
tective equipment. It is more about general computer programming and some web-
related principles using the mainstream web languages HTML, CSS, and JavaScript
as examples. Some of the principles are over 40 years old, but are extremely important
because they allow you to write cleaner and more easily maintainable code, and they
will not go away just like that.

It’s a busy world, and the sixth edition of ECMAScript standard (the standardized
version of JavaScript) has just entered the official publication process. The good news
is that it only introduces additions to its predecessor, so the essential concepts stay.
Also, while CSS3 isn’t completely finished yet, there already exist some so-called
“level 4” CSS modules. Fortunately, they are also just additions to the CSS standard
and there are no serious plans for a single CSS4 specification on the horizon. This
book pays attention to the basic concepts that have matured with the latest HTML5,
CSS3, and ECMAScript 5 standards to the point where it seems these concepts are
going to persist for some time.

The Software Used

In researching this book, I used Google Chrome and Notepad++ v6.5.3 (notepad-plus-

plus.org) on a Windows 7 Professional SP1 64bit operating system. I also used the
EasyPHP DevServer 13.1 VC11 web development server (www.easyphp.org). How-
ever, you will be able to follow most of the examples and experiments in this book
using any modern browser and plain text editor. They are already installed on your
computer, so you can start experimenting right away.

Conventions Used in This Book

The following typographical conventions are used in this book:

A monospaced font is used for all code listings and everything that you normally
type on a keyboard, including keys and key combinations.

A monospaced italic font is used as a general placeholder to mark items that
you should replace with an actual value or expression in your code.

An italic font is used to indicate the first appearance of a term, or as an emphasis.

A sans serif font is used to indicate a menu item.

A sans serif italic font is used to indicate URLs and file names and extensions.

Feedback and Supporting Online Material

I deeply appreciate having any comments, suggestions, or errors found brought to my
attention at the email address start-programming@fajfar.eu. You will find source code
of the examples in this book and some additional materials and problems for each
chapter at fajfar.eu/start-programming.

Introduction xv

About the Author

Iztok Fajfar got his first computer in the early 1980s, a ZX Spectrum with an amaz-
ing 48 KB of RAM. Computers soon turned into a lifelong fascination and an indis-
pensable companion, assisting him in his professional work and hobbies alike. Iztok
has a PhD degree in electrical engineering from the University of Ljubljana, Slovenia,
where he is currently Associate Professor at the Faculty of Electrical Engineering. His
research topics include evolutionary algorithms, in particular, genetic programming.
He teaches computer programming at all levels, from assembly to object-oriented, and
to all kinds of audience. Now and then he even ventures to explain to his mother-in-
law how to forward an email, and he hasn’t given up yet. He is also a programmer
and writer. Iztok lives with his family in Ljubljana, and when he is not programming,
or teaching, or researching weird stuff, he makes the most yummy pancakes, not to
mention the pizza.

xvii

Meeting1
Content and Structure

1.1 Opening

Professor: I’m thrilled that you accepted my invitation to help me with a new book
I am researching. There are three languages awaiting us in this course: HTML, CSS,
and JavaScript.

Mike: Why three? You’ll just confuse us, won’t you?

Professor: The languages have been designed for quite specific purposes and work
very differently, so there is little danger in confusing them. At the same time, the three
languages nicely complement each other: HTML holds the structure and content of a
web page, CSS takes care of presentation, and JavaScript is responsible for action. I
like to say that HTML is bones, CSS is flesh, and JavaScript is the brain and muscles
of web programming.

Maria: How much of a chance is there of us learning three languages to the level that
we can use any of them to our advantage?

Professor: You don’t have to be a guru in any of them to start using them effectively.
It’s only important that you know the basic principles. The good news is you don’t
have to install or learn to use any new software. All you need to start off is already
installed on your computer.

Do you have any programming experience?

Maria: Actually, I use a computer a lot but not for programming. I have never written
a computer program before.

Mike: Neither have I.

Professor: In a way, programming is like speaking. You speak English, right?

Mike: Yes...?

Professor: I even know people who have learned Finnish. Quite well, to be honest.

1

English and Finnish are examples of natural languages, which people learn to com-
municate with other people. However, if you want to talk to computers, you have to
learn artificial languages so that computers understand and obey you. It’s very similar.
The only difference is that people won’t obey you if you lack charm, while computers
won’t obey you if you’re not accurate. Accuracy is crucial. Similar to both is that it
takes a certain amount of practice before your interlocutor understands you. I won’t
lie to you on this one.

Maria: I’m just starting to learn Spanish and I must use a sign language a lot. I
suppose you cannot use a sign language with a computer.

Professor: That’s true. In natural languages, people use context and even a sign
language to guess what others have to say even though what they say may not be
grammatically correct. Computers don’t do that, though, and that’s the difficult part
of programming. You have to be exact.

All right. Let’s start programming, shall we?

1.2 Introducing HTML

Professor: To be precise, HTML is not a programming language but it is a so-called
markup language. That’s what the acronym HTML stands for: Hypertext Markup
Language. Markup is a modern approach for adding different annotations to a docu-
ment in such a way that these annotations are distinguishable from plain text. Markup
instructions tell the program that displays your text what actions to perform while the
instructions themselves are hidden from the person that views your text. For example,
if you want a certain part of your text to appear as a paragraph, you simply mark up
this part of the text using appropriate tags:

<p>But it’s my only line!</p>

Maria: It looks quite straightforward. Are those p’s in the angle brackets like com-
mands?

Professor: You could say that. They are called tags and they instruct or command a
browser to make a paragraph out of the text between them.

Mike: That’s like formatting, isn’t it?

Professor: In a way, yes. Tags are like commands in a word processor that allow
you to format paragraphs, headings, and so forth. However, they only specify what to
format, not how to do it.

The above code fragment is an example of an HTML element—the basic building
block of an HTML document. An HTML document is composed exclusively of ele-
ments. Each element is further composed of a start tag and end tag, and everything in
between is the content:

2 Meeting 1. Content and Structure

Start Tag Content End Tag

<p> But it’s my only line! </p>

The start tag is also called the opening tag while the end tag is also called the closing

tag. By the way, the name, or the abbreviation of the name of the element is written
inside the tags. In particular, p stands for a paragraph. The closing tag should have an
additional slash (/) before the element’s name.

