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Preface

An identity of an associative algebra A is a noncommuting polynomial that
vanishes identically on all substitutions in A. For example, A is commutative
iff ab− ba = 0, ∀a, b ∈ A, iff xy − yx is an identity of A. An identity is called
a polynomial identity (PI) if at least one of its coefficients is ±1. Thus in
some sense PIs generalize commutativity.

Historically, PI-theory arose first in a paper of Dehn [De22], whose goal
was to translate intersection theorems for a Desarguian plane to polynomial
conditions on its underlying division algebra D, and thereby classify geome-
tries that lie between the Desarguian and Pappian axioms (the latter of which
requires D to be commutative). Although Dehn’s project was only concluded
much later by Amitsur [Am66], who modified Dehn’s original idea, the idea
of PIs had been planted.

Wagner [Wag37] showed that any matrix algebra over a field satisfies a PI.
Since PIs pass to subalgebras, this showed that every algebra with a faithful
representation into matrices is a PI-algebra, and opened the door to repre-
sentation theory via PIs. In particular, one of our main objects of study are
representable algebras, i.e., algebras that can be embedded into an algebra
of matrices over a suitable field.

But whereas a homomorphic image of a representable algebra need not
be representable, PIs do pass to homomorphic images. In fact, PIs also can
be viewed as the atomic universal elementary sentences satisfied by algebras.
Consider the class of all algebras satisfying a given set of identities. This class
is closed under taking subalgebras, homomorphic images, and direct products;
any such class of algebras is called a variety of algebras. Varieties of algebras
were studied in the 1930s by Birkhoff [Bir35] and Mal’tsev [Mal36], thereby
linking PI-theory to logic, especially through the use of constructions such as
ultraproducts.

In this spirit, one can study an algebra through the set of all its identities,
which turns out to be an ideal of the free algebra, called a T -ideal. Specht
[Sp50] conjectured that any such T -ideal is a consequence of a finite number
of identities. Specht’s conjecture turned out to be very difficult, and became
the hallmark problem in the theory. Kemer’s positive solution [Kem87] (in
characteristic 0) is a tour de force that involved most of the theorems then
known in PI-theory, in conjunction with several new techniques such as the
use of superidentities. But various basic questions remain, such as finding an
explicit set of generators for the T -ideal of 3× 3 matrices!

xvii
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Another very important tool, discovered by Regev, is a way of describing
identities of a given degree n in terms of the group algebra of the symmetric
group Sn. This led to the asymptotic theory of codimensions, one of the most
active areas of research today in PI-theory.

Motivated by an observation of Wagner [Wag37] and M. Hall [Ha43] that
the polynomial (xy−yx)2 evaluated on 2×2 matrices takes on only scalar val-
ues, Kaplansky asked whether arbitrary matrix algebras have such “central”
polynomials; in 1972, Formanek [For72] and Razmyslov [Raz72] discovered
such polynomials on arbitrary n× n matrices. This led to the introduction of
techniques from commutative algebra to PI-theory, culminating in a beauti-
ful structure theory with applications to central simple algebras, and (more
generally) Azumaya algebras.

While the interplay with the commutative structure theory was one of the
main focuses of interest in the West, the Russian school was developing quite
differently, in a formal combinatorial direction, often using the polynomial
identity as a tool in word reduction. The Iron Curtain and language barrier
impeded communication in the formative years of the subject, as illustrated
most effectively in the parallel histories of Kurosh’s problem, whether or not
finitely generated (i.e., affine) algebraic algebras need be finite dimensional.
This problem was of great interest in the 1940’s to the pioneers of the structure
theory of associative rings — Jacobson, Kaplansky, and Levitzki — who saw it
as a challenge to find a suitable class of algebras which would be amenable to
their techniques. Levitzki proved the result for algebraic algebras of bounded
index, Jacobson observed that these are examples of PI-algebras, and Kaplan-
sky completed the circle of ideas by solving Kurosh’s problem for PI-algebras.
Meanwhile Shirshov, in Russia, saw Kurosh’s problem from a completely dif-
ferent combinatorial perspective, and his solution was so independent of the
associative structure theory that it also applied to alternative and Jordan
algebras. (This is evidenced by the title of his article, “On some nonassocia-
tive nil-rings and algebraic algebras,” which remained unread in the West for
years.)

A similar instance is the question of the nilpotence of the Jacobson rad-
ical J of an affine PI-algebra A, demonstrated in Chapter 2. Amitsur had
proved the local nilpotence of J , and had shown that J is nilpotent in some
cases. There is an easy argument to show that J is nilpotent when A is rep-
resentable, but the general case is much harder to resolve. By a brilliant
but rather condensed analysis of the properties of the Capelli polynomial,
Razmyslov proved that J is nilpotent whenever A satisfies a Capelli identity,
and Kemer [Kem80] verified that any affine algebra in characteristic 0 indeed
satisfies a Capelli identity. Soon thereafter, Braun found a characteristic-free
proof that was mostly structure theoretical, employing a series of reductions
to Azumaya algebras, for which the assertion is obvious.

There is an analog in algebraic geometry. Whereas affine varieties are the
subsets of a given space that are solutions of a system of algebraic equations,
i.e., the zeroes of a given ideal of the algebra F [λ1, . . . , λn] of commutative
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polynomials, PI-algebras yield 0 when substituted into a given T -ideal of non-
commutative polynomials. Thus, the role of radical ideals of F [λ1, . . . , λn] in
commutative algebraic geometry is analogous to the role of T -ideals of the free
algebra, and the coordinate algebra of algebraic geometry is analogous to the
relatively free PI-algebra. Hilbert’s Basis theorem says that every ideal of the
polynomial algebra F [λ1, . . . , λn] is finitely generated as an ideal, so Specht’s
conjecture is the PI-analog viewed in this light.

The introduction of noncommutative polynomials vanishing on A intrin-
sically involves a sort of noncommutative algebraic geometry, which has been
studied from several vantage points, most notably the coordinate algebra,
which is an affine PI-algebra. This approach is described in the seminal paper
of Artin and Schelter [ArSc81].

Starting with Herstein [Her68] and [Her71], many expositions already have
been published about PI-theory, including a book [Ro80] and a chapter in
[Ro88b, Chapter 6] by one of the coauthors (relying heavily on the structure
theory), as well as books and monographs by leading researchers, including
Procesi [Pro73], Jacobson [Jac75], Kemer [Kem91], Razmyslov [Raz89], For-
manek [For91], Bakhturin [Ba91], Belov, Borisenko, and Latyshev [BelBL97],
Drensky [Dr00], Drensky and Formanek [DrFor04], and Giambruno and Za-
icev [GiZa05].

