Computational

 Aspects of Polynomial Identities
Volume 1

Kemer's Theorems 2nd Edition

Alexei Kanel-Belov
Yakov Karasik
Louis Halle Rowen

Computational
Aspects of
Polynomial
Identities
Volume 1
Kemer's Theorems
2nd Edition

MONOGRAPHS AND RESEARCH NOTES IN MATHEMATICS

Series Editors

John A. Burns
Thomas J. Tucker
Miklos Bona
Michael Ruzhansky

Published Titles

Application of Fuzzy Logic to Social Choice Theory, John N. Mordeson, Davender S. Malik and Terry D. Clark

Blow-up Patterns for Higher-Order: Nonlinear Parabolic, Hyperbolic Dispersion and Schrödinger Equations, Victor A. Galaktionov, Enzo L. Mitidieri, and Stanislav Pohozaev

Computational Aspects of Polynomial Identities: Volume I, Kemer's Theorems, 2nd Edition Alexei Kanel-Belov, Yakov Karasik, and Louis Halle Rowen

Cremona Groups and Icosahedron, Ivan Cheltsov and Constantin Shramov
Difference Equations: Theory, Applications and Advanced Topics, Third Edition, Ronald E. Mickens

Dictionary of Inequalities, Second Edition, Peter Bullen
Iterative Optimization in Inverse Problems, Charles L. Byrne
Line Integral Methods for Conservative Problems, Luigi Brugnano and Felice laverno
Lineability: The Search for Linearity in Mathematics, Richard M. Aron, Luis Bernal González, Daniel M. Pellegrino, and Juan B. Seoane Sepúlveda
Modeling and Inverse Problems in the Presence of Uncertainty, H. T. Banks, Shuhua Hu, and W. Clayton Thompson
Monomial Algebras, Second Edition, Rafael H. Villarreal
Nonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory Under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications, Aref Jeribi and Bilel Krichen
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Vicenţiu D. Rădulescu and Dušan D. Repovš
A Practical Guide to Geometric Regulation for Distributed Parameter Systems, Eugenio Aulisa and David Gilliam
Signal Processing: A Mathematical Approach, Second Edition, Charles L. Byrne Sinusoids: Theory and Technological Applications, Prem K. Kythe
Special Integrals of Gradshteyn and Ryzhik: the Proofs - Volume I, Victor H. Moll Special Integrals of Gradshteyn and Ryzhik: the Proofs - Volume II, Victor H. Moll

Forthcoming Titles

Actions and Invariants of Algebraic Groups, Second Edition, Walter Ferrer Santos and Alvaro Rittatore
Analytical Methods for Kolmogorov Equations, Second Edition, Luca Lorenzi Complex Analysis: Conformal Inequalities and the Bierbach Conjecture, Prem K. Kythe Geometric Modeling and Mesh Generation from Scanned Images, Yongjie Zhang Groups, Designs, and Linear Algebra, Donald L. Kreher
Handbook of the Tutte Polynomial, Joanna Anthony Ellis-Monaghan and lain Moffat Line Integral Methods and Their Applications, Luigi Brugnano and Felice laverno Microlocal Analysis on R^n and on NonCompact Manifolds, Sandro Coriasco Practical Guide to Geometric Regulation for Distributed Parameter Systems, Eugenio Aulisa and David S. Gilliam
Reconstructions from the Data of Integrals, Victor Palamodov
Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions, Irina V. Melnikova and Alexei Filinkov

Symmetry and Quantum Mechanics, Scott Corry

Computational Aspects of Polynomial Identities

 Volume 1

 Volume 1

 Kemer's Theorems

 Kemer's Theorems
 2nd Edition

Alexei Kanel-Belov

Bar-Ilan University, Israel
Yakov Karasik
Technion, Israel

Louis Halle Rowen

Bar-Ilan University, Israel

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2016 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20150910
International Standard Book Number-13: 978-1-4987-2009-0 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

[^0]
Contents

Foreword XV
Preface xvii
I Basic Associative PI-Theory 1
1 Basic Results 3
1.1 Preliminary Definitions 4
1.1.1 Matrices 5
1.1.2 Modules 6
1.1.3 Affine algebras 7
1.1.4 The Jacobson radical and Jacobson rings 7
1.1.5 Central localization 9
1.1.6 Chain conditions 9
1.1.7 Subdirect products and irreducible algebras 11
1.1.7.1 ACC for classes of ideals 11
1.2 Noncommutative Polynomials and Identities 13
1.2.1 The free associative algebra 13
1.2.2 Polynomial identities 14
1.2.3 Multilinearization 16
1.2.4 PI -equivalence 18
1.2.5 Alternating polynomials 20
1.2.5.1 Capelli polynomials 21
1.2.6 The action of the symmetric group 22
1.2.6.1 Alternators and symmetrizers 23
1.3 Graded Algebras 24
1.3.1 Grading the free algebra 25
1.3.2 Graded modules 26
1.3.3 Superalgebras 27
1.3.4 Graded ideals and homomorphic images 28
1.3.5 Gradings on matrix algebras 29
1.3.6 The Grassmann algebra 30
1.4 Identities and Central Polynomials of Matrices 32
1.4.1 Standard identities on matricesidentity 35
1.4.2 Central polynomials for matrices 36
1.5 Review of Major Structure Theorems in PI Theory 38
1.5.1 Classical structure theorems 39
1.5.2 Applications of alternating central polynomials 40
1.5.3 Cayley-Hamilton properties of alternating polynomials 42
1.6 Representable Algebras 43
1.6.1 Lewin's Theorems 45
1.6.2 Nonrepresentable algebras 46
1.6.2.1 Bergman's example 47
1.6.3 Representability of affine Noetherian PI-algebras 49
1.6.4 Nil subalgebras of a representable algebra 52
1.7 Sets of Identities 54
1.7.1 The set of identities of an algebra 55
1.7.2 T-ideals and related notions 55
1.7.3 Varieties of algebras 57
1.8 Relatively Free Algebras 57
1.8.1 The algebra of generic matrices 59
1.8.2 Relatively free algebras of f.d. algebras 60
1.8.3 $\quad T$-ideals of relatively free algebras 61
1.8.4 Verifying T-ideals in relatively free algebras 62
1.8.5 Relatively free algebras without 1, and their T-ideals 63
1.8.6 Consequences of identities 63
1.9 Generalized Identities 65
1.9.1 Free products 65
1.9.1.1 The algebra of generalized polynomials 66
1.9.2 The relatively free product modulo a T-ideal 67
1.9.2.1 The grading on the free productfree product and relatively free product 67
Exercises for Chapter 1 68
2 A Few Words Concerning Affine PI-Algebras: Shirshov's Theorem 77
2.1 Words Applied to Affine Algebras 78
2.2 Shirshov's Height Theorem 79
2.3 Shirshov's Lemma 81
2.3.1 Hyperwords, and the hyperword u^{∞} 82
2.4 The Shirshov Program 88
2.5 The Trace Ring 88
2.5.1 The trace ring of a prime algebra 89
2.5.2 The trace ring of a representable algebra 90
2.6 Shirshov's Lemma Revisited 94
2.6.1 Second proof of Shirshov's Lemma 94
2.6.2 Third proof of Shirshov's Lemma: Quasi-periodicity 97
2.7 Appendix A: The Independence Theorem for Hyperwords 99
2.8 Appendix B: A Subexponential Bound for the Shirshov Height 101
2.8.1 Statements of the main results 102
2.8.2 More properties of d-decomposability 104
Exercises for Chapter 2 107
3 Representations of S_{n} and Their Applications 123
3.1 Permutations and Identities 124
3.2 Review of the Representation Theory of S_{n} 126
3.2.1 The structure of group algebras 127
3.2.2 Young's theory 128
3.2.2.1 Diagrams 129
3.2.2.2 Tableaux 129
3.2.2.3 Left ideals 129
3.2.2.4 The Branching Theorem 132
3.2.3 The RSK correspondence 133
3.2.4 Dimension formulas 134
$3.3 \quad S_{n}$-Actions on $T^{n}(V)$ 134
3.4 Codimensions and Regev's Theorem 136
3.4.1 Regev'sRegev Tensor Product Theorem 138
3.4.2 The Kemer-Regev-Amitsur trick 139
3.4.3 Hooks 142
3.5 Multilinearization 143
Exercises for Chapter 3 146
II Affine PI-Algebras 147
4 The Braun-Kemer-Razmyslov Theorem 149
4.1 Structure of the Proof 151
4.2 A Cayley-Hamilton Type Theorem 153
4.2.1 The operator $\delta_{k, t}^{(\vec{x}, n)}$ 154
4.2.2 Zubrilin's Proposition 155
4.2.3 Commutativity of the operators $\delta_{k, h_{j}}^{(n)}$ modulo $\mathcal{C A} \mathcal{P}_{n+1}$ 157
4.2.3.1 The connection to the group algebra of S_{n} 159
4.2.3.2_Proof of Proposition 4.2.9 161
4.3 The Module $\overline{\mathcal{M}}$ over the Relatively Free Algebra $\overline{C\{X, Y, Z\}}$ of c_{n+1} 163
4.4 The Obstruction to Integrality $\operatorname{Obst}_{n}(A) \subseteq A$ 166
4.5 Reduction to Finite Modules 167
4.6 Proving that $\operatorname{Obst}_{n}(A) \cdot\left(\mathcal{C A} \mathcal{P}_{n}(A)\right)^{2}=0$ 168
4.6.1 The module $\overline{\mathcal{M}}_{A}$ over the relatively free product $\overline{C\{X, Y\}} * A$ of c_{n+1} 169
4.6.2 A more formal approach to Zubrilin's argument 169
4.7 The Shirshov Closure and Shirshov Closed Ideals 172
Exercises for Chapter 4 173
5 Kemer's Capelli Theorem 175
5.1 First Proof (Combinatoric) 176
5.1.1 The identity of algebraicity 176
5.1.2 Conclusion of the first proof of Kemer's Capelli Theorem 179
5.2 Second Proof (Pumping Plus Representation Theory) 180
5.2.1 Sparse systems and d-identities 180
5.2.2 Pumping 181
5.2.3 Affine algebras satisfying a sparse system 184
5.2.4 The Representation Theoretic Approach 184
5.2.4.1 The characteristic 0 case 185
5.2.4.2 Actions of the group algebra on sparse systems 186
5.2.4.3 Simple Specht modules in characteristic $p>0$ 187
5.2.4.4 Capelli identities in characteristic p 189
5.2.5 Kemer's Capelli Theorem over Noetherian base rings 189
Exercises for Chapter 5 190
III Specht's Conjecture 195
6 Specht's Problem and Its Solution in the Affine Case (Characteristic 0) 197
6.1 Specht's Problem Posed 198
6.2 Early Results on Specht's Problem 199
6.2.1 Solution of Specht's problem for the Grassmann algebra 201
6.3 Kemer's PI-representability Theorem 203
6.3.1 Finite dimensional algebras 203
6.3.2 Sketch of Kemer's program 205
6.3.3 Theorems used for the proof 207
6.3.4 Full algebras 208
6.4 Multiplying Alternating Polynomials, and the First Kemer Invariant 210
6.4.1 Compatible substitutions 213
6.5 Kemer's First Lemma 214
6.6 Kemer's Second Lemma 216
6.6.1 Computing Kemer polynomials 218
6.6.2 Property K 219
6.6.3 The second Kemer invariant 221
6.7 Significance of Kemer's First and Second Lemmas 224
6.8 Manufacturing Representable Algebras 227
6.8.1 Matching Kemer indices 227
6.9 Kemer's PI-Representability Theorem Concluded 229
6.9.1 Conclusion of proof - Expediting algebras 230
6.10 Specht's Problem Solved for Affine Algebras 232
6.11 Pumping Kemer Polynomials 234
6.12 Appendix: Strong Identities and Specht's Conjecture 236
Exercises for Chapter 6 237
7 Superidentities and Kemer's Solution for Non-Affine Algebras 243
7.1 Superidentities 244
7.1.1 The role of odd elements 246
7.1.2 The Grassmann involution on polynomials 247
7.1.3 The Grassmann envelope 248
7.1.4 The \bullet-action of S_{n} on polynomials 250
7.2 Kemer's Super-PI Representability Theorem 251
7.2.1 The structure of finite dimensional superalgebras 253
7.2.2 Proof of Kemer's Super-PI Representability Theorem 257
7.3 Kemer's Main Theorem Concluded 263
7.4 Consequences of Kemer's Theory 264
7.4.1 $\quad T$-ideals of relatively free algebras 264
7.4.2 Verbal ideals of algebras 267
7.4.3 Standard identities versus Capelli identities 269
7.4.4 Specht's problem for T-spaces 271
Exercises for Chapter 7 272
8 Trace Identities 275
8.1 Trace Polynomials and Identities 275
8.1.1 The Kostant-Schur trace formula 278
8.1.2 Pure trace polynomials 281
8.1.3 Mixed trace polynomials 282
8.2 Finite Generation of Trace T-Ideals 284
8.3 Trace Codimensions 286
8.4 Kemer's Matrix Identity Theorem in Characteristic p 288
Exercises for Chapter 8 289
9 PI-Counterexamples in Characteristic p 291
9.1 De-multilinearization 291
9.2 The Extended Grassmann Algebra 293
9.2.1 Computing in the Grassmann and extended Grassmann algebras 297
9.3 Non-Finitely Based T-Ideals in Characteristic 2 298
9.3.1 T-spaces evaluated on the extended Grassmann algebra 300
9.3.2 Another counterexample in characteristic 2 301
9.4 Non-Finitely Based T-Ideals in Odd Characteristic 303
9.4.1 Superidentities of the Grassmann algebras 303
9.4.2 The test algebra A 304
9.4.3 Shchigolev's non-finitely based T-space 306
9.4.4 The next test algebra 315
9.4.5 The counterexample 317
9.4.5.1 Specializations to words 317
9.4.5.2 Partial linearizations 318
9.4.5.3 Verification of the counterexample 319
Exercises for Chapter 9 320
10 Recent Structural Results 323
10.1 Left Noetherian PI-Algebras 323
10.1.1 Proof of Theorem 10.1.2 326
10.2 Identities of Group Algebras 328
10.3 Identities of Enveloping Algebras 330
Exercises for Chapter 10 331
11 Poincaré-Hilbert Series and Gel'fand-Kirillov Dimension 333
11.1 The Hilbert Series of an Algebra 333
11.1.1 Monomial algebras 336
11.2 The Gel'fand-Kirillov Dimension 336
11.2.1 Bergman's gap 337
11.2.2 Examples of affine algebras and their GK dimensions 339
11.2.2.1 Affinization 340
11.2.2.2 GK dimension of monomial algebras 340
11.2.3 Affine algebras that have integer GK dimension 341
11.2.4 The Shirshov height and GK dimension 343
11.2.5 Other upper bounds for GK dimension 346
11.3 Rationality of Certain Hilbert Series 347
11.3.1 Hilbert series of relatively free algebras 349
11.4 The Multivariate Poincaré-Hilbert Series 351
Exercises for Chapter 11 352
12 More Representation Theory 359
12.1 Cocharacters 360
12.1.1 A hook theorem for the cocharacters 361
12.2 $G L(V)$-Representation Theory 362
12.2.1 Applying the Double Centralizer Theorem 363
12.2.2 Weyl modules 365
12.2.3 Homogeneous identities 367
12.2.4 Multilinear and homogeneous multiplicities and cocharacters 367
Exercises for Chapter 12 369
IV Supplementary Material 371
List of Theorems 373
Theorems for Chapter 1 373
Theorems for Chapter 2 374
Theorems for Chapter 3 375
Theorems for Chapter 4 377
Theorems for Chapter 5 378
Theorems for Chapter 6 379
Theorems for Chapter 7 380
Theorems for Chapter 8 382
Theorems for Chapter 9 383
Theorems for Chapter 10 383
Theorems for Chapter 11 384
Theorems for Chapter 12 384
Some Open Questions 387
Bibliography 391
Author Index 409
Subject Index 411