In order for a paragraph to show in the browser, we need to add two more things to
get what is generally considered the minimum HTML document. The first line should
be a special declaration called DOCTYPE, which makes a clear announcement that
HTML5 content follows. The DOCTYPE declaration is written within angle brack-
ets with a preceding exclamation mark and the html keyword after it: <!DOCTYPE

html>. Although it looks like a tag, this is actually the only part of an HTML docu-
ment that isn’t a tag or an element. As a matter of fact, this code is here for historical
reasons. I don’t want to kill you with details, but you have to include it if you want
your document to be interpreted by the browser correctly.

One more thing that the minimum document should contain is a <title> element.
This element is necessary as it identifies the document even when it appears out of
context, say as a user’s bookmark or in search results. The document should contain
no more than one <title> element.

Putting it all together, we get the following code:

<!DOCTYPE html>

<title>The Smallest HTML Document</title>

<p>But it’s my only line!</p>

Maria: You just showed us what the document code should look like. But I still don’t
know where to type the code and how to view the resulting page.

1.3 The Tools

Professor: You can use any plain text editor you like. For example, you can use the
Windows Notepad, which is already on your computer if you use Windows.

Mike: What if I don’t use Windows?

Professor: It doesn’t matter. Just about any operating systems contains a plain text
editor. Personally, I use Notepad++, a programmer-friendly free text editor (notepad-

plus-plus.org).

After you type the code, it is important that you save the file with a .htm or .html

extension. While it doesn’t really matter which one you use, it is quite important that
you choose one and stick to it consistently. Otherwise, you could throw yourself into
a real mess. For example, you could easily end up editing two different files (same
names, different extensions) thinking they’re one and the same file.

1.3. The Tools 3

Now we open the file in a browser and voilà!

Notice how the content of the <title> element appears at the top of the browser tag.

Mike: How did you open the file in the browser?

Professor: Oh yes, sorry about that. Inside Notepad++, I chose Run→Launch in

Chrome. If you use another browser, it will automatically appear under the Run menu
item in your Notepad++. You can of course also simply double-click the file or drag
and drop it into the browser. Once the file is open in the browser, you don’t have to
repeat this operation. If you modify the source code—the original HTML code, that
is—you simply refresh the browser window. If you use Chrome like I do, you can do
that by pressing F5. Later, you will use more than a single file to build a page. In that
case, you will sometimes have to force reload all files of a page, which you can do
by pressing Ctrl+F5 on Chrome. On Windows, to switch between the text editor and
browser quickly, you press Alt+Tab, a standard key combination for switching between
running tasks.

Maria: What would happen if we forgot to include the <title> element?

Professor: Nothing fatal, to be honest. One of the basic rules of rendering web pages
is that the browser always tries its best to show the content. Of course, if the document
isn’t fully formatted according to the recommendations, the results are sometimes not
in our favor. If you forget the title, then the name of the file containing the document
usually takes over its role. If nothing else, that looks ugly and unprofessional.

1.4 Minimal HTML Document

Professor: One of the general prerequisites to good technical design is simplicity,
which should not be confused with minimalism. In our last example, we saw a truly
minimal HTML document, which you will rarely see in practice. Even with no extra
content it is normally a good idea to flesh out this skeleton HTML document. For in-
stance, most web developers share the belief that the traditional <head> and <body>

elements can contribute to clarity, by cleanly separating your document into two sec-
tions. You pack all the content into the <body> section, while the other information
about your page goes to the <head> section. Sometimes it is also a good idea to wrap
both these sections in the traditional <html> element:

<!DOCTYPE html>

<html>

<head>

<title>The Smallest HTML Document</title>

</head>

4 Meeting 1. Content and Structure

<body>

<p>But it’s my only line!</p>

</body>

</html>

Mike: I noticed that an element can contain not only text but another element as well.
For example, you placed the <title> element within the <head> element.

Professor: Good observation! The content of an element can in fact be any valid
HTML conforming to the rules of that specific element. We call putting one element
into another nesting. When an element is nested (contains other HTML elements), it
is important that it contains whole elements, including start and end tags. So if, for
example, an <elementA> starts before an <elementB>, then it must by all means
end after the <elementB>:

<elementA > ... <elementB > ... </elementB > ... </elementA >

The element that is contained inside another element inherits some of its behavior,
and we often say that the contained element is a descendant of its owner, which is in
turn its parent. The direct descendant is also called a child. This concept will become
especially important when we come to styling elements with CSS. Now I only mention
it so that later the terms will already sound familiar to you.

Maria: What are those periods inside?

Professor: Oh, yes. A set of three periods is an ellipsis. An ellipsis indicates the
omission of content that is not important for understanding the explanation.

We will soon come back to our last example and furnish it with a little more. For
that purpose we need another element called <meta>. This element is used to pro-
vide additional page description (so-called metadata), which is not displayed on the
page, but can be read by a machine. The information stored in the <meta> element
includes keywords, author of the document, character encoding, and other metadata.
The <meta> element has neither content nor the closing tag:

<meta>

An element that is composed only of the opening tag is called an empty or void ele-
ment.

Mike: I don’t understand that. Where do you put all the information you talked about
if there is no content?

Professor: That’s the job for attributes. An attribute is the means of providing addi-
tional information about an HTML element. For example, by using the src attribute
on the element, one can tell the browser where to find the image to display.
There are two things you should know about attributes: they are always specified after
the element name in the start tag, and they come in name/value pairs like this one:

1.4. Minimal HTML Document 5

name="value"

The quotes (double style are the most common, but single style quotes are also al-
lowed) around the value are not necessary under HTML5, as long as the value doesn’t
contain some restricted character (mostly =, >, or a space). That said, it is still a good
practice that you always use quotes. Your code will look cleaner and more readable,
which in turn lessens the possibility of errors. Likewise, it is not necessary that you
use lower-case names and values, although it is recommended that you do so.

