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automatically members.

The mission of IOMP is to advance medical physics practice worldwide by
disseminating scientific and technical information, fostering the educational
and professional development of medical physics and promoting the highest
quality medical physics services for patients.

A World Congress on Medical Physics and Biomedical Engineering is held
every three years in cooperation with International Federation for Medical and
Biological Engineering (IFMBE) and International Union for Physics and En-
gineering Sciences in Medicine (IUPESM). A regionally based international
conference, the International Congress of Medical Physics (ICMP) is held be-
tween world congresses. IOMP also sponsors international conferences, work-
shops and courses.

The IOMP has several programmes to assist medical physicists in develop-
ing countries. The joint IOMP Library Programme supports 75 active libraries
in 43 developing countries, and the Used Equipment Programme coordinates
equipment donations. The Travel Assistance Programme provides a limited
number of grants to enable physicists to attend the world congresses.

IOMP co-sponsors the Journal of Applied Clinical Medical Physics. The
IOMP publishes, twice a year, an electronic bulletin, Medical Physics World.
IOMP also publishes e-Zine, an electronic news letter about six times a year.
IOMP has an agreement with Taylor & Francis for the publication of the Med-
ical Physics and Biomedical Engineering series of textbooks. IOMP members
receive a discount.

IOMP collaborates with international organizations, such as the World
Health Organisations (WHO), the International Atomic Energy Agency
(IAEA) and other international professional bodies such as the International
Radiation Protection Association (IRPA) and the International Commission
on Radiological Protection (ICRP), to promote the development of medical
physics and the safe use of radiation and medical devices.

Guidance on education, training and professional development of medical
physicists is issued by IOMP, which is collaborating with other professional
organizations in development of a professional certification system for medical
physicists that can be implemented on a global basis.

The IOMP website (www.iomp.org) contains information on all the activi-
ties of the IOMP, policy statements 1 and 2 and the ‘IOMP: Review and Way
Forward’ which outlines all the activities of IOMP and plans for the future.



Preface

My main reason for writing this book is to introduce Bayesian approaches to
analysis of randomness and uncertainty in nuclear imaging. Bayesian meth-
ods used in imaging research and presented in many imaging texts do not
reflect the Bayesian spirit of obtaining inferences about uncertain phenom-
ena, which is quite unfortunate. Most users who utilize statistical tools in
their research consider the probability as the frequency of occurrence of some
random phenomena. The word “random” indicates that if an identical experi-
ment is performed repetitively the results may be different and unpredictable.
We all have gone through examples of frequentist1 coin flipping and die rolling
way too many times. However, the interpretation of probability as a frequency
makes practical applications of drawing inferences quite limited. Anyone who
uses computing to analyze experiments and to model uncertainty will certainly
encounter serious limitations and complexity of the frequentist techniques. At
this point, many of us reach toward Bayesian methods because the Bayesian
techniques are overwhelmingly simple to implement to a wide variety of sci-
entific problems.

However, there is a caveat. When we adopt Bayesian methods we often
still carry a heavy baggage of misconception of the probability being a fre-
quency. This misapprehension leads to misuse, confusion, and certainly to
misinterpretation of results of our analyses. I’ve heard often conjectures stat-
ing that “Bayesian results are biased.” For a Bayesian, this statement sounds
like “The weather today is yellow”—nonsense! In an effort to explain many of
the misconceptions, I introduce Bayesian statistics and present the Bayesian
view on uncertainty in the first two chapters of the book. These two chapters
are probably the most important because in order to fully embrace Bayesian
methods, one needs to purge his or her mind of the concept of probability
being a frequency.