Our motivation in writing the first edition was that some of the important
advances in the end of the 20th century, largely combinatoric, still remained
accessible only to experts (at best), and this limited the exposure of the more
advanced aspects of PI-theory to the general mathematical community. Our
primary goal in the original edition was to present a full proof of Kemer’s solu-
tion to Specht’s conjecture (in characteristic 0) as quickly and comprehensibly
as we could.

Our objective in this revision is to provide further details for these break-
throughs. The motivating result is Kemer’s solution of Specht’s conjecture in
characteristic 0; the first seven chapters of this book are devoted to the the-
ory needed for its proof, including the featured role of the Grassmann algebra
and the translation to superalgebras (which also has considerable impact on
the structure theory of PI-algebras). From this point of view, the reader will
find some overlap with [Kem91]. Although the framework of the proof is the
same as for Kemer’s proof, based on what we call the Kemer index of a
PI-algebra, there are significant divergences; in the proof given here, we also
stay more within the PI context. This approach enables us to develop Kemer
polynomials for arbitrary varieties, as a tool for proving diverse theorems in
later chapters, and also lays the groundwork for analogous theorems that have
been proved recently for Lie algebras and alternative algebras, to be handled
in Volume II. ([Ilt03] treats the Lie case.) In this revised edition, we add
more explanation and detail, especially concerning Zubrilin’s theory in Chap-
ter 2 and Kemer’s PI-representability theorem in Chapter 6. In Chapter 9, we
present counterexamples to Specht’s conjecture in characteristic p, as well as
their underlying theory.
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More recently, positive answers to Specht’s conjecture along the lines of
Kemer’s theory have been found for graded algebras (Aljadeff-Belov [AB10]),
algebras with involution, graded algebras with involution, and, more generally,
algebras with a Hopf action, which we include in Volume II.

Other topics are delayed until after Chapter 9. These topics include
Noetherian PI-algebras, Poincaré–Hilbert series, Gelfand-Kirillov dimension,
the combinatoric theory of affine PI-algebras, and description of homogeneous
identities in terms of the representation theory of the general linear group GL.
In the process, we also develop some newer techniques, such as the “pumping
procedure.” Asymptotic results are considered more briefly, since the reader
should be able to find them in the book of Giambruno and Zaicev [GiZa05].

Since most of the combinatorics needed in these proofs do not require
structure theory, there is no need for us to develop many of the famous results
of a structural nature. But we felt these should be included somewhere in
order to provide balance, so we have listed them in Section 1.6, without proof,
and with a different indexing scheme (Theorem A, Theorem B, and so forth).
The proofs are to be found in most standard expositions of PI-theory.

Although we aim mostly for direct proofs, we also introduce technical ma-
chinery to pave the way for further advances. One general word of caution is
that the combinatoric PI-theory often follows a certain Heisenberg principle
— complexity of the proof times the manageability of the quantity computed
is bounded below by a constant. One can prove rather quickly that affine
PI-algebras have finite Shirshov height and satisfy a Capelli identity (thereby
leading to the nilpotence of the radical), but the bounds are so high as to make
them impractical for making computations. On the other hand, more reason-
able bounds now available are for these quantities, but the proofs become
highly technical.

Our treatment largely follows the development of PI-theory via the follow-
ing chain of generalizations:

1. Commutative algebra (taken as given)

2. Matrix algebras (references quoted)

3. Prime PI-algebras (references usually quoted)

4. Subrings of finite dimensional algebras

5. Algebras satisfying a Capelli identity

6. Algebras satisfying a sparse system

7. Algebras satisfying R-Z identities

8. PI-algebras in terms of Kemer polynomials (the most general case)

The theory of Kemer polynomials, which is embedded in Kemer’s proof of
Specht’s conjecture, shows that the techniques of finite dimensional algebras
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are available for all affine PI-algebras, and perhaps the overriding motivation
of this revision is to make these techniques more widely accepted.

Another recurring theme is the Grassmann algebra, which appears first in
Rosset’s proof of the Amitsur-Levitzki theorem, then as the easiest example
of a finitely based T -ideal (generated by the single identity [[x1, x2], x3]), later
in the link between algebras and superalgebras, and finally as a test algebra
for counterexamples in characteristic p.

Enumeration of Results

The text is subdivided into chapters, sections, and at times subsections. Thus,
Section 9.4 denotes Section 4 of Chapter 9; Section 9.4.1 denotes subsection
1 of Section 9.4. The results are enumerated independently of these subdivi-
sions. Except in Section 1.6, which has its own numbering system, all results
are enumerated according to chapter only; for example, Theorem 6.13 is the
thirteenth item in Chapter 6, preceded by Definition 6.12. The exercises are
listed at the end of each chapter. When referring in the text to an exercise
belonging to the same chapter we suppress the chapter number; for example,
in Chapter 9, Exercise 9.12 is called “Exercise 12,” although in any other
chapter it would have the full designation “Exercise 9.12.”



Symbol Description

Due to the finiteness of the English and Greek alphabets, some symbols
have multiple uses. For example, in Chapters 2 and 11, µ denotes the Shirshov
height, whereas in Chapter 6 and 7, µ is used for the number of certain folds
in a Kemer polynomial. We have tried our best to recycle symbols only in
unambiguous situations. The symbols are listed in order of first occurrence.

Chapter 1

p. 4: N The natural numbers (including 0)
Z/n The ring Z/nZ of integers modulo n
Cent(A) The center of an algebra A
[a, b] The ring commutator ab− ba
Sn The symmetric group
sgn(π) The sign of the permutation π

p. 5: C[λ] The commutative algebra of polynomials
over C

C[a] The C-subalgebra of A generated by a
Mn(A) The algebra of n× n matrices over A

p. 6: δij The Kronecker delta
tr The trace
Aop The opposite algebra

p. 7: Jac(A) The Jacobson radical of A
p. 9: S−1A The localization of A at a central sub-

monoid A
p. 12:

√
S The radical of a subset S of A

p. 13: M{X} The word monoid on the set of letters X
f(x1, . . . , xm), f(~x) The polynomial f in indeterminates x1, . . . , xm

p. 14: f(A) The set of evaluations of a polynomial f in
an algebra A

id(A) The set of identities of A
p. 15: deg f The degree of a polynomial f

UT(n) The set of upper triangular n× n matrices
p. 16: ∆if The multilinearization step of f in xi
p. 18: s̃n The symmetric polynomial in n letters