Some attributes do not have values. All that counts is their presence: they are either
present or not, similar to an electrical switch, which can be put in on or off position.
That type of attribute is called a Boolean attribute after an English mathematician,
George Boole, the inventor of the so-called Boolean logic based on only two values.
Because Boolean attributes have no value (the value is implied by their presence or
absence), we omit the equals sign as well:

name

There are often cases when an element has more than one attribute. In that case the
attributes are separated by spaces.

If I confused you with all this theoretical talking, don’t worry. I will now show you
how this works in practice.

Maybe you’ve already heard about the character encoding. Basically, that’s a system
that tells you how each character of a given repertoire is represented physically. In
a computer, this physical representation consists of a series of ones and zeros, called
bits. Relax, I’m not going into more detail with this explanation. The important thing
is that the browser must know what encoding has been used to store the document
text so it can read it back and show it properly. If you don’t provide the encoding
information to your markup, a browser will of course try to guess it, which may drive
it into an obscure security issue. You should provide this information through the
charset (that’s short for character set) attribute of a <meta> element, assigning it the
value utf-8. Today, more than half of all web pages are encoded in UTF-8 and
honestly, I don’t think you will ever need to use a character that is not included in
UTF-8.

Let’s check if you followed me. Can you add a <meta> element containing a character
encoding attribute to our previous example without my help?

Maria: You didn’t tell us in which section to put it. Let me think.... You said that the
content went into the <body> and all the other information in the <head>. Something
like the following code, perhaps?

<head>

<meta charset="utf-8">

<title>The Smallest HTML Document</title>

</head>

6 Meeting 1. Content and Structure

Professor: Exactly! One more thing here: when saving your work, don’t forget to save
it in UTF-8. For example, if you edit your document with Notepad (on Windows) the
Save As dialog box lets you choose UTF-8 from the Encoding list at the bottom. In
Notepad++, there is a top-level menu Encoding, under which you select Encode in

UTF-8.

Maria: Is the order of the above elements within <head> important?

Professor: Not really. HTML5 only specifies that the character encoding declaration
must be within the first 1024 bytes of the document. Translated into English, always
include it as early as possible.

Mike: What if I wanted to write a page in some other language than English?

Professor: The encoding has nothing to do with the natural language of your web
page. It only defines the set of characters you will use and, as I said before, you
will hardly ever need a character (English or non-English) that is not a part of UTF-
8. I’m glad you asked that, though. Your question takes us to the one last thing
we should add to our basic document. Specifying a web page’s natural language
is considered a good style by many as it can be a useful piece of information for
many users—for example, for filtering web search results by language. Interestingly,
as far I as I know, Google Translate ignores this tag, relying on its own language-
recognition algorithms. Anyway, you specify the language using the lang attribute
on any element. For English, the attribute value will be en, and you can find codes
for many other languages at www.w3schools.com/tags/ref_language_codes.asp. In a
most likely scenario that your whole web page uses a single language (in our case
English) you simply add the lang attribute to the <html> element:

<html lang="en">

By putting it all together we arrive at a decent starting point for any modern web page
you want to build:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>The Smallest HTML Document</title>

</head>

<body>

<p>But it’s my only line!</p>

</body>

</html>

Mike: I noticed that you indent the code, and even some lines more than others. How
do you know how much to indent which line?

Professor: You don’t have to know that. The indentation you see is in fact completely
optional and without any effect on how the browser interprets the code. At the same

1.4. Minimal HTML Document 7

time it is of the utmost importance for the person writing the code. Notice how the start
and end tags of nested elements “see” each other. This “visibility” is made possible by
indenting the content of an element. That way, the structure of the document stands
out more clearly before the writer. In such a small document the advantage may not be
evident at first glance, but believe me, when a document’s size reaches several hundred
lines, you want to have some order in your code.

Another friendly feature that helps programmers find their way through the chaos
of computer code are comments. In HTML, comments are enclosed in a so-called
comment tag, which starts with a left angle bracket, an exclamation mark, and two
hyphens (<!– –), and ends with two hyphens and a right angle bracket (– –>). For
example:

<!-- This is a comment and will not be visible in the browser. -->

Comments are completely ignored by the browser but quite useful for writing a short
human-readable summary of code, for example. With proper comments, you don’t
need to decipher the code every time you need to upgrade it. Even if it is your own
code, human readable remarks will help you tremendously to understand it later. An-
other practical use of comments is to temporarily switch off parts of code during test-
ing and experimenting.

If you work in a team, or plan to make your code public, it is a good idea to include
your name, contact information, and a licensing notice in comments at the top of your
code. That way, people will have a chance to contact you in case they have questions
about the code.

While comments are not visible in the browser window, be aware that they are acces-
sible to the web page viewer through the View page source menu command. So, don’t
use comments to write filthy remarks about your boss or mother-in-law.

1.5 Formatting a Page

Professor: When I was a little boy, my mother used to read me fairy tales from the
book by Joseph Jacobs, an Australian folklorist, and I still can’t do without them.
That’s why we’re going to mark up the beginning of The Rose-Tree as our next exam-
ple. We will need three more elements for the job: a main heading (the <h1> element)
for the title, an image (the element) to include a fancy decorative capital letter,
and quotes (the <q> element) for quoted speech.

In HTML, you can use six different levels of headings defined by the elements from
<h1> to <h6>. <h1> defines the most important heading while <h6> defines the least
important heading. Since our fairy tale only has one heading, we will of course use
the <h1>:

<h1>The Rose-Tree</h1>

With the image element, as you might have guessed, you can include a picture into a
page. You do that by specifying the file in which the picture is stored using the src

8 Meeting 1. Content and Structure

attribute: the value of the src attribute is the name of the file. Note that is
an empty element so it only has the opening tag. If the image is not a key part of
the content, then it is a good idea to include the alt attribute as well. This attribute
provides a textual equivalent to show in case the image cannot be displayed or until it
is downloaded.

Our fairy tale begins with a letter T. You can use some graphic software to draw a
decorative T and save it to the image file named T.jpg. The final code for our image
element looks like this:

Because the decorative capital letter is not an essential part of the content, I provided
alternative text, which is obviously the letter T.