Another objective of this book is to introduce Bayesian computational tech-
niques in nuclear imaging. I introduce the statistical model in Chapter 3. Many
will find the model unorthodox, as I deviate from the routinely used Poisson
statistics in order to derive computationally efficient numerical implementa-
tion of Bayesian methods. The Poisson distribution of nuclear imaging hinges
on the assumption that the generative process of events is described by an
independent event rate. Such a rate is a mathematical construct that helps
simplify the description of the decay laws. The gamma radiation, however, is
the result of the decay of radionuclei, and I build the statistical model from
the ground up based on this simple assumption. Then, I demonstrate how the

1A frequentist is someone who interprets probability as a frequency of occurrence.
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derived decay laws can be approximated by Poisson independent rates and
Poisson distribution. Although the goal of Chapter 3 is to provide a statisti-
cal basis for algorithms developed in Chapter 6, the theory may also be useful
for a better understanding of the counting statistics in general.

With the advent of readily available and inexpensive computing, Monte
Carlo methods based on Markov chains became a workhorse for Bayesian
computing. They can be used to approximate multi-dimensional distributions
(e.g., posteriors) that are otherwise very difficult to characterize. I introduce
these techniques in Chapter 4. A short introduction to nuclear imaging and
several concepts used in analysis of nuclear imaging data are provided in
Chapter 5. The final chapter, Chapter 6, provides derivations of Markov chain
algorithms applicable to analysis of nuclear data. It contains demonstrations
of calculations of estimators, intervals, Bayes factors, Bayes risk, etc. These
examples of Bayesian analysis are provided with the hope that they will inspire
readers to use presented methods in problems they face in their work. A sample
C++ code that was used in Chapter 6 is provided in Appendix F.

Who should read this book? The book is addressed to a wide spectrum of
practitioners of nuclear imaging. This includes seasoned scientists who have
not been exposed to Bayesian paradigm as well to students who want to learn
Bayesian statistics. I believe that many may benefit from reading Chapters 1
and 2 in understanding of the Bayesian methods in general. My description of
the counting statistics in Chapter 3 will also benefit practitioners of nuclear
data analysis because they provide complete in-depth derivation of the sta-
tistical model of nuclear decay and photon counting. The chapter dedicated
to Monte Carlo methods (Chapter 4) and the introductory chapter dedicated
to nuclear imaging (Chapter 5) are intended for readers who are not accus-
tomed with basic ideas of Monte Carlo methods and nuclear imaging. These
chapters can be skipped by someone familiar with these topics. Chapter 6 is
intended for readers looking for alternative methods to nuclear data analysis.
The chapter is short and intended to be an inspiration for investigators to dis-
cover new ideas and methods of advanced Bayesian data processing in nuclear
imaging. My hope is that this chapter will promote new ideas and support
development of the field of nuclear imaging data analysis in the future.

I had the privilege and was fortunate to work with many great imag-
ing scientists and I am very grateful to my mentors, collaborators, post-
docs, and students who, in one way or another, contributed to this book.
I want to acknowledge Anna Celler and Grant Gullberg for early discussions
that eventually led to many concepts discussed here. I received many use-
ful and thoughtful comments about this manuscript from Anna Celler, Mel-
lisa Haskell, Joaqúın López Herraiz, Sylwia Legowik, Peter Malave, Stephen
Moore, and Hamid Sabet, and I would like to thank and acknowledge them
for their input and help.

Arkadiusz Sitek
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1 Basic statistical concepts

1.1 INTRODUCTION

This chapter and the next chapter are essential for understanding the content
of this book. By design, the chapters present statistics from a quite different
perspective as usually the statistics is introduced and taught. The theory of
statistics is presented from the pure Bayesian perspective where we attempt
to make sure that concepts of the classical statistics are not mixed in the ex-
position of the theory. In our experience, the Bayesian statistics is frequently
introduced in image and signal analysis texts as an extension of the classical
treatment of probability. The classical treatment of probability is based on
the interpretation of probability as the frequency of occurring of some phe-
nomena based on repeated identical trials. The classical approach is often
referred to as the frequentist statistics. From the Bayesian point of view, the
probability describes the strength of beliefs in some propositions. One of the
most frequently used terms, the probability distribution, in frequentist statis-
tics means the “histogram” of outcomes of the infinite number of repetitions
of some experiment. In Bayesian statistics, the probability distribution quan-
tifies beliefs or in other words measure of uncertainty. Unfortunately, these
two concepts of probability, Bayesian and frequentist, are not compatible and
cannot be used together in a logically coherent way. What creates confusion
is that both approaches are described mathematically by the probability cal-
culus and because of that they can be intermingled and used together which,
to us at least, is incomprehensible.