Foreword

The motivation of this second edition is quite simple: As proofs of PI-theorems have become more technical and esoteric, several researchers have become dubious of the theory, impinging on its value in mathematics. This is unfortunate, since a closer investigation of the proofs attests to their wealth of ideas and vitality. So our main goal is to enable the community of researchers and students to absorb the underlying ideas in recent PI-theory and confirm their veracity.

Our main purpose in writing the first edition was to make accessible the intricacies involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0 . The proof being sketchy in places in the original edition, we have undertaken to fill in all the details in the first volume of this revised edition.

In the first edition we expressed our gratitude to Amitai Regev, one of the founders of the combinatoric PI-theory. In this revision, again we would like to thank Regev, for discussions resulting in a tighter formulation of Zubrilin's theory. Earlier, we thanked Leonid Bokut for suggesting this project, and Klaus Peters for his friendly persistence in encouraging us to complete the manuscript, and Charlotte Henderson at AK Peters for her patient help at the editorial stage.

Now we would also like to Rob Stern and Sarfraz Khan of Taylor and Francis for their support in the continuation of this project. Mathematically, we are grateful to Lance Small for the more direct proof (and attribution) of the Wehrfritz-Beidar theorem and other suggestions, and also for his encouragement for us to proceed with this revision. Eli Aljadeff provided much help concerning locating and filling gaps in the proof of Kemer's difficult PIrepresentability theorem, including supplying an early version of his write-up with Belov and Karasik. Uzi Vishne went over the entire draft and provided many improvements. Finally, thanks again to Miriam Beller for her invaluable assistance in technical assistance for this revised edition.

This research of the authors was supported by the Israel Science Foundation (Grant no. 1207/12).

Preface

An identity of an associative algebra A is a noncommuting polynomial that vanishes identically on all substitutions in A. For example, A is commutative iff $a b-b a=0, \forall a, b \in A$, iff $x y-y x$ is an identity of A. An identity is called a polynomial identity (PI) if at least one of its coefficients is ± 1. Thus in some sense PIs generalize commutativity.

Historically, PI-theory arose first in a paper of Dehn [De22], whose goal was to translate intersection theorems for a Desarguian plane to polynomial conditions on its underlying division algebra D, and thereby classify geometries that lie between the Desarguian and Pappian axioms (the latter of which requires D to be commutative). Although Dehn's project was only concluded much later by Amitsur [Am66], who modified Dehn's original idea, the idea of PIs had been planted.

Wagner [Wag37] showed that any matrix algebra over a field satisfies a PI. Since PIs pass to subalgebras, this showed that every algebra with a faithful representation into matrices is a PI-algebra, and opened the door to representation theory via PIs. In particular, one of our main objects of study are representable algebras, i.e., algebras that can be embedded into an algebra of matrices over a suitable field.

But whereas a homomorphic image of a representable algebra need not be representable, PIs do pass to homomorphic images. In fact, PIs also can be viewed as the atomic universal elementary sentences satisfied by algebras. Consider the class of all algebras satisfying a given set of identities. This class is closed under taking subalgebras, homomorphic images, and direct products; any such class of algebras is called a variety of algebras. Varieties of algebras were studied in the 1930s by Birkhoff [Bir35] and Mal'tsev [Mal36], thereby linking PI-theory to logic, especially through the use of constructions such as ultraproducts.

In this spirit, one can study an algebra through the set of all its identities, which turns out to be an ideal of the free algebra, called a T-ideal. Specht [Sp50] conjectured that any such T-ideal is a consequence of a finite number of identities. Specht's conjecture turned out to be very difficult, and became the hallmark problem in the theory. Kemer's positive solution [Kem87] (in characteristic 0) is a tour de force that involved most of the theorems then known in PI-theory, in conjunction with several new techniques such as the use of superidentities. But various basic questions remain, such as finding an explicit set of generators for the T-ideal of 3×3 matrices!

Another very important tool, discovered by Regev, is a way of describing identities of a given degree n in terms of the group algebra of the symmetric group S_{n}. This led to the asymptotic theory of codimensions, one of the most active areas of research today in PI-theory.

Motivated by an observation of Wagner [Wag37] and M. Hall [Ha43] that the polynomial $(x y-y x)^{2}$ evaluated on 2×2 matrices takes on only scalar values, Kaplansky asked whether arbitrary matrix algebras have such "central" polynomials; in 1972, Formanek [For72] and Razmyslov [Raz72] discovered such polynomials on arbitrary $n \times n$ matrices. This led to the introduction of techniques from commutative algebra to PI-theory, culminating in a beautiful structure theory with applications to central simple algebras, and (more generally) Azumaya algebras.