Incidentally, not all image formats are supported by browsers. The most commonly
used formats that are supported are .gif , .jpg and .png. In the above code, I used only
the file name without any path as the value of the src attribute. That means that the
file resides in the same folder as the HTML file that contains the above element.
Should the image file be stored elsewhere, I would have to prepend the corresponding
path to it.

The <q> element is used to represent some quoted content and is usually rendered as
a pair of quotes around the marked content.

OK, let’s put it all together. The following code goes into the <body> element:

<!-- From the e-book English Fairy Tales, collected and

-- edited by Joseph Jacobs. Belongs to the public domain.

-- Source: www.authorama.com

-->

<h1>The

Rose-Tree</h1><p>here

was once upon a time a good man who had two children:

a girl by a first wife, and a boy by the second. The girl was

as

white as milk, and her lips were like cherries. Her hair

was like golden silk, and it hung to the ground. Her brother

loved her dearly, but her wicked stepmother hated her.

<q>Child,</q> said the

stepmother one day, <q>go to the grocer’s shop and buy me

a pound of candles.

</q> She gave her the money; and the little girl

went, bought the candles, and started on her return. There

was a stile to cross. She

put down the candles whilst she

got over the

stile. Up came a dog and ran off with the candles.</p><p>She

went back to the grocer’s, and she got a second bunch.

1.5. Formatting a Page 9

She came to the stile, set down the candles, and proceeded to

climb

over. Up came the dog and ran off with the candles.</p>

<p>

She went again to the grocer’s,

and she got a third bunch; and

just the same

happened. Then she came to her stepmother crying, for she had

spent all the money and had lost three bunches of candles.</p>

Deliberately, I made a mess out of the text and tags so that the structure of the docu-
ment is not obvious at first glance. The rendering, however, is quite appealing.

Maria: I notice that the browser does not obey your original text formatting.

Professor: Well.... Yes and no. Actually it obeys the rules perfectly, it’s just that the
rules are a little different from what you might have expected.

The first thing you may have noticed is that the browser ignores spaces, tabs and
newlines. OK, it does not ignore them completely. For example, if there is a separation
between words, it is replaced by a single space regardless of what I have actually put
there: a space, tab, newline, or even more of them. A rule of thumb is that spaces,
tabs, and newlines are ignored unless they represent the only separation between two
entities—words, for example. Even then they are replaced by a single space. If there
exists some other separator like, for example, a tag or equals sign (=), then spaces
are not needed at all and it doesn’t matter whether they are there or not—the result is

10 Meeting 1. Content and Structure

always the same.

That said, there are a few cases where you should be careful about spaces:

• Do not put any spaces before the element name in the opening or closing tag. It
would be wrong to write < p> or < /p> or </ p>.

• Do not put any unnecessary spaces between double quotes when writing at-
tribute values. In that sense, lang="en" is quite different from lang=" en "

while lang = "en" is still OK while it does not change the meaning.

• You should always put spaces between two attributes of the same element, even
when there’s a quotation mark at the end of a value. For example, it would be in-
correct to write instead of <img src="T.jpg"

alt="T">.

It is important at this point that you start seeing HTML as a language that gives a
document a structure and meaning rather than a specific look. How a page looks is
taken care of by the browser. Later, we will control the document’s look by means of
CSS.

Mike: I have a question. If spaces and newlines do not affect the text formatting, how
can you tell the browser to start, for example, some text on a new line?

Professor: This kind of formatting is implied in the element meaning or semantics.
For example, it is usual practice that a heading or a paragraph is displayed as a block
of text occupying the whole line—nothing else can be positioned on the same line in
a browser window. In other words, a line break is inserted before and after a heading
or paragraph. We say that such elements have a block display. On the other hand, an
image can happily inhabit a line together with other elements, if there is enough space,
of course. Such elements are said to have an inline display.

You’ll see later that it is possible to change a type of display for an element using
CSS. Doing that, however, does not change the intrinsic HTML categorization of el-
ements. For this reason we will use the terms inline element and block element to
denote elements that have an inline or block display by default.

Mike: But what if I simply want to break a line without making a paragraph or using
any other block element? Is there a way to do that?

Professor: There’s an element for breaking a line called
, which is short for
break. Paradoxically, that element should not be used for breaking lines unless you
are breaking lines because you want to convey some meaning. Typical examples are
breaking lines in poems or postal addresses. If you want to break a line because
you are introducing a new paragraph, then you shouldn’t use the
 element. A
paragraph is a meaning by itself and doesn’t need other elements to promote line
breaks. If you don’t like the amount of space between paragraphs, however, that’s not
a matter of semantics. You take care of stuff like that by using CSS.

Mike: I’ll try to remember that, but I think I’ll have to wait to get some experience to
fully understand it.

1.5. Formatting a Page 11

Professor: That’s true.

Maria: What happens with text that is written outside of any element?

Professor: Oh yes, that is extremely important. I’m glad you asked. It is strongly
recommended that you do not put any plain text directly into the body. It is a good
practice that you mark up every text and that you mark it up properly. I believe that’s
easier said than done, but as we go along you will get some experience and feeling
about how to get it right. All you have to be careful about is to think of the role of
the text you are writing: is it a heading, a paragraph, a caption, a sidenote? When you
decide upon the role of the text, your next step is to pick up an appropriate HTML
element to mark up that text. If none seems right, then generic and <div>

elements come in handy, but more on these later.

Mike: Is HTML case sensitive?

Professor: For the most part, no. However, just to stay on the safe side, I strongly
recommend that you only use lower-case letters. If nothing else, it will save you the
trouble of remembering whether case matters or not.

1.6 Homework

Professor: Before we call it a day, let me just give you lots of homework. Note that
it’s not important that you do everything right. The important thing is that you do it
on your own and that you ask yourselves questions about why things work (or don’t
work) the way they do. Write down any unresolved questions, which we will use in
our next meeting.