In this book we decided not to introduce classical concepts at all. To help
the reader who is accustomed to thinking about the probability as a frequency,
we intentionally do not use the term random variable. This is because the ran-
dom variable is strongly associated with the concept of frequency. To avoid any
unwanted associations, the term random variable is replaced in this book by
the term quantity. The classical term parameter is not used in this book either.
In the classical statistics, parameters describe unknown values and inference
about those parameters is obtained in classical statistical procedures. Instead
of the term “parameter” the term quantity is used as well. Both the “random
variable” and the “parameter” are put on the same conceptual level and are
referred to as quantities. Finally, in the classical statistics the term data is
used to describe the outcome of experiments. Based on the data, inferences
about parameters are made in frequentist statistics. In the Bayesian view uti-
lized here, the term data is another quantity which is conceptually the same as
quantities corresponding to random variables or quantities corresponding to
parameters. For this quantity we relax our naming rule and use interchange-
ably the data and the quantity to describe outcomes of the experiments.
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2 Statistical Computing in Nuclear Imaging

It may appear that such convention creates confusion because there is a
single term “quantity” to describe so many phenomena. There is more to gain
than lose as we believe that this naming convention helps considerably with
understanding of Bayesian concepts. In order to help differentiating different
quantities, we will use adjectives observable and unobservable added to the
term quantity that identify which quantities are revealed in the experiment
(correspond to “data” in classical treatment) and which are never revealed
(correspond to parameters in classical statistics).

1.2 BEFORE­ AND AFTER­THE­EXPERIMENT CONCEPTS

In this chapter, a specific view on processes that involve uncertainty will be
considered. The author hopes that the approach will allow to smoothly in-
troduce concepts that are frequently poorly explained or misunderstood. The
content of this book is concerned about knowledge of quantities that can, or
cannot, be observed directly in an experiment. Such quantities will be referred
to as observable and unobservable quantities, respectively. Interchangeably, we
will refer to knowledge about quantities as beliefs. We will also use uncertainty
about the quantity which is the opposite term to knowledge. For unobserv-
able quantities (UQs) the true value of the quantity is unknown (uncertain).
For example, suppose we are interested in a true weight of some object. This
quantity cannot be observed (determined) directly and the true weight is un-
known. By unobservable directly we mean that there is no experiment that
can reveal the true value of that quantity. The observable quantities (OQs)
will be those where the true values are revealed by the experiment. For ex-
ample when weighing an object the reading from the scale is an observable
quantity. Obviously, the true weight of the object (unobservable quantity) and
the reading from the scale (observable quantity) are two different quantities
and are not necessarily equal.

Important: Here an important distinction has to be made. The weight
of the object and the result of the measurement are two different quantities.
The weight is uncertain before and after the experiment; however, the
measurement is uncertain before the experiment (we do not know what the
reading on the scale will be), but it is known exactly after the experiment.
Therefore the quantity which is the measurement is revealed and known
exactly. The true weight remains uncertain.

The quantities that we will be interested in are going to be referred to
in this book as the quantities of interest (QoIs) which include UQs and OQs.
Sometimes quantities that are known will be required to fully describe a prob-
lem at hand (when considering the radioactive decay such quantities can be
the half-life or decay constant for given radiotracer). These quantities will be
referred to as known quantities (KQs). The values of all QoIs constitute the
objective truth that will be referred to as the “state of nature” (SoN). Obvi-