While the interplay with the commutative structure theory was one of the main focuses of interest in the West, the Russian school was developing quite differently, in a formal combinatorial direction, often using the polynomial identity as a tool in word reduction. The Iron Curtain and language barrier impeded communication in the formative years of the subject, as illustrated most effectively in the parallel histories of Kurosh's problem, whether or not finitely generated (i.e., affine) algebraic algebras need be finite dimensional. This problem was of great interest in the 1940's to the pioneers of the structure theory of associative rings - Jacobson, Kaplansky, and Levitzki - who saw it as a challenge to find a suitable class of algebras which would be amenable to their techniques. Levitzki proved the result for algebraic algebras of bounded index, Jacobson observed that these are examples of PI-algebras, and Kaplansky completed the circle of ideas by solving Kurosh's problem for PI-algebras. Meanwhile Shirshov, in Russia, saw Kurosh's problem from a completely different combinatorial perspective, and his solution was so independent of the associative structure theory that it also applied to alternative and Jordan algebras. (This is evidenced by the title of his article, "On some nonassociative nil-rings and algebraic algebras," which remained unread in the West for years.)

A similar instance is the question of the nilpotence of the Jacobson radical J of an affine PI-algebra A, demonstrated in Chapter 2. Amitsur had proved the local nilpotence of J, and had shown that J is nilpotent in some cases. There is an easy argument to show that J is nilpotent when A is representable, but the general case is much harder to resolve. By a brilliant but rather condensed analysis of the properties of the Capelli polynomial, Razmyslov proved that J is nilpotent whenever A satisfies a Capelli identity, and Kemer [Kem80] verified that any affine algebra in characteristic 0 indeed satisfies a Capelli identity. Soon thereafter, Braun found a characteristic-free proof that was mostly structure theoretical, employing a series of reductions to Azumaya algebras, for which the assertion is obvious.

There is an analog in algebraic geometry. Whereas affine varieties are the subsets of a given space that are solutions of a system of algebraic equations, i.e., the zeroes of a given ideal of the algebra $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ of commutative
polynomials, PI-algebras yield 0 when substituted into a given T-ideal of noncommutative polynomials. Thus, the role of radical ideals of $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ in commutative algebraic geometry is analogous to the role of T-ideals of the free algebra, and the coordinate algebra of algebraic geometry is analogous to the relatively free PI-algebra. Hilbert's Basis theorem says that every ideal of the polynomial algebra $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ is finitely generated as an ideal, so Specht's conjecture is the PI-analog viewed in this light.

The introduction of noncommutative polynomials vanishing on A intrinsically involves a sort of noncommutative algebraic geometry, which has been studied from several vantage points, most notably the coordinate algebra, which is an affine PI-algebra. This approach is described in the seminal paper of Artin and Schelter [ArSc81].

Starting with Herstein [Her68] and [Her71], many expositions already have been published about PI-theory, including a book [Ro80] and a chapter in [Ro88b, Chapter 6] by one of the coauthors (relying heavily on the structure theory), as well as books and monographs by leading researchers, including Procesi [Pro73], Jacobson [Jac75], Kemer [Kem91], Razmyslov [Raz89], Formanek [For91], Bakhturin [Ba91], Belov, Borisenko, and Latyshev [BelBL97], Drensky [Dr00], Drensky and Formanek [DrFor04], and Giambruno and Zaicev [GiZa05].

Our motivation in writing the first edition was that some of the important advances in the end of the 20th century, largely combinatoric, still remained accessible only to experts (at best), and this limited the exposure of the more advanced aspects of PI-theory to the general mathematical community. Our primary goal in the original edition was to present a full proof of Kemer's solution to Specht's conjecture (in characteristic 0) as quickly and comprehensibly as we could.

Our objective in this revision is to provide further details for these breakthroughs. The motivating result is Kemer's solution of Specht's conjecture in characteristic 0 ; the first seven chapters of this book are devoted to the theory needed for its proof, including the featured role of the Grassmann algebra and the translation to superalgebras (which also has considerable impact on the structure theory of PI-algebras). From this point of view, the reader will find some overlap with [Kem91]. Although the framework of the proof is the same as for Kemer's proof, based on what we call the Kemer index of a PI-algebra, there are significant divergences; in the proof given here, we also stay more within the PI context. This approach enables us to develop Kemer polynomials for arbitrary varieties, as a tool for proving diverse theorems in later chapters, and also lays the groundwork for analogous theorems that have been proved recently for Lie algebras and alternative algebras, to be handled in Volume II. ([Ilt03] treats the Lie case.) In this revised edition, we add more explanation and detail, especially concerning Zubrilin's theory in Chapter 2 and Kemer's PI-representability theorem in Chapter 6. In Chapter 9, we present counterexamples to Specht's conjecture in characteristic p, as well as their underlying theory.

More recently, positive answers to Specht's conjecture along the lines of Kemer's theory have been found for graded algebras (Aljadeff-Belov [AB10]), algebras with involution, graded algebras with involution, and, more generally, algebras with a Hopf action, which we include in Volume II.

Other topics are delayed until after Chapter 9. These topics include Noetherian PI-algebras, Poincaré-Hilbert series, Gelfand-Kirillov dimension, the combinatoric theory of affine PI-algebras, and description of homogeneous identities in terms of the representation theory of the general linear group GL. In the process, we also develop some newer techniques, such as the "pumping procedure." Asymptotic results are considered more briefly, since the reader should be able to find them in the book of Giambruno and Zaicev [GiZa05].

Since most of the combinatorics needed in these proofs do not require structure theory, there is no need for us to develop many of the famous results of a structural nature. But we felt these should be included somewhere in order to provide balance, so we have listed them in Section 1.6, without proof, and with a different indexing scheme (Theorem A, Theorem B, and so forth). The proofs are to be found in most standard expositions of PI-theory.

Although we aim mostly for direct proofs, we also introduce technical machinery to pave the way for further advances. One general word of caution is that the combinatoric PI-theory often follows a certain Heisenberg principle - complexity of the proof times the manageability of the quantity computed is bounded below by a constant. One can prove rather quickly that affine PI-algebras have finite Shirshov height and satisfy a Capelli identity (thereby leading to the nilpotence of the radical), but the bounds are so high as to make them impractical for making computations. On the other hand, more reasonable bounds now available are for these quantities, but the proofs become highly technical.

Our treatment largely follows the development of PI-theory via the following chain of generalizations:

1. Commutative algebra (taken as given)
2. Matrix algebras (references quoted)
3. Prime PI-algebras (references usually quoted)
4. Subrings of finite dimensional algebras
5. Algebras satisfying a Capelli identity
6. Algebras satisfying a sparse system
7. Algebras satisfying R-Z identities
8. PI-algebras in terms of Kemer polynomials (the most general case)

The theory of Kemer polynomials, which is embedded in Kemer's proof of Specht's conjecture, shows that the techniques of finite dimensional algebras
are available for all affine PI-algebras, and perhaps the overriding motivation of this revision is to make these techniques more widely accepted.

Another recurring theme is the Grassmann algebra, which appears first in Rosset's proof of the Amitsur-Levitzki theorem, then as the easiest example of a finitely based T-ideal (generated by the single identity $\left[\left[x_{1}, x_{2}\right], x_{3}\right]$), later in the link between algebras and superalgebras, and finally as a test algebra for counterexamples in characteristic p.

Enumeration of Results

The text is subdivided into chapters, sections, and at times subsections. Thus, Section 9.4 denotes Section 4 of Chapter 9; Section 9.4.1 denotes subsection 1 of Section 9.4. The results are enumerated independently of these subdivisions. Except in Section 1.6, which has its own numbering system, all results are enumerated according to chapter only; for example, Theorem 6.13 is the thirteenth item in Chapter 6, preceded by Definition 6.12. The exercises are listed at the end of each chapter. When referring in the text to an exercise belonging to the same chapter we suppress the chapter number; for example, in Chapter 9, Exercise 9.12 is called "Exercise 12," although in any other chapter it would have the full designation "Exercise 9.12."

Symbol Description

Due to the finiteness of the English and Greek alphabets, some symbols have multiple uses. For example, in Chapters 2 and 11, μ denotes the Shirshov height, whereas in Chapter 6 and $7, \mu$ is used for the number of certain folds in a Kemer polynomial. We have tried our best to recycle symbols only in unambiguous situations. The symbols are listed in order of first occurrence.

Chapter 1

p. 4: \mathbb{N}	The natural numbers (including 0)
\mathbb{Z} / n	The ring $\mathbb{Z} / n \mathbb{Z}$ of integers modulo n
$\operatorname{Cent}(A)$	The center of an algebra A
[a, b]	The ring commutator $a b-b a$
S_{n}	The symmetric group
$\operatorname{sgn}(\pi)$	The sign of the permutation π
p. 5: C [λ]	The commutative algebra of polynomials over C
$C[a]$	The C-subalgebra of A generated by a
$M_{n}(A)$	The algebra of $n \times n$ matrices over A
p. 6: $\delta_{i j}$	The Kronecker delta
tr	The trace
$A^{\text {op }}$	The opposite algebra
p. 7: $\operatorname{Jac}(A)$	The Jacobson radical of A
p. 9: $S^{-1} A$	The localization of A at a central submonoid A
p. 12: \sqrt{S}	The radical of a subset S of A
p. 13: $\mathcal{M}\{X\}$	The word monoid on the set of letters X
$f\left(x_{1}, \ldots, x_{m}\right), f(\vec{x})$	The polynomial f in indeterminates x_{1}, \ldots, x_{m}
p. 14: $f(A)$	The set of evaluations of a polynomial f in an algebra A
$\mathrm{id}(A)$	The set of identities of A
p. 15: $\operatorname{deg} f$	The degree of a polynomial f
$\mathrm{UT}(n)$	The set of upper triangular $n \times n$ matrices
p. 16: $\Delta_{i} f$	The multilinearization step of f in x_{i}
p. 18: \tilde{s}_{n}	The symmetric polynomial in n letters
$A_{1} \sim_{\text {PI }} A_{2}$	A_{1} and A_{2} satisfy the same identities
p. 20: s_{t}	The standard polynomial (on t letters)
c_{t}	The Capelli polynomial (on t letters)
p. 22: πf	The left action of a permutation π on a polynomial f
p. 23: $f_{\mathcal{A}\left(i_{1}, \ldots, i_{t} ; X\right)}$	The alternator of f with respect to the indeterminates $x_{i_{1}}, \ldots, x_{i_{t}}$
\tilde{f}	The symmetrizer of a multilinear polynomial f
p. 24: A_{g}	The g-component of the graded algebra A

p. 25: $F[\Lambda], F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$
$T(V)$
$T^{n}(V)$
p. $29 G$
e_{1}, e_{2}, \ldots
G_{0}
G_{1}
p. 38: $\operatorname{Nil}(A)$
p. 39: $\mathcal{M}_{n, F}$
\mathcal{M}_{n}
p. $45: \mathrm{UT}\left(n_{1}, \ldots, n_{q}\right)$
p. $54: \operatorname{id}(\mathcal{S})$
p. $56: U_{\mathcal{I}}$
p. 57: U_{A}
p. 59: $F\{Y\}_{n}$
$F(\Lambda)$
$\mathrm{UD}(n, F)$
$A *_{C} B$
$A\langle X\rangle$
$A\langle X\rangle_{\text {I }}$