I encourage you to search and use, apart from the material we covered today, other
sources as well. That’s important. Because of the constant progress of technology,
you’ll always be searching for new answers. For your convenience, I prepared some
reference material you will find at the end of this book. However, this is not a complete
reference. I have only put into it what I thought would be important for our course.
So if something is not there, that doesn’t mean it doesn’t exist. For the time being, I
recommend that you use the site www.w3schools.com, which offers a decent learning
experience for a beginner. One more good thing about this site is that it includes lots of
working examples ready for you to play with. When you level up, however, I suggest
that you start using other, more profound sources to learn from.

And now the homework. I have prepared for you a short document on wombats, which
I want you to reproduce as faithfully as you can while using only HTML. If you don’t
like the picture, you can use another one. Personally, I like this old drawing of the
now-extinct wombats of King Island, Tasmania, by Charles-Alexandre Lesueur from
1807.

Here’s how the document should look:

12 Meeting 1. Content and Structure

For some more homework, here is a short list of keywords covering today’s meeting.
Draw a mind map using all the given keywords, adding some more if you feel like it.

In this meeting: element, start tag, end tag, content, indentation, comment, nested
element, DOCTYPE, descendant, parent, child, markup, empty element, void ele-
ment, attribute, attribute name, attribute value, Boolean attribute, <html>, <head>,
keywords, author information, <meta>, <title>, <body>, <p>, , <h1>,

, alt, src, charset, lang, block display, inline display, block element, in-
line element, spaces, generic elements, semantics

1.6. Homework 13

Meeting2

Building a Sound Structure

2.1 Homework Discussion

Professor: I am anxious to see what you have written since our last meeting. Did you
have any trouble?

Mike: At the beginning, yes. I had to read about lists and tables to complete the
homework.

Professor: No offense, but I am sort of glad you mention tables because that’s a sure
signal you did it wrong. Don’t panic, though. That mistake will help you tremendously
with mastering basic HTML principles. What about you, Maria?

Maria: I don’t know.... It wasn’t as easy as it looked and I have some questions.

Professor: Good. So we have material to talk about. Mike, what did you use a table
for?

Mike: I haven’t found any other way to wrap text around the picture. And honestly, I
had that annoying feeling that this is not the way to go. Namely, I had to split the text
between two cells of the table in order to wrap it around the image. The whole thing
only looked good till I resized the window. So how can this be done properly?

Professor: As I already mentioned in our previous meeting, HTML is used to give a
document a structure rather than a look. So there is always one very important ques-
tion to bear in mind when constructing an HTML document: is what I’m trying to
do in any way affecting the structure of the document or is it merely a matter of pre-

sentation? Indeed, wrapping a text around a picture has nothing to do with structure.
A paragraph is a paragraph and a picture is a picture, no matter how they are posi-
tioned and formatted. You don’t have to worry about whether a paragraph is wrapped
around a picture when writing an HTML. That’s work for CSS. I’ve deliberately pre-
sented you with a document that will tempt you to think about how it looks, which is
completely irrelevant at this point.

Mike: So it’s not possible to wrap text using pure HTML?

15

Professor: No.

Maria: Why not? I managed to find an attribute called align, which aligns a picture
to one side (left or right) and wraps text around it nicely. Have I missed something?

Professor: You missed one thing. The align attribute is deprecated since HTML4.01
and obsolete since HTML5, and not without a reason. Nearly all elements and at-
tributes that were historically used for presentational purposes are considered obsolete
in HTML5. That doesn’t mean they don’t work, though. Worse still, they will work
for quite some time for backward compatibility. Browsers are really forgiving when
rendering a markup. You won’t notice that you did something wrong because the mis-
take won’t show. It is entirely up to you whether you conform to the rules or not. If
you want to build sound web pages, the HTML is the most important thing to do right
because it serves as a foundation of your whole web page. Sticking to plain, simple
HTML is also important because it keeps search engines happy. The old HTML’s ap-
proach of using formatting elements like , or tables to lay out a page, stands in
the way of a search engine’s job.

Mike: Is there really no way of testing whether your HTML is written properly?

Professor: In fact there is. When in doubt, you can resort to one of many on-line
HTML validators (for example, validator.w3.org). You can upload your document to a
validator and it will alert you to any errors you may have in your HTML document.

Maria: I think I see things more clearly now and meanwhile you also answered some
of my questions. I even discovered another mistake I made: I used the <h2> element
for the main heading (Common Wombat) since the <h1> seemed too big to me. If
I understand correctly, I shouldn’t have done this because I was actually concerned
about presentation. In fact I should have used <h1> because this is the main heading.

Professor: Exactly! When writing HTML, you shouldn’t worry about font size.

Maria: What still puzzles me are the elements (bold) and <i> (italic), which I
found in the reference you gave us. Is this not presentation?

Professor: If you use them properly, then the answer is no. Those two elements
survive from the past but with a different, more semantic interpretation. In modern
HTML, it would be wrong to use and <i> elements merely for the purpose of
making text bold or italic. It is also wrong to think of and <i> elements as being
old elements now replaced by the and elements only because they
are rendered in the same way by many browsers. The element is used to
express strong importance of its content and the element is used to emphasize
its content. The and <i> elements are not used to stress importance or emphasis.
Rather, they are considered as generic bold and italic elements used in cases when
normally—but not necessarily—bold and italic fonts are used. Because the meaning
of these two elements is not evident from their names, authors often use the class

attribute to clearly identify their semantic meaning. For example:

<i class="latin-taxonomy">Vombatus ursinus ursinus</i>

<b class="english-definition">bare-nosed wombat

16 Meeting 2. Building a Sound Structure

The class attribute not only gives a clear meaning to both elements but also allows
CSS to access these elements for formatting purposes—but more on that later.

Mike: There’s one more question bothering me. I have found an element for writing
unordered lists () and I’m not quite sure whether I should put it inside a paragraph
or not. A list, in my opinion, is a part of a paragraph but visually it is represented as
a separate block. I know that I am mixing two concepts, which you’ve just clearly
separated, but in this case my thinking is a bit blurred.