A1 ∼PI A2 A1 and A2 satisfy the same identities
p. 20: st The standard polynomial (on t letters)

ct The Capelli polynomial (on t letters)
p. 22: πf The left action of a permutation π on a

polynomial f
p. 23: fA(i1,...,it;X) The alternator of f with respect to the in-

determinates xi1 , . . . , xit
f̃ The symmetrizer of a multilinear polyno-

mial f
p. 24: Ag The g-component of the graded algebra A
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p. 25: F [Λ], F [λ1, . . . , λn] The commutative polynomial algebra in
several indeterminates

T (V ) The tensor algebra of a vector space V
T n(V ) The n-homogeneous component of T (V )

p. 29 G The Grassmann algebra, usually in an infi-
nite set of letters

e1, e2, . . . The standard base of the Grassmann alge-
bra G

G0 The odd elements of G
G1 The even elements of G

p. 38: Nil(A) The sum of the nil left ideals of A
p. 39: Mn,F The identities of Mn(F )

Mn The identities of Mn(Q)
p. 45: UT(n1, . . . , nq) The (n1, . . . , nq)-block upper triangular

matrices
p. 54: id(S) The identities common to a class S of alge-

bras
p. 56: UI The relatively free algebra of a T -ideal I
p. 57: UA The relatively free algebra of an algebra A
p. 59: F{Y }n The algebra of generic n× n matrices

F (Λ) The field of fractions of F [Λ]
UD(n, F ) The generic division algebra of degree n
A ∗C B The free product of A and B over C
A〈X〉 The free product A ∗C C{X}
A〈X〉I The relatively free product modulo a T -

ideal

Chapter 2

p. 78: |w| The length of a word w

p. 79: Ŵµ The Shirshov words of height ≤ µ over W
≻ The lexicographic order on words
w̄ The image of a word w in C{a1, . . . , aℓ},

under the canonical specialization xi 7→ ai
p. 80: µ = µ(A) The Shirshov height of an affine PI-algebra
p. 81: β(ℓ, k, d) The Shirshov bound for an affine algebra

C{a1, . . . , aℓ} of PI-degree d
p. 83: u∞ The infinite periodic hyperword with pe-

riod u
p. 84: β(ℓ, k, d, h) The Shirshov bound for a given hyperword

h evaluated on the algebra A
p. 88, 92: Â The trace ring of a representable algebra A
p. 96: δ(xv) The cyclic shift
p. 99: h̄ = 0 The image of a hyperword being 0
p. 108–110: Ω, Bp(i), L(j), ψ(p) Used in the proof of Theorem 2.8.3
p. 111–112: Ω′, Cq(i), φ(q) Used in the proof of Theorem 2.8.4
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p. 113: Φ(d, ℓ) Used in the proof of Theorem 2.8.5

Chapter 3

p. 124: Vn The space of multilinear polynomials of de-
gree n

Mσ(x1, . . . , xn) The monomial corresponding to a given
permutation

σMπ The left action of a permutation σ on a
monomial Mπ

Mσπ The right action of a permutation π on a
monomial Mσ

p. 125: Γn The space of multilinear identities ofA hav-
ing degree n

p. 126: f∗(x1, . . . , xn;xn+1, . . . ) Capelli-type polynomial
p. 128: λ = (λ1, . . . , λk) A partition
p. 129: µ > λ Partial order on partitions

sλ Number of standard tableaux of shape λ
p. 132: χλ ↑ The induced character

χµ ↓ The restricted character
p. 133: gd(n) The number of d-good permutations in Sn
p. 134: Disck(ξ) The discriminant

En,k EndF (T
n(V ))

p. 135: σ̂ The operator of En,k corresponding to σ
ϕn,k The map σ 7→ σ̂
A(n, k) The image of F [Sn] under σ̂

p. 137: cn(A) The n codimension of A
p. 142: H(k, ℓ;n) The collection of shapes whose k + 1 row

have length ≤ ℓ
p. 144: L The multilinearization operator

Chapter 4

p. 154: C{X,Y, Z} The relatively free algebra of cn+1

p. 156: δ(~x,n) Zubrilin’s operator
p. 159: DCapn The double Capelli polynomial

s
p. 165: M The module of doubly alternating polyno-

mials
p. 168: Obstn(A) The obstruction to integrality
p. 172: DCAPn The module generated by double Capelli

polynomials
ϕw A map containing w in the image

Chapter 5

p. 178: Vn The space spanned by all monomials in
y1, . . . , yn, t which are linear in y1, . . . , yn
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Vn,π The subspace in which the variables
y1, . . . , yn occur in the order yπ(1), . . . , yπ(n)

Adtℓk The transformation Vn → Vn used to define
the identity of algebraicity

p. 179: Dt The identity of algebraicity
p. 188: CT ,RT The set of column (resp. row) permutations

of the tableau T

Chapter 6

p. 206: A = R1 ⊕ · · · ⊕Rq ⊕ J The Wedderburn decomposition of a f.d. al-
gebra A over an algebraically closed field

tA The dimension of the semisimple part of a
finite dimensional algebra A

sA The nilpotence index of the Jacobson rad-
ical of a finite dimensional algebra A

p. 214: β(A) The general combinatorial analog of tA
p. 216: f̃X1,...,Xµ

The µ-fold alternator of a polynomial f
p. 218: γ(A) The general combinatorial analog of sA

index(W ), (β(W ), γ(W )) The Kemer index of a PI-algebra W
index(Γ) The Kemer index of a T -ideal Γ

p. 221: fA(I1)...A(Is)A(Is+1)...A(Is+µ)The µ-fold multiple alternator

p. 222: Âu, Âu,ν , Âu,ν;Γ The u-generic algebra

Chapter 7

p. 249: p∗
I

The Grassmann involution
p. 250: G(A) The Grassmann envelope
p. 252: Odd(x) The number of odd components of a vector

σ • (x1 · · ·xn) The odd action on the Grassmann algebra
ε(σ, I) Used to compute the odd action

p. 260: index2A The Kemer superindex
p. 261: Âu,ν;Γ The u-generic superalgebra of A

Chapter 8

p. 277: tr The formal trace symbol
p. 279: V ∗ The dual space

Chapter 9

p. 295: G+ The extended Grassmann algebra
p. 303: Pn The polynomials generating a non-finitely

based T -space in characteristic 2
p. 309: Ã The test space
p. 317: Â The test algebra
p. 318: Qn The polynomials generating a non-finitely

based T -ideal in odd characteristic
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Chapter 10

p. 332: F [Sn] The group algebra
∆ The subgroup of elements of G having

finitely many conjugates.
p. 334: U(L) The enveloping algebra of a Lie algebra L

Chapter 11

p. 338: HA, HM The Hilbert series of an algebra or module
p. 340: GKdim The Gelfand-Kirillov dimension
p. 350: HA;V ,HM ;V The Hilbert series with respect to V

Chapter 12

p. 364: χn(A) The cocharacter
p. 366: GL(V ) The general linear group
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In this chapter, we introduce PI-algebras and review some well-known results
and techniques, most of which are associated with the structure theory of
algebras. In this way, the tenor of this chapter is different from that of the
subsequent chapters. The emphasis is on matrix algebras and their subalgebras
(called representable PI-algebras) .