Chapter 2

p. $78:$| p. $79:$ | $\underset{W_{\mu}}{\|w\|}$ |
| ---: | :--- |
| | |

p. 80: $\mu=\mu(A)$
p. 81: $\beta(\ell, k, d)$
p. $83: u^{\infty}$
p. $84: \beta(\ell, k, d, h)$
p. $88,92: \hat{A}$
p. 96: $\delta(x v)$
p. 99: $\bar{h}=0$
p. $108-110: \Omega, B^{p}(i), L(j), \psi(p)$
p. 111-112: $\Omega^{\prime}, C^{q}(i), \phi(q)$

The commutative polynomial algebra in several indeterminates
The tensor algebra of a vector space V
The n-homogeneous component of $T(V)$
The Grassmann algebra, usually in an infinite set of letters
The standard base of the Grassmann algebra G
The odd elements of G
The even elements of G
The sum of the nil left ideals of A
The identities of $M_{n}(F)$
The identities of $M_{n}(\mathbb{Q})$
The $\left(n_{1}, \ldots, n_{q}\right)$-block upper triangular matrices
The identities common to a class \mathcal{S} of algebras
The relatively free algebra of a T-ideal \mathcal{I}
The relatively free algebra of an algebra A
The algebra of generic $n \times n$ matrices
The field of fractions of $F[\Lambda]$
The generic division algebra of degree n
The free product of A and B over C
The free product $A *_{C} C\{X\}$
The relatively free product modulo a T ideal

The length of a word w
The Shirshov words of height $\leq \mu$ over W
The lexicographic order on words
The image of a word w in $C\left\{a_{1}, \ldots, a_{\ell}\right\}$, under the canonical specialization $x_{i} \mapsto a_{i}$
The Shirshov height of an affine PI-algebra
The Shirshov bound for an affine algebra $C\left\{a_{1}, \ldots, a_{\ell}\right\}$ of PI-degree d
The infinite periodic hyperword with period u
The Shirshov bound for a given hyperword h evaluated on the algebra A
The trace ring of a representable algebra A
The cyclic shift
The image of a hyperword being 0
Used in the proof of Theorem 2.8.3
Used in the proof of Theorem 2.8.4
xxiv
p. 113: $\Phi(d, \ell)$

Chapter 3

p. 124: V_{n}

$$
\begin{aligned}
& M_{\sigma}\left(x_{1}, \ldots, x_{n}\right) \\
& \sigma M_{\pi} \\
& M_{\sigma} \pi
\end{aligned}
$$

p. 125: Γ_{n}
p. 126: $f^{*}\left(x_{1}, \ldots, x_{n} ; x_{n+1}, \ldots\right)$
p. 128: $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$
p. 129: $\mu>\lambda$
s^{λ}
p. 132: $\chi^{\lambda} \uparrow$
$\chi^{\mu} \downarrow$
p. 133: $g_{d}(n)$
p. 134: $\operatorname{Disc}_{k}(\xi)$
$E_{n, k}$
p. 135: $\hat{\sigma}$
$\varphi_{n, k}$
$A(n, k)$
p. 137: $c_{n}(A)$
p. 142: $H(k, \ell ; n)$
p. 144: L

Chapter 4
p. 154: $\overline{C\{X, Y, Z\}}$
p. 156: $\delta^{(\vec{x}, n)}$
p. 159: DCap_{n} s
p. 165: \mathcal{M}
p. 168: $\operatorname{Obst}_{n}(A)$
p. 172: $\mathcal{D C A} \mathcal{P}_{n}$
φ_{w}

Used in the proof of Theorem 2.8.5

The space of multilinear polynomials of degree n
The monomial corresponding to a given permutation
The left action of a permutation σ on a monomial M_{π}
The right action of a permutation π on a monomial M_{σ}
The space of multilinear identities of A having degree n
Capelli-type polynomial
A partition
Partial order on partitions
Number of standard tableaux of shape λ
The induced character
The restricted character
The number of d-good permutations in S_{n}
The discriminant
$\operatorname{End}_{F}\left(T^{n}(V)\right)$
The operator of $E_{n, k}$ corresponding to σ
The map $\sigma \mapsto \hat{\sigma}$
The image of $F\left[S_{n}\right]$ under $\hat{\sigma}$
The n codimension of A
The collection of shapes whose $k+1$ row have length $\leq \ell$
The multilinearization operator

The relatively free algebra of c_{n+1}
Zubrilin's operator
The double Capelli polynomial

The module of doubly alternating polynomials
The obstruction to integrality
The module generated by double Capelli polynomials
A map containing w in the image

Chapter 5

p. 178: V_{n}

The space spanned by all monomials in y_{1}, \ldots, y_{n}, t which are linear in y_{1}, \ldots, y_{n}
$V_{n, \pi} \quad$ The subspace in which the variables y_{1}, \ldots, y_{n} occur in the order $y_{\pi(1)}, \ldots, y_{\pi(n)}$
$\operatorname{Ad}_{\ell k}^{t}$
p. 179: D^{t}
p. 188: $\mathcal{C}_{T}, \mathcal{R}_{T}$ The transformation $V_{n} \rightarrow V_{n}$ used to define the identity of algebraicity
The identity of algebraicity

The set of column (resp. row) permutations of the tableau T

Chapter 6

p. 206: $A=R_{1} \oplus \cdots \oplus R_{q} \oplus J \quad$ The Wedderburn decomposition of a f.d. algebra A over an algebraically closed field
$t_{A} \quad$ The dimension of the semisimple part of a finite dimensional algebra A
$s_{A} \quad$ The nilpotence index of the Jacobson radical of a finite dimensional algebra A
p. 214: $\beta(A)$
p. 216: $\tilde{f}_{X_{1}, \ldots, X_{\mu}}$
p. 218: $\gamma(A)$
index $(W),(\beta(W), \gamma(W)) \quad$ The Kemer index of a PI-algebra W
index $(\Gamma) \quad$ The Kemer index of a T-ideal Γ
p. 221: $f_{\mathcal{A}\left(I_{1}\right) \ldots \mathcal{A}\left(I_{s}\right) \mathcal{A}\left(I_{s+1}\right) \ldots \mathcal{A}\left(I_{s+\mu}\right)}$ The μ-fold multiple alternator
p. 222: $\hat{A}_{u}, \hat{A}_{u, \nu}, \hat{A}_{u, \nu ; \Gamma} \quad$ The u-generic algebra

Chapter 7

p. 249: p_{I}^{*}

The Grassmann involution
p. 250: $G(A)$

The Grassmann envelope
p. 252: $\operatorname{Odd}(x)$

The number of odd components of a vector
$\sigma \bullet\left(x_{1} \cdots x_{n}\right) \quad$ The odd action on the Grassmann algebra
$\varepsilon(\sigma, I)$
p. 260: index ${ }_{2} A$
p. 261: $\hat{A}_{u, \nu ; \Gamma}$

Used to compute the odd action
The Kemer superindex
The u-generic superalgebra of A

Chapter 8

p. 277: tr
p. 279: V^{*}

Chapter 9

p. 295: G^{+}
p. 303: P_{n}
p. 309: \tilde{A}
p. 317: \hat{A}
p. 318: Q_{n}

The extended Grassmann algebra
The polynomials generating a non-finitely based T-space in characteristic 2
The test space
The test algebra
The polynomials generating a non-finitely based T-ideal in odd characteristic

Chapter 10
p. 332: $F\left[S_{n}\right]$
Δ
p. 334: $U(L)$

Chapter 11

p. 338: H_{A}, H_{M}
p. 340: GKdim
p. 350: $H_{A ; V}, H_{M ; V}$

Chapter 12
p. 364: $\chi_{n}(A)$
p. 366: $G L(V)$

The group algebra
The subgroup of elements of G having finitely many conjugates.
The enveloping algebra of a Lie algebra L

The Hilbert series of an algebra or module The Gelfand-Kirillov dimension
The Hilbert series with respect to V

The cocharacter
The general linear group

Part I

Basic Associative PI-Theory

Chapter 1

Basic Results

1.1 Preliminary Definitions 4
1.1.1 Matrices 5
1.1.2 Modules 6
1.1.3 Affine algebras 7
1.1.4 The Jacobson radical and Jacobson rings 7
1.1.5 Central localization 9
1.1.6 Chain conditions 9
1.1.7 Subdirect products and irreducible algebras 11
1.1.7.1 \quad ACC for classes of ideals 11
1.2 Noncommutative Polynomials and Identities 13
1.2.1 The free associative algebra 13
1.2.2 Polynomial identities 14
1.2.3 Multilinearization 16
1.2.4 $\quad \mathrm{PI}$-equivalence 18
1.2.5 Alternating polynomials 20
1.2.5.1 Capelli polynomials 21
1.2.6 The action of the symmetric group 22
1.2.6.1 Alternators and symmetrizers 23
1.3 Graded Algebras 24
1.3.1 Grading the free algebra 25
1.3.2 Graded modules 26
1.3.3 Superalgebras 27
1.3.4 Graded ideals and homomorphic images 28
1.3.5 Gradings on matrix algebras 29
1.3.6 The Grassmann algebra 30
1.4 Identities and Central Polynomials of Matrices 32
1.4.1 Standard identities on matricesidentity 35
1.4.2 Central polynomials for matrices 36
1.5 Review of Major Structure Theorems in PI Theory 38
1.5.1 Classical structure theorems 39
1.5.2 Applications of alternating central polynomials 40
1.5.3 Cayley-Hamilton properties of alternating polynomials 42
1.6 Representable Algebras 43
1.6.1 Lewin's Theorems 45
1.6.2 Nonrepresentable algebras 46
1.6.2.1 Bergman's example 47
1.6.3 Representability of affine Noetherian PI-algebras 49
1.6.4 Nil subalgebras of a representable algebra 52
1.7 Sets of Identities 54
1.7.1 The set of identities of an algebra 55
1.7.2 T-ideals and related notions 55
1.7.3 Varieties of algebras 57
1.8 Relatively Free Algebras 57
1.8.1 The algebra of generic matrices 59
1.8.2 Relatively free algebras of f.d. algebras 60
1.8.3 $\quad T$-ideals of relatively free algebras 61
1.8.4 Verifying T-ideals in relatively free algebras 62
1.8.5 Relatively free algebras without 1 , and their T-ideals 63
1.8.6 Consequences of identities 63
1.9 Generalized Identities 65
1.9.1 Free products 65
1.9.1.1 The algebra of generalized polynomials 66
1.9.2 The relatively free product modulo a T-ideal 67
1.9.2.1 The grading on the free productfree product and relatively free product 67
Exercises for Chapter 1 68

In this chapter, we introduce PI-algebras and review some well-known results and techniques, most of which are associated with the structure theory of algebras. In this way, the tenor of this chapter is different from that of the subsequent chapters. The emphasis is on matrix algebras and their subalgebras (called representable PI-algebras) .