Professor: I agree that it is a matter of debate whether a list is a separate paragraph
or not. In practice, things are sometimes not as clear as in theory. Luckily, in this
special case we have recourse to the additional rules concerning context in which
certain HTML elements can appear, and the content that they are allowed to include.
One or both of the terms also appear with some of the element descriptions in the
concise reference at the end of this book. For example, you will find that the <p>

element should only contain text and inline elements. Because the element is a
block element, you shouldn’t put it inside a <p> element.

Mike: You have already told us about the block-inline categorization of elements
based on their default display setting, but I’m still confused. When you are talking
about display, isn’t that presentation?

Professor: You couldn’t be more right about that. In HTML5, a display has be-
come purely a CSS term since it defines the visual behavior of an element. In the
past, the categorization of block and inline elements helped authors in deciding which
element is allowed as a content (descendant) of the other. In HTML5, this binary cat-
egorization has been replaced by a more complex one and you will hear terms like
the flow content, sectioning content, phrasing content, and so on. If you are inter-
ested in studying these (which I don’t actually recommend at this stage), I suggest
that you visit the site developer.mozilla.org, which is written on a higher technical
level than www.w3schools.com, but still more understandable for a beginner than the
World Wide Web Consortium’s (W3C) page, www.w3.org, which publishes original
web standards and is quite a demanding read.

To keep things simple, some authors equate the flow content category roughly with
the block display category and the phrasing content category roughly with the inline
display category. This block-inline categorization is easier to understand. That’s why
it is still used by some authors.

As a rule of thumb, an inline element can only contain inline elements while a block
element can contain inline elements as well as block elements. A notable exception
to the rule are elements <p> and <h1> to <h6>, which are block elements but cannot
contain block elements. Again, when in doubt, you can use an HTML validator.

OK, that’s it. Here is a possible final solution of your homework:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

2.1. Homework Discussion 17

<title>Common Wombat</title>

</head>

<body>

<h1>Common Wombat</h1>

<p>

The <b class="english-definition">common wombat

(<i class="latin-taxonomy">Vombatus ursinus</i>), also called

<b class="english-definition">bare-nosed wombat or

<b class="english-definition">coarse-haired wombat, is

one of three living wombat species. The common wombat reaches

an average of 98 cm in length and a weight of 26 kg. It

prevails in colder and wetter parts of South East Australia.

The common wombat was first described by George Shaw in 1800.

</p>

<p>

There exist three subspecies of the common wombat:

</p>

<i class="latin-taxonomy">V. ursinus hirsutus</i>

on the Australian Mainland.

<i class="latin-taxonomy">V. ursinus tasmaniensis</i>

in Tasmania.

<i class="latin-taxonomy">V. ursinus ursinus</i>

on Flinders Island to the north of Tasmania.

</body>

</html>

Note that text will not wrap around the picture because, as I already pointed out, this
cannot be done using only HTML.

2.2 Lists and Tables

Professor: I’m glad that you succeeded in finding and using unordered list on your
own. Still, I would like to point out some things about elements (unordered list)
and (ordered list). Basically, they are the same, only the first one is used when
the order in which the items are listed is completely irrelevant, while the second one is
used when the order is important. The items in an unordered list are usually preceded

18 Meeting 2. Building a Sound Structure

by bullets while in an ordered list they come with ordinal numbers or letters. The use
of lists is quite straightforward. There’s one thing, however, you need to be careful
about.

If you look at element descriptions in the reference at the end of this book, you will
notice that the elements and alike can only contain (list item) ele-
ments and nothing else. Since a list is composed of items, this is hardly a surprise.
Still, many people find themselves completely at a loss for where to put sublists. As
we already discussed, browsers are quite tolerant of bad HTML code and you won’t
know whether you did it right unless you use a validator. So, let me ask you a ques-
tion. Where do you think one should put a sublist? Or, more specifically, could you
write HTML code for the following list?

Maria: Let me think. A element can only contain elements. That means
that I cannot put another list inside a list. On the other hand, a sublist should be a part
of a list. Now, the only possibility I see is to put a sublist inside an element. Am
I right? Like this:

New South Wales

Birrahgnooloo

Dirawong

Wurrunna

Queensland

Dhakhan

I’wai

Yalungur

Professor: Perfect! When you think of it, a sublist in fact always relates to a specific
list item rather than a list as a whole. It is therefore the only logical solution to put a

2.2. Lists and Tables 19

sublist inside a list item.

Lists allow authors to organize document data in a specific way. Another such element
is <table>. Just like lists, the <table> element also has its content limited to a
small number of allowed direct descendants. Amongst them you’ll find an optional
<caption> element and an obligatory <tr> element. Each <tr> (table row) element
represents a row in a table and its only direct descendants can be <td> (table data)
and <th> (table header) elements. The former represent table data cells and the latter
table header cells. You can stretch any data or header cell over more rows or columns
using their rowspan and colspan attributes, respectively. The <caption> element
holds the table caption and should appear before any <tr> elements.

Here’s a complicated example:

<table border="1">

<tr>

<td rowspan="3"></td>

<th colspan="4">Imports</th><th colspan="4">Exports</th>

</tr>

<tr>

<th>Value</th><th colspan="3">Annual change (%)</th>

<th>Value</th><th colspan="3">Annual change (%)</th>

</tr>

<tr>

<th>2010</th><th>2008</th><th>2009</th><th>2010</th>

<th>2010</th><th>2008</th><th>2009</th><th>2010</th>

</tr>

<tr>

<td>Mozambique</td>

<td>1,200</td><td>10.6</td><td>-2.5</td><td>19.0</td>

<td>2,600</td><td>5.1</td><td>1.5</td><td>25.4</td>

</tr>

<tr>

<td>Kyrgyz Republic</td>

<td>300</td><td>1.9</td><td>0.5</td><td>6.7</td>

<td>500</td><td>2.1</td><td>-1.5</td><td>2.9</td>

</tr>

</table>

And the result in the browser.

20 Meeting 2. Building a Sound Structure

Mike: I think I will study this when it’s quiet and do some experimenting to see how
things behave.