1.1 Preliminary Definitions

N denotes the natural numbers (including 0). Z/n denotes the ring of
integers modulo n. Throughout, C denotes a commutative ring (often a field).
Finite dimensional algebras over a field are so important that we often use the
abbreviation f.d. for them. For any algebra A, Cent(A) denotes the center of
A. Given elements a, b of an algebraA, we define [a, b] = ab−ba. Sn denotes the
symmetric group, i.e., the permutations on {1, . . . , n}, and we denote typical
permutations as σ or π. We write sgn(π) for the sign of a permutation π.

We often quote standard results about commutative algebras from [Ro05].
We also assume that the reader is familiar with prime and semiprime algebras,
and prime ideals. Although the first edition dealt mostly with algebras over a
field, the same proofs often work for algebras over a commutative ring C, so
we have shifted to that generality.
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Remark 1.1.1. There is a standard way of adjoining 1 to a C-algebra A
without 1, by replacing A by the C-module A1 := A⊕C, made into an algebra
by defining multiplication as

(a1, c1)(a2, c2) = (a1a2 + c1a2 + c2a1, c1c2).

We can embed A as an ideal of A1 via the identification a 7→ (a, 0), and
likewise every ideal of A can be viewed as an ideal of A1.

This enables us to reduce most of our major questions about associative
algebras to algebras with 1. Occasionally, we will discuss this procedure in
more detail, since one could have difficulties with rings without 1; clearly, if
A2 = 0 we do not have A2

1 = 0.

In this volume, unless otherwise indicated, an algebra A over C is assumed
to be associative with a unit element 1. We will be more discriminating in
Volume II, which deals with nonassociative algebras such as Lie algebras.

An element a ∈ A is algebraic (over C) if a is a root of some nonzero
polynomial f ∈ C[λ]; we say that a ∈ A is integral if f can be taken to be
monic. In this case C[a] is a finite module over C. The algebra A is integral
over C if each element of A is integral.

An element a ∈ A is nilpotent if ak = 0 for some k ∈ N. An ideal I of A
is nil if each element is nilpotent; I is nilpotent of index k if Ik = 0 with
Ik−1 6= 0. One of the basic questions addressed in ring theory is which nil
ideals are nilpotent.

Definition 1.1.2. An element e ∈ A is idempotent if e2 = e; the trivial
idempotents are 0, 1.

Idempotents e1 and e2 are orthogonal if e1e2 = e2e1 = 0. An idempo-
tent e = e2 is primitive if e cannot be written e = e1 + e2 for orthogonal
idempotents e1, e2 6= 0.

Remark 1.1.3. Given a nontrivial idempotent e of A, and letting e′ = 1− e,
we recall the Peirce decomposition

A = eAe⊕ eAe′ ⊕ e′Ae ⊕ e′Ae′. (1.1)

Note that eAe, e′Ae′ are algebras with respective multiplicative units e, e′. If
eAe′ = e′Ae = 0, then A ∼= eAe× e′Ae′.

The Peirce decomposition can be extended in the natural way, when we
write 1 =

∑
i=1t ei as a sum of orthogonal idempotents, usually taken to be

primitive. Now A = ⊕ti=1eiAej . The Peirce decomposition is formulated for
algebras without 1 in Exercises 1 and 6.8.

1.1.1 Matrices

Mn(A) denotes the algebra of n × n matrices with entries in A, and eij
denotes the matrix unit having 1 in the i, j position and 0 elsewhere. The
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set of n× n matrix units {eij : 1 ≤ i, j ≤ n} satisfy the properties:

n∑

i=1

eii = 1,

eijekℓ = δjkeiℓ,

where δjk denotes the Kronecker delta (which is 1 if j = k, 0 otherwise).
Thus, the eii are idempotents.

One of our main tools in matrices is the trace function.

Definition 1.1.4. For any C-algebra A, and fixed n, a trace function is a
C-linear map tr : A→ Cent(A) satisfying

tr(ab) = tr(ba), tr(a tr(b)) = tr(a) tr(b), ∀a, b ∈ A.

It follows readily that

tr(a1 . . . ak) = tr((a1 . . . ak−1)ak) = tr(aka1 . . . ak−1)

for any k.
Of course the main example is tr :Mn(C) → C given by tr((cij)) =

∑
cii;

here tr(1) = n.

Remark 1.1.5. The trace satisfies the “nondegeneracy” property that if
tr(ab) = 0 for all b ∈ A, then b = 0.

Definition 1.1.6. Over a commutative ring C, the Vandermonde matrix
of elements c1, . . . , cn ∈ C is the matrix (cj−1

i ).

Remark 1.1.7. When c1, . . . , cn are distinct, the Vandermonde matrix is
nonsingular, with determinant

∏
1≤i<k≤n(ck − ci), cf. [Ro05, Example 0.9].

This gives rise to the famous Vandermonde argument, which says that if∑n−1
j=0 c

j
iaj = 0 for each 1 ≤ i ≤ n, then each aj = 0. The Vandermonde

argument occurs repeatedly in proofs in PI theory.

Aop denotes the opposite algebra, which has the same algebra structure
except with the new multiplication · in A reversed, i.e., a·b = ba. In particular,
Cop = C, and Mn(C) ∼=Mn(C)

op via the transpose map.

1.1.2 Modules

We assume the basic properties of modules. We often consider the sub-
module of an A-module M spanned or generated by a given subset of M .
We say that M is finitely generated, denoted by f.g., if M =

∑t
i=1 Awi for

suitable wi ∈M, t ∈ N. In this case, to avoid confusion with other notions of
“generated,” we usually say that M is finite over A. A module is finitely
presented over A if it has the form M/N , where M and N are both finite
over A.
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For C-algebras A1 and A2, an A1, A2 bimodule is a (left) A1-module M
which is also a right A2-module and a module over C, satisfying the extra
associativity condition

(a1y)a2 = a1(ya2), ∀ai ∈ Ai, y ∈M,

as well as the scalar condition

cy = (c1)y = y(c1), ∀c ∈ C, y ∈M.