1.1 Preliminary Definitions

\mathbb{N} denotes the natural numbers (including 0). \mathbb{Z} / n denotes the ring of integers modulo n. Throughout, C denotes a commutative ring (often a field). Finite dimensional algebras over a field are so important that we often use the abbreviation f.d. for them. For any algebra A, $\operatorname{Cent}(A)$ denotes the center of A. Given elements a, b of an algebra A, we define $[a, b]=a b-b a . S_{n}$ denotes the symmetric group, i.e., the permutations on $\{1, \ldots, n\}$, and we denote typical permutations as σ or π. We write $\operatorname{sgn}(\pi)$ for the sign of a permutation π.

We often quote standard results about commutative algebras from [Ro05]. We also assume that the reader is familiar with prime and semiprime algebras, and prime ideals. Although the first edition dealt mostly with algebras over a field, the same proofs often work for algebras over a commutative ring C, so we have shifted to that generality.

Remark 1.1.1. There is a standard way of adjoining 1 to a C-algebra A without 1, by replacing A by the C-module $A_{1}:=A \oplus C$, made into an algebra by defining multiplication as

$$
\left(a_{1}, c_{1}\right)\left(a_{2}, c_{2}\right)=\left(a_{1} a_{2}+c_{1} a_{2}+c_{2} a_{1}, c_{1} c_{2}\right)
$$

We can embed A as an ideal of A_{1} via the identification $a \mapsto(a, 0)$, and likewise every ideal of A can be viewed as an ideal of A_{1}.

This enables us to reduce most of our major questions about associative algebras to algebras with 1. Occasionally, we will discuss this procedure in more detail, since one could have difficulties with rings without 1; clearly, if $A^{2}=0$ we do not have $A_{1}^{2}=0$.

In this volume, unless otherwise indicated, an algebra A over C is assumed to be associative with a unit element 1 . We will be more discriminating in Volume II, which deals with nonassociative algebras such as Lie algebras.

An element $a \in A$ is algebraic (over C) if a is a root of some nonzero polynomial $f \in C[\lambda]$; we say that $a \in A$ is integral if f can be taken to be monic. In this case $C[a]$ is a finite module over C. The algebra A is integral over C if each element of A is integral.

An element $a \in A$ is nilpotent if $a^{k}=0$ for some $k \in \mathbb{N}$. An ideal \mathcal{I} of A is nil if each element is nilpotent; \mathcal{I} is nilpotent of index k if $\mathcal{I}^{k}=0$ with $\mathcal{I}^{k-1} \neq 0$. One of the basic questions addressed in ring theory is which nil ideals are nilpotent.

Definition 1.1.2. An element $e \in A$ is idempotent if $e^{2}=e$; the trivial idempotents are 0,1 .

Idempotents e_{1} and e_{2} are orthogonal if $e_{1} e_{2}=e_{2} e_{1}=0$. An idempotent $e=e^{2}$ is primitive if e cannot be written $e=e_{1}+e_{2}$ for orthogonal idempotents $e_{1}, e_{2} \neq 0$.

Remark 1.1.3. Given a nontrivial idempotent e of A, and letting $e^{\prime}=1-e$, we recall the Peirce decomposition

$$
\begin{equation*}
A=e A e \oplus e A e^{\prime} \oplus e^{\prime} A e \oplus e^{\prime} A e^{\prime} \tag{1.1}
\end{equation*}
$$

Note that $e A e, e^{\prime} A e^{\prime}$ are algebras with respective multiplicative units e, e^{\prime}. If $e A e^{\prime}=e^{\prime} A e=0$, then $A \cong e A e \times e^{\prime} A e^{\prime}$.

The Peirce decomposition can be extended in the natural way, when we write $1=\sum_{i=1^{t}} e_{i}$ as a sum of orthogonal idempotents, usually taken to be primitive. Now $A=\oplus_{i=1}^{t} e_{i} A e_{j}$. The Peirce decomposition is formulated for algebras without 1 in Exercises 1 and 6.8.

1.1.1 Matrices

$M_{n}(A)$ denotes the algebra of $n \times n$ matrices with entries in A, and $e_{i j}$ denotes the matrix unit having 1 in the i, j position and 0 elsewhere. The
set of $n \times n$ matrix units $\left\{e_{i j}: 1 \leq i, j \leq n\right\}$ satisfy the properties:

$$
\begin{gathered}
\sum_{i=1}^{n} e_{i i}=1, \\
e_{i j} e_{k \ell}=\delta_{j k} e_{i \ell}
\end{gathered}
$$

where $\delta_{j k}$ denotes the Kronecker delta (which is 1 if $j=k, 0$ otherwise). Thus, the $e_{i i}$ are idempotents.

One of our main tools in matrices is the trace function.
Definition 1.1.4. For any C-algebra A, and fixed n, a trace function is a C-linear map $\operatorname{tr}: A \rightarrow \operatorname{Cent}(A)$ satisfying

$$
\operatorname{tr}(a b)=\operatorname{tr}(b a), \quad \operatorname{tr}(a \operatorname{tr}(b))=\operatorname{tr}(a) \operatorname{tr}(b), \quad \forall a, b \in A
$$

It follows readily that

$$
\operatorname{tr}\left(a_{1} \ldots a_{k}\right)=\operatorname{tr}\left(\left(a_{1} \ldots a_{k-1}\right) a_{k}\right)=\operatorname{tr}\left(a_{k} a_{1} \ldots a_{k-1}\right)
$$

for any k.
Of course the main example is $\operatorname{tr}: M_{n}(C) \rightarrow C$ given by $\operatorname{tr}\left(\left(c_{i j}\right)\right)=\sum c_{i i}$; here $\operatorname{tr}(1)=n$.

Remark 1.1.5. The trace satisfies the "nondegeneracy" property that if $\operatorname{tr}(a b)=0$ for all $b \in A$, then $b=0$.

Definition 1.1.6. Over a commutative ring C, the Vandermonde matrix of elements $c_{1}, \ldots, c_{n} \in C$ is the matrix $\left(c_{i}^{j-1}\right)$.

Remark 1.1.7. When c_{1}, \ldots, c_{n} are distinct, the Vandermonde matrix is nonsingular, with determinant $\prod_{1 \leq i<k \leq n}\left(c_{k}-c_{i}\right)$, cf. [Ro05, Example 0.9]. This gives rise to the famous Vandermonde argument, which says that if $\sum_{j=0}^{n-1} c_{i}^{j} a_{j}=0$ for each $1 \leq i \leq n$, then each $a_{j}=0$. The Vandermonde argument occurs repeatedly in proofs in PI theory.
A^{op} denotes the opposite algebra, which has the same algebra structure except with the new multiplication \cdot in A reversed, i.e., $a \cdot b=b a$. In particular, $C^{\mathrm{op}}=C$, and $M_{n}(C) \cong M_{n}(C)^{\mathrm{op}}$ via the transpose map.

1.1.2 Modules

We assume the basic properties of modules. We often consider the submodule of an A-module M spanned or generated by a given subset of M. We say that M is finitely generated, denoted by f.g., if $M=\sum_{i=1}^{t} A w_{i}$ for suitable $w_{i} \in M, t \in \mathbb{N}$. In this case, to avoid confusion with other notions of "generated," we usually say that M is finite over A. A module is finitely presented over A if it has the form M / N, where M and N are both finite over A.

For C-algebras A_{1} and A_{2}, an A_{1}, A_{2} bimodule is a (left) A_{1}-module M which is also a right A_{2}-module and a module over C, satisfying the extra associativity condition

$$
\left(a_{1} y\right) a_{2}=a_{1}\left(y a_{2}\right), \quad \forall a_{i} \in A_{i}, y \in M
$$

as well as the scalar condition

$$
c y=(c 1) y=y(c 1), \quad \forall c \in C, y \in M
$$

Thus, the A_{1}, A_{2} bimodules correspond to the $A_{1} \otimes_{C} A_{2}^{\mathrm{op}}$-modules. In particular, the sub-bimodules of an algebra A are precisely its ideals.

1.1.3 Affine algebras

Our main interest arises in the following important class of algebras:
Definition 1.1.8. An algebra A is affine over the commutative ring C if A is generated as an algebra over C by a finite number of elements $a_{1}, \ldots, a_{\ell} ;$ in this case we write $A=C\left\{a_{1}, \ldots, a_{\ell}\right\}$. A commutative affine algebra is notated $C\left[a_{1}, \ldots, a_{\ell}\right]$.

In most cases, we shall be considering affine algebras over a field F, so unless specified otherwise, "affine" will mean" "affine over a field."

Commutative affine algebras are precisely the coordinate algebras of affine algebraic varieties, and thus play a crucial role in classical algebraic geometry. One of the main thrusts of PI-theory is to generalize commutative affine theory to affine PI-algebras.

1.1.4 The Jacobson radical and Jacobson rings

Definition 1.1.9. The Jacobson radical $\operatorname{Jac}(A)$ of an algebra A is the intersection of the "primitive" ideals of A. (These are the maximal ideals when A is commutative; also see Corollary 1.5.1.)

Remark 1.1.10. $\operatorname{Jac}(A / J)=\operatorname{Jac}(A) / J$, whenever $J \subseteq \operatorname{Jac}(A)$, cf. [Ro08, Exercise 15.28].

We quote a celebrated result of Amitsur [Ro05, Theorem 2.5.23]:
Theorem 1.1.11. If A has no nonzero nil ideals, then $\operatorname{Jac}(A[\lambda])=0$.
Lemma 1.1.12. If $\operatorname{Jac}(C)=0$ and A is a commutative integral domain affine and faithful over C, then $\operatorname{Jac}(A)=0$.

Proof. Write $A=C\left[a_{1}, \ldots, a_{\ell}\right]$, and let $C_{1}=C\left[a_{\ell}\right]$. It is enough to show that $\operatorname{Jac}\left(C_{1}\right)=0$, since then we apply induction on ℓ.