Professor: I just wanted to suggest the same. There’s really not much to explain,
you’ll simply have to try it out by yourselves. However, before you start pulling your
hair out figuring out why I used an obsolete border attribute, let me tell you that I
haven’t had any other choice.

Maria: That’s true. Border is a matter of presentation, not content.

Professor: Precisely. However, browsers by default don’t draw any table borders and
the above table would be completely illegible without them. The only way to draw
borders properly according to HTML5 standard is to use CSS. In the above example, I
resorted to the possibility of limited use of the border attribute in the case of absence
of CSS. W3C allows that but you can only use one of the two possible values for this
purpose: the empty string or the value 1.

Maria: What about rowspan and colspan? Aren’t they also a matter of presentation?

Professor: Think again.

Maria: Oops! I get it. We stretched a header across many columns because they share
the same meaning. For example, there are four columns about export.

Professor: Exactly!

2.3 Generic <div> and Elements

Professor: By now, you already understand that writing HTML code is thinking pri-
marily about meaning and structure.

Equally important is that you use the right element for assigning a part of a document
the right meaning. For example, it would be wrong to use any of the six headings
elements <h1> to <h6> for a table caption. For that purpose, you should use the
<caption> element and nothing else.

The difficulty with the older HTML standards was that there really weren’t many se-
mantic elements available and authors had to resort to the generic <div> and

elements. In this sense, the HTML5 standard has made a significant step forward by
introducing many new semantic elements.

Before I introduce you those newbies, I think it’s important that you understand the
role of the <div> and elements. There are two good reasons for that: First,
designers have used them in the past very often to organize their documents, which
will continue to live on the Web for years to come. Second, they are still very useful
in special cases when you don’t find a more appropriate element.

<div> and are called generic elements. That means there really isn’t any
inherent meaning attached to them nor is there provided any default browser render-
ing for them (except that <div> has block display while has inline display).
Rather, they can be used generally wherever needed. Authors use the class or id

2.3. Generic <div> and Elements 21

attributes to attach to them a specific semantic meaning, and CSS to make them look
any way they want. For example, you can use the <div> element to divide a page into
logical pieces like headers, footers, banners, sidenotes, and so forth. Later, you can
design and position each piece to create page layouts to your liking using CSS.

Say you want to include in your website a copyright notice, which usually comes
at the bottom of every page of your website. In typography, a piece of information
that is separated from the main body of text and appears at the bottom of the page is
called a footer. Using the <div> element, the code for a copyright notice could look
something like this:

<div class="footer">

(C) ACME 2015 All Rights Reserved

</div>

With the help of a <div> element with the class attribute set to footer, I have
clearly marked the copyright text as belonging to the footer of a page. The same
class attribute could help me later to access and visually design the element by CSS.

The generic <div> and elements are useful for giving parts of a document
an arbitrary, user-defined meaning. However, one of the ambitions of HTML5 is to
bring into play other, more semantic elements to enable authors to easily and more
accurately describe the content of their documents. For example, there actually exists
the <footer> element and you can rewrite the above code as:

<footer>

(C) ACME 2015 All Rights Reserved

</footer>

Maria: I see. And now the browser will already know that this is a footer and will
render it smaller, won’t it?

Professor: Actually, no. The <footer> element doesn’t do anything on its own
except render its content as a separate block. As a matter of fact, none of the new
semantic elements will do anything special except display themselves as a block of
text. Apart from that, the four sectioning elements that we are going to meet shortly,
<article>, <aside>, <nav>, and <section> make their headings smaller and that’s
about it.

Maria: What’s the use, then?

Professor: There are many reasons, actually. One of them is code readability. The
limitation of the generic <div> and elements is that they don’t carry any in-
formation about the structure of the page. OK, authors label their generic elements
using class and id attributes, but the values given to them are quite arbitrary. Some-
times it takes a lot of digging through HTML and CSS files to unscramble what the
author actually had in mind. Even if a human can do that unscrambling, a search bot
or a screen reader surely can’t. The page structure remains a complete mystery to
them.

22 Meeting 2. Building a Sound Structure

Mike: Are you saying that search engines can profit from the sound page structure?

Professor: Right now the concept is maturing. Designers already use HTML5 se-
mantic elements to build clearer document structures. They can be used to advantage
by search engines to build a better page preview, or by screen readers to better guide
visually impaired users through a deep forest of sections and subsections.

Let’s take another example. Imagine you want to add to your page an enhanced head-
ing, which is not just a title but also includes a subtitle, a byline, and a teaser. For that
purpose, the <header> and <hgroup> elements come in handy:

<header>

<hgroup>

<h1>Twelfth Night</h1>

<h2>Or what you will</h2>

</hgroup>

<div class="byline">by William Shakespeare</div>

<div class="teaser">Things get complicated as Lady Olivia flips

over Cesario (who is really Viola in disguise) and Viola secretly

loves the Duke, who thinks she is a man.</div>

</header>

The <hgroup> element can only contain headings (<h1> to <h6>) and its purpose is
to hide all the lower-rank headings and expose only the highest-rank heading to the
document structure. That way you can use the <h2> heading to include a subtitle
without a danger that the rest of the text becomes subordinate to the <h2> heading.
If that happened, the entire play would end up as one big subsection, which wouldn’t
make much sense. For a byline and teaser there’s no semantic elements; that’s why
I’ve used <div> elements with the class attribute. Again, this attribute could help
me visually design both elements later using CSS. I wrapped my complete enhanced
heading into a <header> element, signifying that everything is in fact the heading of
the play.

2.4 Sectioning Elements

Professor: Although the <header> and <footer> elements are important for struc-
turing a document, they don’t contribute to the outline of the page. An outline is an
important notion in HTML. You can think of it as a table of contents, where each
section or subsection has its own title and hierarchical position within a document.
In HTML, only the so-called sectioning elements contribute to the document outline.
There are four of them: <article>, <section>, <aside>, and <nav>. While each
of the six heading elements (<h1> to <h6>) also starts a new section, they are not
considered sectioning elements per se because they do not contain a section. Rather,
they only mark the beginning of a section. Therefore, their control over sections is
somewhat limited.

Mike: Is an outline like a mind map?