Thus, the A1, A2 bimodules correspond to the A1 ⊗C Aop
2 -modules. In partic-

ular, the sub-bimodules of an algebra A are precisely its ideals.

1.1.3 Affine algebras

Our main interest arises in the following important class of algebras:

Definition 1.1.8. An algebra A is affine over the commutative ring C if A
is generated as an algebra over C by a finite number of elements a1, . . . , aℓ; in
this case we write A = C{a1, . . . , aℓ}. A commutative affine algebra is notated
C[a1, . . . , aℓ].

In most cases, we shall be considering affine algebras over a field F , so
unless specified otherwise, “affine” will mean “affine over a field.”

Commutative affine algebras are precisely the coordinate algebras of affine
algebraic varieties, and thus play a crucial role in classical algebraic geometry.
One of the main thrusts of PI-theory is to generalize commutative affine theory
to affine PI-algebras.

1.1.4 The Jacobson radical and Jacobson rings

Definition 1.1.9. The Jacobson radical Jac(A) of an algebra A is the
intersection of the “primitive” ideals of A. (These are the maximal ideals
when A is commutative; also see Corollary 1.5.1.)

Remark 1.1.10. Jac(A/J) = Jac(A)/J , whenever J ⊆ Jac(A), cf. [Ro08,
Exercise 15.28].

We quote a celebrated result of Amitsur [Ro05, Theorem 2.5.23]:

Theorem 1.1.11. If A has no nonzero nil ideals, then Jac(A[λ]) = 0.

Lemma 1.1.12. If Jac(C) = 0 and A is a commutative integral domain affine
and faithful over C, then Jac(A) = 0.

Proof. Write A = C[a1, . . . , aℓ], and let C1 = C[aℓ]. It is enough to show that
Jac(C1) = 0, since then we apply induction on ℓ.

So write a = aℓ and assume that A = C[a]. If a is transcendental over C,
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then the assertion is clear by Theorem 1.1.11 (since C[a] is isomorphic to a
polynomial ring); an easy direct argument is given in Exercise 2.

Thus we may assume that a is algebraic over C, so A is algebraic over C,
and by [Ro05, Lemma 6.29] it is enough to show that C ∩ Jac(A) = 0. Write∑t

i=0 cia
i = 0 for ct 6= 0, and let S = {cit : i ∈ N}. Let P be the set of

maximal ideals of C not containing ct, and J = ∩{P ∈ P}. Then ctJ is
contained in every maximal ideal of C and thus is 0, implying J = 0. On
the other hand S−1A is integral over S−1C. If P ∈ P , then S−1P is a prime
ideal of S−1C, which then is contained in a prime ideal S−1Q of S−1A, for
some prime ideal Q of A containing P (in view of [Ro05, Proposition 8.11]),
implying the integral domain A/Q is a finite extension of the field C/P , and
is thus a field. Hence Q is a maximal ideal of A whose intersection with C
is P , implying that C ∩ Jac(A) ⊆ J = 0, as desired.

Definition 1.1.13. An integral domain C is local if it has a unique maximal
ideal, which thus is Jac(C).

An equivalent formulation [Ro05, Corollary 8.20]: If a+ b = 1, then either
a or b is invertible. One key notion in commutative algebra is localization,
treated in [Ro05, Chapter 8].

Definition 1.1.14. A ring is Jacobson (called Hilbert in [Kap70b]) if the
Jacobson radical of every prime homomorphic image is 0.

In other words, in a Jacobson ring, any prime ideal is the intersection of
primitive ideals of A. Obviously any field is Jacobson, since its only prime
ideal 0 is maximal.

Lemma 1.1.15. Suppose a field K = C[a1, . . . , at] is affine over a commuta-
tive Jacobson subring C. Then C also is a field, and [K : C] <∞.

Proof. C is an integral domain, and thus Jac(C) = 0. The field K is affine
over the field of fractions L of C, implying K is algebraic over C, by [Ro05,
Theorem 5.11]. Letting ci be the leading coefficient of the minimal polynomial
of ai over C, and c = c1 · · · ct, we see that each ai is integral over C[c

−1], and
thus K is integral over C[c−1], implying C[c−1] is a field, by the easy [Ro05,
Proposition 5.31]. Hence any nonzero prime ideal of C contains a power of c,
and thus c, implying c ∈ Jac(C) = 0, a contradiction unless C is already a
field, i.e., L = C and thus K is finite over C.

We also have a result in the opposite direction.

Lemma 1.1.16. Any commutative affine algebra A = C[a1, . . . , at] over a
commutative Jacobson ring C is Jacobson.

Proof. For any prime ideal P of A, Jac(A/P ) = 0 by Lemma 1.1.12.

This often is called the “weak Nullstellensatz.”
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1.1.5 Central localization

The localization procedure can be generalized directly from the commuta-
tive situation to S−1A whenever S is a (multiplicative) submonoid of Cent(A).
In particular the ideals of S−1A are precisely those subsets S−1I where I ⊳A.
We say that an element s ∈ A is regular when sa, as 6= 0 for all a 6= 0 in A.
When A is prime, then every submonoid of Cent(A) is regular. Here is an easy
but useful result.

Proposition 1.1.17. Suppose S is a submonoid of Cent(A) which is regular
in A. Then S−1A is prime iff A is prime.

Proof. (⇒) If I1, I2 ⊳ A with I1I2 = 0, then (S−1I1)(S−1I2) = 0, implying
S−1I1 = 0 or S−1I2 = 0, so I1 = 0 or I2 = 0.

(⇐) If S−1I1, S−1I2 ⊳ S−1A with S−1I1I2 = 0, then I1 = 0 or I2 = 0,
implying S−1I1 = 0 or S−1I2 = 0, so I1 = 0 or I2 = 0.

Corollary 1.1.18. Suppose A is a prime algebra, and S is a submonoid
of Cent(A), and A ⊆ B ⊆ S−1A. Then B is prime.

Proof. S−1A is prime, but S−1A = S−1B, implying B is prime.