So write $a=a_{\ell}$ and assume that $A=C[a]$. If a is transcendental over C,
then the assertion is clear by Theorem 1.1.11 (since $C[a]$ is isomorphic to a polynomial ring); an easy direct argument is given in Exercise 2.

Thus we may assume that a is algebraic over C, so A is algebraic over C, and by [Ro05, Lemma 6.29] it is enough to show that $C \cap \operatorname{Jac}(A)=0$. Write $\sum_{i=0}^{t} c_{i} a^{i}=0$ for $c_{t} \neq 0$, and let $S=\left\{c_{t}^{i}: i \in \mathbb{N}\right\}$. Let \mathcal{P} be the set of maximal ideals of C not containing c_{t}, and $J=\cap\{P \in \mathcal{P}\}$. Then $c_{t} J$ is contained in every maximal ideal of C and thus is 0 , implying $J=0$. On the other hand $S^{-1} A$ is integral over $S^{-1} C$. If $P \in \mathcal{P}$, then $S^{-1} P$ is a prime ideal of $S^{-1} C$, which then is contained in a prime ideal $S^{-1} Q$ of $S^{-1} A$, for some prime ideal Q of A containing P (in view of [Ro05, Proposition 8.11]), implying the integral domain A / Q is a finite extension of the field C / P, and is thus a field. Hence Q is a maximal ideal of A whose intersection with C is P, implying that $C \cap \operatorname{Jac}(A) \subseteq J=0$, as desired.

Definition 1.1.13. An integral domain C is local if it has a unique maximal ideal, which thus is $\operatorname{Jac}(C)$.

An equivalent formulation [Ro05, Corollary 8.20]: If $a+b=1$, then either a or b is invertible. One key notion in commutative algebra is localization, treated in [Ro05, Chapter 8].

Definition 1.1.14. A ring is Jacobson (called Hilbert in [Kap70b]) if the Jacobson radical of every prime homomorphic image is 0 .

In other words, in a Jacobson ring, any prime ideal is the intersection of primitive ideals of A. Obviously any field is Jacobson, since its only prime ideal 0 is maximal.

Lemma 1.1.15. Suppose a field $K=C\left[a_{1}, \ldots, a_{t}\right]$ is affine over a commutative Jacobson subring C. Then C also is a field, and $[K: C]<\infty$.

Proof. C is an integral domain, and thus $\operatorname{Jac}(C)=0$. The field K is affine over the field of fractions L of C, implying K is algebraic over C, by [Ro05, Theorem 5.11]. Letting c_{i} be the leading coefficient of the minimal polynomial of a_{i} over C, and $c=c_{1} \cdots c_{t}$, we see that each a_{i} is integral over $C\left[c^{-1}\right]$, and thus K is integral over $C\left[c^{-1}\right]$, implying $C\left[c^{-1}\right]$ is a field, by the easy [Ro05, Proposition 5.31]. Hence any nonzero prime ideal of C contains a power of c, and thus c, implying $c \in \operatorname{Jac}(C)=0$, a contradiction unless C is already a field, i.e., $L=C$ and thus K is finite over C.

We also have a result in the opposite direction.
Lemma 1.1.16. Any commutative affine algebra $A=C\left[a_{1}, \ldots, a_{t}\right]$ over a commutative Jacobson ring C is Jacobson.

Proof. For any prime ideal P of $A, \operatorname{Jac}(A / P)=0$ by Lemma 1.1.12.
This often is called the "weak Nullstellensatz."

1.1.5 Central localization

The localization procedure can be generalized directly from the commutative situation to $S^{-1} A$ whenever S is a (multiplicative) submonoid of $\operatorname{Cent}(A)$. In particular the ideals of $S^{-1} A$ are precisely those subsets $S^{-1} \mathcal{I}$ where $\mathcal{I} \triangleleft A$. We say that an element $s \in A$ is regular when $s a, a s \neq 0$ for all $a \neq 0$ in A. When A is prime, then every submonoid of $\operatorname{Cent}(A)$ is regular. Here is an easy but useful result.

Proposition 1.1.17. Suppose S is a submonoid of $\operatorname{Cent}(A)$ which is regular in A. Then $S^{-1} A$ is prime iff A is prime.

Proof. (\Rightarrow) If $\mathcal{I}_{1}, \mathcal{I}_{2} \triangleleft A$ with $\mathcal{I}_{1} \mathcal{I}_{2}=0$, then $\left(S^{-1} \mathcal{I}_{1}\right)\left(S^{-1} \mathcal{I}_{2}\right)=0$, implying $S^{-1} \mathcal{I}_{1}=0$ or $S^{-1} \mathcal{I}_{2}=0$, so $\mathcal{I}_{1}=0$ or $\mathcal{I}_{2}=0$.
(\Leftarrow) If $S^{-1} \mathcal{I}_{1}, S^{-1} \mathcal{I}_{2} \triangleleft S^{-1} A$ with $S^{-1} \mathcal{I}_{1} \mathcal{I}_{2}=0$, then $\mathcal{I}_{1}=0$ or $\mathcal{I}_{2}=0$, implying $S^{-1} \mathcal{I}_{1}=0$ or $S^{-1} \mathcal{I}_{2}=0$, so $\mathcal{I}_{1}=0$ or $\mathcal{I}_{2}=0$.

Corollary 1.1.18. Suppose A is a prime algebra, and S is a submonoid of $\operatorname{Cent}(A)$, and $A \subseteq B \subseteq S^{-1} A$. Then B is prime.

Proof. $S^{-1} A$ is prime, but $S^{-1} A=S^{-1} B$, implying B is prime.

1.1.6 Chain conditions

A partially ordered set \mathcal{S} is said to satisfy the ACC (ascending chain condition) if every infinite ascending chain

$$
S_{1} \subseteq S_{2} \subseteq \ldots
$$

stabilizes in the sense that there is some k such that $S_{i}=S_{i+1}$ for all $i \geq k$. In particular, a commutative ring is Noetherian if it satisfies the ACC on ideals. The Hilbert Basis Theorem implies that every commutative affine algebra over a Noetherian ring (in particular, over a field) is Noetherian, thereby elevating the Noetherian theory to a central role in algebra and geometry.

Recall three noncommutative generalizations of "Noetherian," in increasing strength:

Definition 1.1.19. (i) A ring R is weakly Noetherian if it satisfies the $A C C$ on two-sided ideals. (Equivalently, R is a Noetherian $R \otimes R^{\text {op }-m o d u l e .) ~}$
(ii) A ring R is left Noetherian if it satisfies the ACC (ascending chain condition) on left ideals.
(iii) R is Noetherian if it is left and right Noetherian, i.e., satisfies the $A C C$ on left ideals and also satisfies the ACC on right ideals.

Any finite module over a left Noetherian ring is left Noetherian. Any weakly Noetherian ring obviously has a unique maximal nilpotent ideal, which is the intersection of its prime ideals.

Remark 1.1.20. We recall the important technique of "Noetherian induction": To prove a theorem about weakly Noetherian rings, we suppose on the contrary that we have a counterexample R, and take an ideal \mathcal{I} maximal with respect to the theorem failing for R / \mathcal{I}. Replacing R by R / \mathcal{I}, we may assume that R is a counterexample, but R / \mathcal{J} is not a counterexample for every $0 \neq \mathcal{J} \triangleleft R$.

Noetherian induction can also be used for proving theorems about Noetherian modules, in an analogous fashion.

We can pass the Noetherian property to the center by means of the following result.

Proposition 1.1.21 (Artin-Tate Lemma). Suppose that A is an affine C algebra, finite over its center Z. If C is Noetherian, then Z is affine, and thus is Noetherian.

Proof. For the reader's convenience, we reproduce the easy proof given in [Ro88b, Proposition 6.2.5]. Namely, write $A=C\left\{a_{1}, \ldots, a_{t}\right\}$ and $A=$ $\sum_{\ell=1}^{q} Z b_{\ell}$. Writing $b_{i} b_{j}=\sum_{m=1}^{q} z_{i j m} b_{m}$ for $z_{i j m} \in Z$, and $a_{k}=\sum_{\ell=1}^{q} z_{k \ell}^{\prime} b_{\ell}$, we let

$$
Z_{1}=C\left[z_{i j m}, z_{k \ell}^{\prime}: 1 \leq i, j, \ell, m \leq t, 1 \leq k \leq q\right]
$$

which is affine over C, and thus Noetherian. But $\sum_{\ell=1}^{q} Z_{1} b_{\ell}$ is an algebra over Z_{1} containing $C\left\{a_{1}, \ldots, a_{t}\right\}=A$, and thus is a Noetherian Z_{1}-module, proving that its submodule Z is finite over Z_{1}, and thus is affine as an algebra.

A related result due to Eakin-Formanek (Exercise 3) is that if a ring is Noetherian and finite over its center Z, then Z is Noetherian.

Definition 1.1.22. Suppose that some set S acts on an algebra A from the right. For any subset $T \subset S$ one defines the left annihilator

$$
\operatorname{Ann} T=\{a \in A: a T=0\}
$$

a left ideal of A. ACC(Left annihilators) denotes the ACC on \{left annihilators\}. When Ann T is a 2-sided ideal of A, we call Ann T an annihilator ideal. In this case, $A n n T$ is the left annihilator of a 2-sided ideal, namely of its right annihilator.

Lemma 1.1.23 (Fitting-type Lemma). Given a module M over a commutative ring Z, with $z \in Z$ and $k \in \mathbb{N}$, let $N=\left\{a \in M: z^{k} a=0\right\}$. If N satisfies the property that $z^{2 k} a=0$ implies $a \in N$, then $z^{k} M \cap N=0$.

Proof. If $z^{k} a \in N$, then $z^{2 k} a=0$, implying $a \in N$, so $z^{k} a=0$.

1.1.7 Subdirect products and irreducible algebras

Definition 1.1.24. A is a subdirect product of the algebras $\left\{A_{i}: i \in I\right\}$ if there is an injection $\psi: A \rightarrow \prod A_{i}$ for which $\pi_{j} \psi: A \rightarrow A_{j}$ is onto for each $j \in I$, where π_{j} denotes the natural projection $\prod A_{i} \rightarrow A_{j}$.

In this case, $\cap \operatorname{ker} \pi_{j}=0$. Conversely, if $A_{i}=A / \mathcal{I}_{i}$ for each $i \in I$ and $\cap_{i} \mathcal{I}_{i}=0$, then A is a subdirect product of the A_{i} in the obvious way.