Professor: As a matter of fact, it is. A mind map or table of contents—it’s all the same.
A mind map helps you organize your thoughts, and the structure (big picture) is just

2.4. Sectioning Elements 23

as important as the content itself. An outline is like a mind map not so much helping
humans directly as aiding different software like screen readers or search engines.

Maria: I’m curious how our last example looks in a browser.

Professor: This is not relevant right now. Although we will try and shape it into a
pleasing form, that comes later on our menu.

Maria: OK, I understand that the look is not important right now. You mentioned,
however, that the <hgroup> element hides all the lower-rank headings. Does that
mean that we won’t see the <h2> heading?

Professor: The heading is not hidden from the document in the browser window but
from the document outline. Put differently, if you wanted to create a table of contents,
then the <h2> heading from our last example wouldn’t be in it.

I would like to show you how the document outlining works with the next example:

<body>

...

<article>

<header>

<hgroup>

<h1>10 Things You Should Do Before The Deluge</h1>

<h2>You Better Hurry Up</h2>

<hgroup>

</header>

<p>...</p>

<section>

<h2>Pay Taxes</h2>

<p>...</p>

<aside>...</aside>

</section>

<section>

<h2>Visit People</h2>

<p>...</p>

<section>

<h3>Your Mom</h3>

...

</section>

<section>

<h3>Your Best Friend From Childhood</h3>

...

</section>

</section>

...

<footer>

...

</footer>

</article>

...

</body>

24 Meeting 2. Building a Sound Structure

There are lots of things going on in the code. Yet it is not as complicated as it seems.
Every sectioning element defines its own section, and whenever one sectioning ele-
ment comes nested within another, the corresponding sections become hierarchically
related. The first heading element inside a sectioning element takes the role of the
heading for that section. If there’s no heading element within a sectioning element,
then the section is considered untitled. Visualization can probably help you understand
the outlining concept, even more so if you can try it by yourselves. I suggest that you
take one of the many free outlining tools or outliners, and experiment at home to see
how it works. For example, gsnedders.html5.org/outliner. You can either upload a file
or simply copy and paste HTML code into the provided text box. Unlike a validator,
an outliner does not require a complete HTML document. You only need to include
elements that contribute to the document outline.

After feeding the outliner with our last example, we get the following outline:

1. Untitled Section

1. 10 Things You Should Do Before The Deluge

1. Pay Taxes

1. Untitled Section

2. Visit People

1. Your Mom
2. Your Best Friend From Childhood

Notice the Untitled Section subordinate to the Pay Taxes section, which was generated
by the <aside> element without a heading. By the way, the <aside> element is
normally used for a content that is related to the main text but not essential for its
understanding. So if you remove the <aside> element, the main text should still
make sense. From the document outline point of view, however, the <aside> element
does exactly the same as <article> and <section> elements do.

Mike: What about the main Untitled Section? Where does that come from? If I get it
right, then the <article> element is the main section, which should be assigned the
title of the first heading element inside the <hgroup> element, shouldn’t it?

Professor: Why do you think so?

Mike: Simply because <header> and <hgroup> elements do not contribute to the
document’s outline, as you said before. You also said that the <hgroup> element hides
all its contained headings except the first one, which is exposed to the outline. That’s
OK because You Better Hurry Up doesn’t appear in the outline. Still, the main title
should be the title of the top-level section, which it is not. Have I missed something?

Professor: No, you’re right. I see that you understand the concept, so we are ready to
move on.

There is another group of elements called sectioning roots. A sectioning root defines
a root, or top-level section. The sections inside a sectioning root do not contribute to
the outlines of other sectioning roots. Rather, they form a new outline of their own.
At this moment, that’s not very important, though. The only reason I’m telling you

2.4. Sectioning Elements 25

that is because <body> is one of the sectioning roots. Therefore, the main Untitled

Section you see in the above outline belongs to the <body> element, which acts as a
sectioning root for the entire page (provided there are no other sectioning roots). If
you want your page outline to have a title, then you should include an appropriate
heading element outside of any other sectioning element (but inside the sectioning
root). At home, try to add a heading element outside of the <article> element in the
above example (either before or after it) to see what happens. As far as the outline is
concerned, it doesn’t matter where inside an element a heading appears as long as it is
the first one—although it is a little weird to write the page title at the end, or even in
the middle of the document.

Maria: What happens if you include more headings inside a section? Are they hidden
the same way as within the <header> element?

Professor: No. Each subsequent heading within a section implicitly starts a new
section. If a heading has a lower rank than the one before it, then a new section is
created, which is subordinate to the enclosing section. If, however, a heading has
the same or higher rank than the one before it, then a new section is created on the
same level in the hierarchy as the enclosing section of that heading. The enclosing
section is closed even though its closing tag has not been reached yet because the
newly created section is on the same hierarchical level. Needless to say, that can cause
some confusion. I suggest that for homework you add some headings of different
ranks to different places in our last example and observe what happens. That way, if
you don’t get lost, you will understand things a little better.

Maria: If a heading itself already starts a new section, why then do we need additional
explicit section definitions?

Professor: There are numerous reasons for that, many of which may not be quite
evident at first glance. Consider, for example, that a website reuses some material from
other sites, say in the form of a news feed. Such a process is called web syndication. It
can easily happen that an article from another web page is pulled under a heading with
a rank that is lower than that of the included article. Although the page will still work
fine, the hierarchy will become disturbed, which could make the page more difficult for
search engines and other software to process. However, if you use HTML5 sectioning
elements, the hierarchy of the sections is defined by the placing of the sectioning
elements regardless of the ranks of headings within them.

2.5 Hyperlinks

Professor: All our discussion so far was related to the meaningful structure of a single
web page. A modern website is, however, more than just a single page. It is important
that you can build from different pages an ordered and logical structure where your
visitor will promptly and effortlessly find the right information. That’s an important
part of what we call web design, which is unfortunately not the main focus of our
course. We concentrate more on how things are done technically, although not in
complete oblivion of web design considerations.

Technically, for connecting one web page with another document, we can establish a

26 Meeting 2. Building a Sound Structure