1.1.6 Chain conditions

A partially ordered set S is said to satisfy the ACC (ascending chain
condition) if every infinite ascending chain

S1 ⊆ S2 ⊆ . . .

stabilizes in the sense that there is some k such that Si = Si+1 for all i ≥ k. In
particular, a commutative ring isNoetherian if it satisfies the ACC on ideals.
The Hilbert Basis Theorem implies that every commutative affine algebra over
a Noetherian ring (in particular, over a field) is Noetherian, thereby elevating
the Noetherian theory to a central role in algebra and geometry.

Recall three noncommutative generalizations of “Noetherian,” in increas-
ing strength:

Definition 1.1.19. (i) A ring R is weakly Noetherian if it satisfies the
ACC on two-sided ideals. (Equivalently, R is a Noetherian R⊗Rop-module.)

(ii) A ring R is left Noetherian if it satisfies the ACC (ascending chain
condition) on left ideals.

(iii) R is Noetherian if it is left and right Noetherian, i.e., satisfies the
ACC on left ideals and also satisfies the ACC on right ideals.

Any finite module over a left Noetherian ring is left Noetherian. Any
weakly Noetherian ring obviously has a unique maximal nilpotent ideal, which
is the intersection of its prime ideals.
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Remark 1.1.20. We recall the important technique of “Noetherian induc-
tion”: To prove a theorem about weakly Noetherian rings, we suppose on the
contrary that we have a counterexample R, and take an ideal I maximal with
respect to the theorem failing for R/I. Replacing R by R/I, we may as-
sume that R is a counterexample, but R/J is not a counterexample for every
0 6= J ⊳R.

Noetherian induction can also be used for proving theorems about Noethe-
rian modules, in an analogous fashion.

We can pass the Noetherian property to the center by means of the fol-
lowing result.

Proposition 1.1.21 (Artin-Tate Lemma). Suppose that A is an affine C-
algebra, finite over its center Z. If C is Noetherian, then Z is affine, and thus
is Noetherian.

Proof. For the reader’s convenience, we reproduce the easy proof given
in [Ro88b, Proposition 6.2.5]. Namely, write A = C{a1, . . . , at} and A =∑q

ℓ=1 Zbℓ. Writing bibj =
∑q

m=1 zijmbm for zijm ∈ Z, and ak =
∑q

ℓ=1 z
′
kℓbℓ,

we let
Z1 = C[zijm, z

′
kℓ : 1 ≤ i, j, ℓ,m ≤ t, 1 ≤ k ≤ q],

which is affine over C, and thus Noetherian. But
∑q

ℓ=1 Z1bℓ is an algebra
over Z1 containing C{a1, . . . , at} = A, and thus is a Noetherian Z1-module,
proving that its submodule Z is finite over Z1, and thus is affine as an algebra.

A related result due to Eakin-Formanek (Exercise 3) is that if a ring is
Noetherian and finite over its center Z, then Z is Noetherian.

Definition 1.1.22. Suppose that some set S acts on an algebra A from the
right. For any subset T ⊂ S one defines the left annihilator

AnnT = {a ∈ A : aT = 0},

a left ideal of A. ACC(Left annihilators) denotes the ACC on {left
annihilators}. When AnnT is a 2-sided ideal of A, we call AnnT an an-
nihilator ideal. In this case, AnnT is the left annihilator of a 2-sided ideal,
namely of its right annihilator.

Lemma 1.1.23 (Fitting-type Lemma). Given a module M over a commuta-
tive ring Z, with z ∈ Z and k ∈ N, let N = {a ∈M : zka = 0}. If N satisfies
the property that z2ka = 0 implies a ∈ N, then zkM ∩N = 0.

Proof. If zka ∈ N , then z2ka = 0, implying a ∈ N, so zka = 0.
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1.1.7 Subdirect products and irreducible algebras

Definition 1.1.24. A is a subdirect product of the algebras {Ai : i ∈ I} if
there is an injection ψ : A → ∏

Ai for which πjψ : A → Aj is onto for each
j ∈ I, where πj denotes the natural projection

∏
Ai → Aj.

In this case, ∩ kerπj = 0. Conversely, if Ai = A/Ii for each i ∈ I and
∩iIi = 0, then A is a subdirect product of the Ai in the obvious way.

The following concept often fits in with Noetherian.

Definition 1.1.25. An algebra A is irreducible if the intersection of two
nonzero ideals is always nonzero.

By induction, the intersection of finitely many nonzero ideals of an irre-
ducible algebra is always nonzero.

Lemma 1.1.26. Any weakly Noetherian algebra A is a finite subdirect product
of irreducible algebras.

Proof. The usual Noetherian induction argument. Otherwise, take a coun-
terexample A, and take I ⊳ A maximal with respect to A/I not being a
counterexample. Passing to A/I, we may assume that A is a counterexample
to the lemma, but A/I is not a counterexample, for all 0 6= I ⊳ A.

In particular, A itself is reducible, so has nonzero ideals I1, I2 such that
I1 ∩ I2 = 0. But by hypothesis A/I1 is a finite subdirect product of irre-
ducible algebras A/I1,1, . . . , A/I1,t and A/I2 is a finite subdirect product
of irreducible algebras A/I2,1, . . . , A/I2,u, implying A is a subdirect product
of A/I1,1, . . . , A/I1,t, A/I2,1, . . . , A/I2,u.

1.1.7.1 ACC for classes of ideals

This subsection contains basic material about chain conditions on classes
of ideals of a given ring R, with an eye on applications to ideals of noncommu-
tative algebras. The reason we include it is that Kemer’s solution of Specht’s
problem, given in Chapters 6 and 7, has thrust open the door to a new appli-
cation of this material, and we might as well present it here to have it available
for other purposes (such as for the structure of affine PI-algebras). We skip
some proofs, when they are formal and in direct analogy to the well-known
proofs in commutative algebra. Throughout, we fix a monoid S of ideals of R,
satisfying the following properties:

(i) The intersection of members of S is in S;

(ii) If I,J ∈ S, then I + J ∈ S.

Definition 1.1.27. Given S ⊆ S, the member of S generated by S is defined
as ∩{I ∈ S : S ⊆ I}. I ∈ S is finitely generated in S if I is generated by
some finite set S.
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(This generalizes the notion of a finite module.)

Remark 1.1.28. The following are equivalent:

(i) S satisfies the ACC.

(ii) Every member of S is finitely generated in S.

(iii) Every subset of S has a maximal member.

Definition 1.1.29. A member P of S is prime if, for all I,J ∈ S not
contained in P , we have IJ 6⊆ P . For any S ⊆ A, a prime P of S contain-
ing S is minimalprime over S if P does not properly contain a prime of S
containing S.

Lemma 1.1.30. Every prime of S containing S contains a minimal prime
containing S.