The following concept often fits in with Noetherian.
Definition 1.1.25. An algebra A is irreducible if the intersection of two nonzero ideals is always nonzero.

By induction, the intersection of finitely many nonzero ideals of an irreducible algebra is always nonzero.

Lemma 1.1.26. Any weakly Noetherian algebra A is a finite subdirect product of irreducible algebras.

Proof. The usual Noetherian induction argument. Otherwise, take a counterexample A, and take $\mathcal{I} \triangleleft A$ maximal with respect to A / \mathcal{I} not being a counterexample. Passing to A / \mathcal{I}, we may assume that A is a counterexample to the lemma, but A / \mathcal{I} is not a counterexample, for all $0 \neq \mathcal{I} \triangleleft A$.

In particular, A itself is reducible, so has nonzero ideals $\mathcal{I}_{1}, \mathcal{I}_{2}$ such that $\mathcal{I}_{1} \cap \mathcal{I}_{2}=0$. But by hypothesis A / \mathcal{I}_{1} is a finite subdirect product of irreducible algebras $A / \mathcal{I}_{1,1}, \ldots, A / \mathcal{I}_{1, t}$ and A / \mathcal{I}_{2} is a finite subdirect product of irreducible algebras $A / \mathcal{I}_{2,1}, \ldots, A / \mathcal{I}_{2, u}$, implying A is a subdirect product of $A / \mathcal{I}_{1,1}, \ldots, A / \mathcal{I}_{1, t}, A / \mathcal{I}_{2,1}, \ldots, A / \mathcal{I}_{2, u}$.

1.1.7.1 ACC for classes of ideals

This subsection contains basic material about chain conditions on classes of ideals of a given ring R, with an eye on applications to ideals of noncommutative algebras. The reason we include it is that Kemer's solution of Specht's problem, given in Chapters 6 and 7, has thrust open the door to a new application of this material, and we might as well present it here to have it available for other purposes (such as for the structure of affine PI-algebras). We skip some proofs, when they are formal and in direct analogy to the well-known proofs in commutative algebra. Throughout, we fix a monoid \mathcal{S} of ideals of R, satisfying the following properties:
(i) The intersection of members of \mathcal{S} is in \mathcal{S};
(ii) If $\mathcal{I}, \mathcal{J} \in \mathcal{S}$, then $\mathcal{I}+\mathcal{J} \in \mathcal{S}$.

Definition 1.1.27. Given $S \subseteq \mathcal{S}$, the member of \mathcal{S} generated by S is defined as $\cap\{\mathcal{I} \in \mathcal{S}: S \subseteq \mathcal{I}\} . \mathcal{I} \in \mathcal{S}$ is finitely generated in \mathcal{S} if \mathcal{I} is generated by some finite set S.
(This generalizes the notion of a finite module.)
Remark 1.1.28. The following are equivalent:
(i) \mathcal{S} satisfies the $A C C$.
(ii) Every member of \mathcal{S} is finitely generated in \mathcal{S}.
(iii) Every subset of \mathcal{S} has a maximal member.

Definition 1.1.29. A member P of \mathcal{S} is prime if, for all $\mathcal{I}, \mathcal{J} \in \mathcal{S}$ not contained in P, we have $\mathcal{I} \mathcal{J} \nsubseteq P$. For any $S \subseteq A$, a prime P of \mathcal{S} containing S is minimalprime over S if P does not properly contain a prime of \mathcal{S} containing S.

Lemma 1.1.30. Every prime of \mathcal{S} containing S contains a minimal prime containing S.

Proof. In view of Zorn's lemma, we need to show that for any chain \mathcal{P} of primes, that $P=\cap\{P \in \mathcal{P}\}$ is also prime. But this is standard: If $\mathcal{I} \mathcal{J} \subseteq P$ with $\mathcal{I} \nsubseteq P$, then $\mathcal{I} \nsubseteq P_{j_{0}}$ for some $P_{j_{0}}$ in \mathcal{P}, implying $\mathcal{J} \subseteq P_{j}$ for each $P_{j} \subset P_{j_{0}}$ in \mathcal{P}, implying $\mathcal{J} \subseteq P$.

Theorem 1.1.31. Suppose that \mathcal{S} satisfies the $A C C$. Then for any $\mathcal{I} \in \mathcal{S}$, there are only finitely many primes P_{1}, \ldots, P_{n} in \mathcal{S} minimal over \mathcal{I}, and some finite product of the P_{i} is contained in \mathcal{I}.

Proof. By Noetherian induction. Otherwise, there is $\mathcal{I} \in \mathcal{S}$ maximal with respect to being a counterexample. Certainly \mathcal{I} is not itself prime, so take $\mathcal{J}_{1}, \mathcal{J}_{2} \supset I$ in \mathcal{S} such that $\mathcal{J}_{1} \mathcal{J}_{2} \subseteq \mathcal{I}$. (We can replace \mathcal{J}_{i} by $\mathcal{J}_{i}+\mathcal{I}$ if necessary.) By hypothesis, the conclusion of the theorem holds for \mathcal{J}_{1} and \mathcal{J}_{2}, i.e., there are primes $P_{i k}$ minimal over \mathcal{J}_{k} with some finite product contained in \mathcal{J}_{k}. But then the product together is contained in $\mathcal{J}_{1} \mathcal{J}_{2}$ and thus, in \mathcal{I}. Any prime P containing $\mathcal{J}_{1} \mathcal{J}_{2}$ contains some minimal prime over $\mathcal{J}_{1} \mathcal{J}_{2}$, which in turn must contain some $P_{i k}$ and thus must equal $P_{i k}$.

Definition 1.1.32. The radical \sqrt{S} of $S \subseteq A$ is the intersection of all primes of \mathcal{S} containing S.

The foregoing results did not involve associativity of the multiplication of \mathcal{S}, although the subsequent ones do, in order that $P_{1} \cdots P_{n}$ is well-defined. (The subtleties of the nonassociative case are treated in Volume II.)

Corollary 1.1.33. Suppose that \mathcal{S} satisfies the $A C C$. If $\mathcal{I} \in \mathcal{S}$, then $\sqrt{\mathcal{I}}$ is a finite intersection of primes of \mathcal{S}, each minimal over $\sqrt{\mathcal{I}}$.

Corollary 1.1.34. If \mathcal{S} satisfies the $A C C$, then $\sqrt{\mathcal{I}}^{t} \subseteq \mathcal{I}$ for some t.

Proof. Write $\sqrt{\mathcal{I}}=P_{1} \cap \cdots \cap P_{n}$, and then note that some product of t of the P_{i} are in \mathcal{I}, implying

$$
(\sqrt{\mathcal{I}})^{t} \subseteq P_{1} \cdots P_{t} \subseteq \sqrt{\mathcal{I}}
$$

Corollary 1.1.35. Suppose that \mathcal{S} satisfies the $A C C$, and $0 \in \mathcal{S}$. If $\mathcal{I} \in \mathcal{S}$ is contained in every prime, then \mathcal{I} is nilpotent.
Proof. $\mathcal{I} \subseteq \sqrt{0}$, so apply the previous corollary.
Corollary 1.1.36. Any nil subset N of a commutative (associative) Noetherian ring C is nilpotent.

Proof. N is contained in every prime ideal P, since C / P is an integral domain.
(This fails for noncommutative rings, even for $\left\{e_{12}, e_{21}\right\} \subset M_{2}(F)$.)

1.2 Noncommutative Polynomials and Identities

In order to get to our subject, we need the noncommutative analog of polynomials.

1.2.1 The free associative algebra

Recall that the free (associative) monoid $\mathcal{M}\{X\}$ in $X=\left\{x_{i}: i \in I\right\}$ is the monoid of words $\left\{x_{i_{1}} x_{i_{2}} \cdots x_{i_{t}}: t \in \mathbb{N}\right\}$ permitting duplication of subscripts, and whose unit element is the blank word \emptyset; the monoid operation is given in terms of juxtaposition of words.
$C\{X\}$, often denoted $C\langle X\rangle$ in the literature, denotes the free associative algebra (with 1) in the set $X=\left\{x_{i}: i \in I\right\}$ of noncommuting indeterminates. (Usually $I=\mathbb{N}$, but often I is taken to be finite.) In other words, $C\{X\}$ is the monoid algebra of $\mathcal{M}\{X\}$. The elements of $C\{X\}$ are called polynomials. $C\{X\}$ is free as a C-module, with base consisting of $\mathcal{M}\{X\}$, the set of words; thus, any $f \in C\{X\}$ is written uniquely as $\sum c_{j} h_{j}$ where $h_{j} \in \mathcal{M}(X)$. We call these $c_{j} h_{j}$ the monomials of f.

Given $f \in C\{X\}$ we write $f\left(x_{1}, \ldots, x_{m}\right)$ to denote that x_{1}, \ldots, x_{m} are the only indeterminates occurring in f. Sometimes we write $f(\vec{x})$ for short. Later, when the notation becomes more cumbersome, we shall have occasion to use Y (and at times Z) to denote extra sets of indeterminates that do not enter the computations as actively as the x_{i}. In this case we write $C\{X, Y\}$ or $C\{X, Y, Z\}$ in place of $C\{X\}$, and we write $f(\vec{x}, \vec{y})$ or $f(\vec{x}, \vec{y}, \vec{z})$ accordingly.

The main feature of $C\{X\}$ is the following.

Remark 1.2.1. Given a C-algebra A and elements $\left\{a_{i}: i \in I\right\} \subseteq A$, there is a unique algebra homomorphism $\phi: C\{X\} \rightarrow A$, called the substitution homomorphism, such that $\phi\left(x_{i}\right)=a_{i}, \forall i \in I$. Indeed, one defines

$$
\phi\left(x_{i_{1}} \cdots x_{i_{m}}\right)=a_{i_{1}} \cdots a_{i_{m}}
$$

and extends this linearly to all of $C\{X\}$.
The evaluation $f\left(a_{1}, \ldots, a_{m}\right)$ denotes the image of f under the homomorphism of Remark 1.2.1. We also say that f specializes to $f\left(a_{1}, \ldots, a_{m}\right)$, and a_{1}, \ldots, a_{m} are substitutions in f.

1.2.2 Polynomial identities

We write $f(A)$ for the set of evaluations $\left\{f\left(a_{1}, \ldots, a_{m}\right): a_{i} \in A\right\}$.
Definition 1.2.2. An element $f \in C\{X\}$ is an identity of a C-algebra A if $f(A)=0$, i.e., $f \in \operatorname{ker} \phi$ for every homomorphism $\phi: C\{X\} \rightarrow A$.