Proof. In view of Zorn’s lemma, we need to show that for any chain P of
primes, that P = ∩{P ∈ P} is also prime. But this is standard: If IJ ⊆ P
with I 6⊆ P , then I 6⊆ Pj0 for some Pj0 in P , implying J ⊆ Pj for each
Pj ⊂ Pj0 in P , implying J ⊆ P.

Theorem 1.1.31. Suppose that S satisfies the ACC. Then for any I ∈ S,
there are only finitely many primes P1, . . . , Pn in S minimal over I, and some
finite product of the Pi is contained in I.

Proof. By Noetherian induction. Otherwise, there is I ∈ S maximal with
respect to being a counterexample. Certainly I is not itself prime, so take
J1,J2 ⊃ I in S such that J1J2 ⊆ I. (We can replace Ji by Ji+I if necessary.)
By hypothesis, the conclusion of the theorem holds for J1 and J2, i.e., there
are primes Pik minimal over Jk with some finite product contained in Jk. But
then the product together is contained in J1J2 and thus, in I. Any prime P
containing J1J2 contains some minimal prime over J1J2, which in turn must
contain some Pik and thus must equal Pik.

Definition 1.1.32. The radical
√
S of S ⊆ A is the intersection of all primes

of S containing S.

The foregoing results did not involve associativity of the multiplication
of S, although the subsequent ones do, in order that P1 · · ·Pn is well-defined.
(The subtleties of the nonassociative case are treated in Volume II.)

Corollary 1.1.33. Suppose that S satisfies the ACC. If I ∈ S, then
√
I is a

finite intersection of primes of S, each minimal over
√
I.

Corollary 1.1.34. If S satisfies the ACC, then
√
It ⊆ I for some t.
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Proof. Write
√
I = P1 ∩ · · · ∩ Pn, and then note that some product of t of

the Pi are in I, implying

(
√
I)t ⊆ P1 · · ·Pt ⊆

√
I.

Corollary 1.1.35. Suppose that S satisfies the ACC, and 0 ∈ S. If I ∈ S is
contained in every prime, then I is nilpotent.

Proof. I ⊆
√
0, so apply the previous corollary.

Corollary 1.1.36. Any nil subset N of a commutative (associative) Noethe-
rian ring C is nilpotent.

Proof. N is contained in every prime ideal P , since C/P is an integral domain.

(This fails for noncommutative rings, even for {e12, e21} ⊂M2(F ).)

1.2 Noncommutative Polynomials and Identities

In order to get to our subject, we need the noncommutative analog of
polynomials.

1.2.1 The free associative algebra

Recall that the free (associative) monoid M{X} in X = {xi : i ∈ I} is the
monoid of words {xi1xi2 · · ·xit : t ∈ N} permitting duplication of subscripts,
and whose unit element is the blank word ∅; the monoid operation is given in
terms of juxtaposition of words.

C{X}, often denoted C〈X〉 in the literature, denotes the free associative
algebra (with 1) in the set X = {xi : i ∈ I} of noncommuting indeterminates.
(Usually I = N, but often I is taken to be finite.) In other words, C{X} is the
monoid algebra of M{X}. The elements of C{X} are called polynomials.
C{X} is free as a C-module, with base consisting of M{X}, the set of words;
thus, any f ∈ C{X} is written uniquely as

∑
cjhj where hj ∈ M(X). We

call these cjhj the monomials of f .
Given f ∈ C{X} we write f(x1, . . . , xm) to denote that x1, . . . , xm are

the only indeterminates occurring in f. Sometimes we write f(~x) for short.
Later, when the notation becomes more cumbersome, we shall have occasion
to use Y (and at times Z) to denote extra sets of indeterminates that do not
enter the computations as actively as the xi. In this case we write C{X,Y } or
C{X,Y, Z} in place of C{X}, and we write f(~x, ~y) or f(~x, ~y, ~z) accordingly.

The main feature of C{X} is the following.
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Remark 1.2.1. Given a C-algebra A and elements {ai : i ∈ I} ⊆ A, there
is a unique algebra homomorphism φ : C{X} → A, called the substitution
homomorphism, such that φ(xi) = ai, ∀i ∈ I. Indeed, one defines

φ(xi1 · · ·xim) = ai1 · · ·aim

and extends this linearly to all of C{X}.

The evaluation f(a1, . . . , am) denotes the image of f under the homo-
morphism of Remark 1.2.1. We also say that f specializes to f(a1, . . . , am),
and a1, . . . , am are substitutions in f.

1.2.2 Polynomial identities

We write f(A) for the set of evaluations {f(a1, . . . , am) : ai ∈ A}.

Definition 1.2.2. An element f ∈ C{X} is an identity of a C-algebra A if
f(A) = 0, i.e., f ∈ kerφ for every homomorphism φ : C{X} → A.

Identities pass to related algebras as follows.

Remark 1.2.3. If f is an identity of an algebra A, then f is an identity of
any homomorphic image of A and also of any subalgebra of A. Furthermore
if f is an identity of each C-algebra Ai, i ∈ I, then f is an identity of

∏
i∈I Ai.

Remark 1.2.3 provides an alternate approach to identities, cf. §1.7 below.

Definition 1.2.4. For a monomial h we define degi h to be the number of
occurrences of xi in h, and the degree deg h =

∑
i degi h; for a polynomial f,

we define deg f to be the maximum degree of the monomials of f . For example
deg(x1x2 + x3x4) = 2.

One needs some way of excluding the identity px1, which only says that A
has characteristic p. Toward this end, we formulate the main definition of this
book.

Definition 1.2.5. An identity f is a PI (polynomial identity) for A if at
least one of its coefficients is 1. An algebra A is a PI-algebra of PI-degree d
if A satisfies a PI of degree d.

This definition might seem restrictive, but in fact is enough to encompass
the entire PI-theory, cf. [Am71]. Since PI-algebras are the subject of our study,
let us address a subtle distinction in terminology. A ring R is a PI-ring when
it is a PI-algebra for C = Z. Although most of the general structure theory
holds for PI-rings in general, our focus in this book is usually on a particular
base ring C, sometimes a field which we denote as F rather than C; often we
require char(F ) = 0, for reasons to be discussed shortly.

Definition 1.2.6. We write id(A) for the set of identities of A.
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Here is a notion closely related to PI.

Definition 1.2.7 (Central polynomials). A polynomial f(x1, . . . , xn) is A-
central if 0 6= f(A) ⊆ Cent(A).

In other words, f(x1, . . . , xn) is A-central iff [y, f ] (but not f) is in id(A).
The most basic examples of PI-algebras are the matrix algebra Mn(C) for

arbitrary n, f.d. algebras over a field, and the Grassmann algebra G, cf. Def-
inition 1.3.26. Since these examples require a bit more theory, we first whet
the reader’s appetite with some easier examples.

Example 1.2.8.

(i) The polynomial x is central for any commutative algebra.

(ii) Let UT(n) denote the algebra of upper triangular matrices over a given
base ring C. Any product of n strictly upper triangular n × n matrices
is 0. Since [a, b] is strictly upper triangular, for any upper triangular
matrices a, b, we conclude that the algebra UT(n) satisfies the identity

[x1, x2][x3, x4] · · · [x2n−1, x2n].

(iii) (Wagner’s identity) If F is a field, then M2(F ) satisfies the identity
[[x, y]2, z] or, equivalently, the central polynomial [x, y]2, cf. Exercise 19.

(iv) Fermat’s Little Theorem translates to the fact that any field F of n ele-
ments satisfies the identity xn−x. (See Exercise 27 for a generalization.)

(v) Any Boolean algebra satisfies the identity x2 − x.

When dealing with arbitrary PIs it is convenient to work with certain kinds
of polynomials. We say that a polynomial f(x1, . . . , xm) is homogeneous
in xi if xi has the same degree in each monomial of f . We say that f is
homogeneous if f is homogeneous in every indeterminate. (Sometimes this is
called “completely homogeneous” or “multi-homogeneous” in the literature.)
In this case, if xi has degree di in fi for 1 ≤ i ≤ m, we say that f has multi-
degree (d1, . . . , dm), where deg f = d1 + · · · + dm. Here is a very important
special case.

Definition 1.2.9. A monomial h is linear in xi if degi h = 1. A polynomial f
is linear in xi if each monomial of f is linear in xi; f is t-linear if f is linear
in each of x1, . . . , xt.

A polynomial f(x1, . . . , xm) is multilinear if f is m-linear. In other
words, each indeterminate of f appears with degree exactly 1 in each monomial
of f .

Thus, x1x2−x2x1 is multilinear. However, x1x2x3−x2x1 is not multilinear,
since x3 does not appear in the second monomial.
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Given a multilinear polynomial f(x1, . . . , xm), we pick any nonzero mono-
mial h, and renaming the indeterminates appropriately, we may assume that
h = cx1x2 . . . xm for some c ∈ C. Thus, the general form for a multilinear
polynomial is

f(x1, . . . , xm) = c1x1x2 · · ·xm +
∑

16=σ∈Sm

cσxσ(1)xσ(2) · · ·xσ(m). (1.2)

Furthermore, if C is a field, then we can divide by c1 and assume that
c1 = 1. The main reason we focus on multilinear identities is because of
Proposition 1.2.18 below. However, the linearity property already is quite
useful:

Remark 1.2.10. If f is linear in xi, then

f(a1, . . . ,
∑

j

cjaij , . . . , am) =
∑

j

cjf(a1, . . . , aij , . . . , am)

for all cj ∈ C, aij ∈ A.

Lemma 1.2.11. Suppose A is spanned over C by a set B. Then a multilinear
polynomial f is an identity of A iff f vanishes on all substitutions to elements
of B; f is A-central iff every substitution of f on B is in Cent(A) but some
substitution on B is nonzero.

Proof.

f

(∑

i1

ci1bi1 , . . . ,
∑

im

cimbim

)
=

∑

i1,...,im

ci1 · · · cimf(bi1 , . . . , bim),

in view of Remark 1.2.10.

1.2.3 Multilinearization

These observations raise the question of how to go back and forth from
arbitrary identities (or central polynomials) to multilinear ones. The answer
is in the process of multilinearization, also called polarization. This will
be tied to group actions in §3.5 (also cf. Exercise 6), but can be described
briefly as follows:

Definition 1.2.12 (Multilinearization). Suppose the polynomial
f(x1, . . . , xm) has degree ni > 1 in xi. We focus on one of the indeterminates,
xi, and define the partial linearization

∆if(x1, . . . , xi−1, xi, x
′
i, xi+1, . . . , xm) (1.3)

= f(. . . , xi + x′i, . . . )− f(. . . , xi, . . . )− f(. . . , x′i, . . . )
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where x′i is a new indeterminate. Clearly ∆if remains an identity for A when
f ∈ id(A), but all monomials of degree ni in xi cancel out in ∆if. The re-
maining monomials have x′i replacing xi in some (but not all) instances, and
thus have degree < ni in xi, the maximum degree among them being ni − 1.

Remark 1.2.13. Since this procedure is so important, let us rename the
indeterminates more conveniently, writing x1 for xi and yj for the other
indeterminates.

(i) Now our polynomial is f(x1; ~y) and our partial linearization may be
written as

∆1f(x1, x2; ~y) =

f(x1 + x2; ~y)− f(x1; ~y)− f(x2; ~y),
(1.4)

where x2 is the new indeterminate.

(ii) Before we get started, we must cope with the situation in which x1 does
not appear in each monomial. For example, if we want to multilinearize
f = x1y + y in x1, then the only way would be to apply ∆1, but

∆1f = (x1 + x2)y + y − (x1y + y)− (x2y + y) = −y,

and we have lost x1 altogether. This glitch could complicate subsequent
proofs.

Fortunately, we can handle this situation by defining g = f(0; ~y), the
sum of those monomials in which x1 does not appear. If f ∈ id(A), then
also f − g ∈ id(A), so we can replace f by f − g and thereby assume
that any indeterminate appearing in f appears in each monomial of f ,
as desired. We call such a polynomial blended.

(iii) Let n = deg1 f. Iterating the linearization procedure n − 1 times (each
time introducing a new indeterminate xi) yields an n-linear polynomial
f̄(x1, . . . , xn; ~y) which preserves only those monomials h originally of
degree n in x1. For each such monomial h in f we now have n! mono-
mials in f̄ (according to the order in which x1, . . . , xn appears), each
of which specializes back to h when we substitute x1 for each xi. Thus,
when f is homogeneous in x1, we have

f̄(x1, . . . , x1; ~y) = n!f . (1.5)

We call f̄ the linearization of f in x1. In characteristic 0 this is about
all we need, since n! is invertible and we have recovered f from f̄ . This
often makes the characteristic 0 PI-theory easier than the general theory.

(iv) Repeating the linearization process for each indeterminate appearing in f
yields a multilinear polynomial, called the multilinearization, or total
multilinearization, of f .