Identities pass to related algebras as follows.
Remark 1.2.3. If f is an identity of an algebra A, then f is an identity of any homomorphic image of A and also of any subalgebra of A. Furthermore if f is an identity of each C-algebra $A_{i}, i \in I$, then f is an identity of $\prod_{i \in I} A_{i}$.

Remark 1.2.3 provides an alternate approach to identities, cf. $\S 1.7$ below.
Definition 1.2.4. For a monomial h we define $\operatorname{deg}_{i} h$ to be the number of occurrences of x_{i} in h, and the degree $\operatorname{deg} h=\sum_{i} \operatorname{deg}_{i} h$; for a polynomial f, we define $\operatorname{deg} f$ to be the maximum degree of the monomials of f. For example $\operatorname{deg}\left(x_{1} x_{2}+x_{3} x_{4}\right)=2$.

One needs some way of excluding the identity $p x_{1}$, which only says that A has characteristic p. Toward this end, we formulate the main definition of this book.

Definition 1.2.5. An identity f is a PI (polynomial identity) for A if at least one of its coefficients is 1. An algebra A is a PI-algebra of PI-degree d if A satisfies a PI of degree d.

This definition might seem restrictive, but in fact is enough to encompass the entire PI-theory, cf. [Am71]. Since PI-algebras are the subject of our study, let us address a subtle distinction in terminology. A ring R is a PI-ring when it is a PI-algebra for $C=\mathbb{Z}$. Although most of the general structure theory holds for PI-rings in general, our focus in this book is usually on a particular base ring C, sometimes a field which we denote as F rather than C; often we require $\operatorname{char}(F)=0$, for reasons to be discussed shortly.

Definition 1.2.6. We write $\operatorname{id}(A)$ for the set of identities of A.

Here is a notion closely related to PI.
Definition 1.2.7 (Central polynomials). A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is A central if $0 \neq f(A) \subseteq \operatorname{Cent}(A)$.

In other words, $f\left(x_{1}, \ldots, x_{n}\right)$ is A-central iff $[y, f]$ (but not f) is in $\operatorname{id}(A)$.
The most basic examples of PI-algebras are the matrix algebra $M_{n}(C)$ for arbitrary n, f.d. algebras over a field, and the Grassmann algebra G, cf. Definition 1.3.26. Since these examples require a bit more theory, we first whet the reader's appetite with some easier examples.

Example 1.2.8.

(i) The polynomial x is central for any commutative algebra.
(ii) Let $\mathrm{UT}(n)$ denote the algebra of upper triangular matrices over a given base ring C. Any product of n strictly upper triangular $n \times n$ matrices is 0. Since $[a, b]$ is strictly upper triangular, for any upper triangular matrices a, b, we conclude that the algebra $\mathrm{UT}(n)$ satisfies the identity

$$
\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right] \cdots\left[x_{2 n-1}, x_{2 n}\right] .
$$

(iii) (Wagner's identity) If F is a field, then $M_{2}(F)$ satisfies the identity $\left[[x, y]^{2}, z\right]$ or, equivalently, the central polynomial $[x, y]^{2}$, cf. Exercise 19.
(iv) Fermat's Little Theorem translates to the fact that any field F of n elements satisfies the identity $x^{n}-x$. (See Exercise 27 for a generalization.)
(v) Any Boolean algebra satisfies the identity $x^{2}-x$.

When dealing with arbitrary PIs it is convenient to work with certain kinds of polynomials. We say that a polynomial $f\left(x_{1}, \ldots, x_{m}\right)$ is homogeneous in x_{i} if x_{i} has the same degree in each monomial of f. We say that f is homogeneous if f is homogeneous in every indeterminate. (Sometimes this is called "completely homogeneous" or "multi-homogeneous" in the literature.) In this case, if x_{i} has degree d_{i} in f_{i} for $1 \leq i \leq m$, we say that f has multidegree $\left(d_{1}, \ldots, d_{m}\right)$, where $\operatorname{deg} f=d_{1}+\cdots+d_{m}$. Here is a very important special case.

Definition 1.2.9. A monomial h is linear in x_{i} if $\operatorname{deg}_{i} h=1$. A polynomial f is linear in x_{i} if each monomial of f is linear in $x_{i} ; f$ is t-linear if f is linear in each of x_{1}, \ldots, x_{t}.

A polynomial $f\left(x_{1}, \ldots, x_{m}\right)$ is multilinear if f is m-linear. In other words, each indeterminate of f appears with degree exactly 1 in each monomial of f.

Thus, $x_{1} x_{2}-x_{2} x_{1}$ is multilinear. However, $x_{1} x_{2} x_{3}-x_{2} x_{1}$ is not multilinear, since x_{3} does not appear in the second monomial.

Given a multilinear polynomial $f\left(x_{1}, \ldots, x_{m}\right)$, we pick any nonzero monomial h, and renaming the indeterminates appropriately, we may assume that $h=c x_{1} x_{2} \ldots x_{m}$ for some $c \in C$. Thus, the general form for a multilinear polynomial is

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{m}\right)=c_{1} x_{1} x_{2} \cdots x_{m}+\sum_{1 \neq \sigma \in S_{m}} c_{\sigma} x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(m)} \tag{1.2}
\end{equation*}
$$

Furthermore, if C is a field, then we can divide by c_{1} and assume that $c_{1}=1$. The main reason we focus on multilinear identities is because of Proposition 1.2.18 below. However, the linearity property already is quite useful:

Remark 1.2.10. If f is linear in x_{i}, then

$$
f\left(a_{1}, \ldots, \sum_{j} c_{j} a_{i j}, \ldots, a_{m}\right)=\sum_{j} c_{j} f\left(a_{1}, \ldots, a_{i j}, \ldots, a_{m}\right)
$$

for all $c_{j} \in C, a_{i j} \in A$.
Lemma 1.2.11. Suppose A is spanned over C by a set B. Then a multilinear polynomial f is an identity of A iff f vanishes on all substitutions to elements of B; f is A-central iff every substitution of f on B is in $\operatorname{Cent}(A)$ but some substitution on B is nonzero.

Proof.

$$
f\left(\sum_{i_{1}} c_{i_{1}} b_{i_{1}}, \ldots, \sum_{i_{m}} c_{i_{m}} b_{i_{m}}\right)=\sum_{i_{1}, \ldots, i_{m}} c_{i_{1}} \cdots c_{i_{m}} f\left(b_{i_{1}}, \ldots, b_{i_{m}}\right)
$$

in view of Remark 1.2.10.

1.2.3 Multilinearization

These observations raise the question of how to go back and forth from arbitrary identities (or central polynomials) to multilinear ones. The answer is in the process of multilinearization, also called polarization. This will be tied to group actions in $\S 3.5$ (also cf. Exercise 6), but can be described briefly as follows:

Definition 1.2.12 (Multilinearization). Suppose the polynomial $f\left(x_{1}, \ldots, x_{m}\right)$ has degree $n_{i}>1$ in x_{i}. We focus on one of the indeterminates, x_{i}, and define the partial linearization

$$
\begin{align*}
& \Delta_{i} f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{m}\right) \tag{1.3}\\
& \quad=f\left(\ldots, x_{i}+x_{i}^{\prime}, \ldots\right)-f\left(\ldots, x_{i}, \ldots\right)-f\left(\ldots, x_{i}^{\prime}, \ldots\right)
\end{align*}
$$

where x_{i}^{\prime} is a new indeterminate. Clearly $\Delta_{i} f$ remains an identity for A when $f \in \operatorname{id}(A)$, but all monomials of degree n_{i} in x_{i} cancel out in $\Delta_{i} f$. The remaining monomials have x_{i}^{\prime} replacing x_{i} in some (but not all) instances, and thus have degree $<n_{i}$ in x_{i}, the maximum degree among them being $n_{i}-1$.

Remark 1.2.13. Since this procedure is so important, let us rename the indeterminates more conveniently, writing x_{1} for x_{i} and y_{j} for the other indeterminates.
(i) Now our polynomial is $f\left(x_{1} ; \vec{y}\right)$ and our partial linearization may be written as

$$
\begin{align*}
& \Delta_{1} f\left(x_{1}, x_{2} ; \vec{y}\right)= \\
& \quad f\left(x_{1}+x_{2} ; \vec{y}\right)-f\left(x_{1} ; \vec{y}\right)-f\left(x_{2} ; \vec{y}\right) \tag{1.4}
\end{align*}
$$

where x_{2} is the new indeterminate.
(ii) Before we get started, we must cope with the situation in which x_{1} does not appear in each monomial. For example, if we want to multilinearize $f=x_{1} y+y$ in x_{1}, then the only way would be to apply Δ_{1}, but

$$
\Delta_{1} f=\left(x_{1}+x_{2}\right) y+y-\left(x_{1} y+y\right)-\left(x_{2} y+y\right)=-y
$$

and we have lost x_{1} altogether. This glitch could complicate subsequent proofs.
Fortunately, we can handle this situation by defining $g=f(0 ; \vec{y})$, the sum of those monomials in which x_{1} does not appear. If $f \in \operatorname{id}(A)$, then also $f-g \in \operatorname{id}(A)$, so we can replace f by $f-g$ and thereby assume that any indeterminate appearing in f appears in each monomial of f, as desired. We call such a polynomial blended.
(iii) Let $n=\operatorname{deg}_{1} f$. Iterating the linearization procedure $n-1$ times (each time introducing a new indeterminate x_{i}) yields an n-linear polynomial $\bar{f}\left(x_{1}, \ldots, x_{n} ; \vec{y}\right)$ which preserves only those monomials h originally of degree n in x_{1}. For each such monomial h in f we now have n ! monomials in \bar{f} (according to the order in which x_{1}, \ldots, x_{n} appears), each of which specializes back to h when we substitute x_{1} for each x_{i}. Thus, when f is homogeneous in x_{1}, we have

$$
\begin{equation*}
\bar{f}\left(x_{1}, \ldots, x_{1} ; \vec{y}\right)=n!f . \tag{1.5}
\end{equation*}
$$

We call \bar{f} the linearization of f in x_{1}. In characteristic 0 this is about all we need, since n ! is invertible and we have recovered f from \bar{f}. This often makes the characteristic 0 PI-theory easier than the general theory.
(iv) Repeating the linearization process for each indeterminate appearing in f yields a multilinear polynomial, called the multilinearization, or total multilinearization, of f.

[^0]: Visit the Taylor \& Francis Web site at http://www.taylorandfrancis.com
 and the CRC Press Web site at http://www.crcpress.com

