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Preface

This book provides a pedagogical overview of the current state-of-the-art in
the development of laser-based optical methods for the solution of funda-
mental and applied combustion problems. Laser-based diagnostics provide
important tools to probe the harsh, high-temperature, and often high-pres-
sure environment of modern combustion systems. These diagnostic mea-
surements enable tests of fundamental understanding of combustion as
well as enable empirical strategies to maximize the combustion efficiency
and minimize the pollution of the combustion effluent from practical com-
bustion devices.

This book gives a snapshot of the available diagnostic methods and their
typical applications from the perspective of leading experts in the field.
Teams of authors, sometimes from different groups, have written chapters
with the intention to provide an educational approach to the subject, cutting-
edge application examples from the research of their own and other groups,
an acute literature survey, and well-balanced guidelines for current applica-
tions as well as indications of unsolved problems or of further perspectives.

The first part reviews the most widely used laser-based diagnostic techni-
ques. Methods to detect trace concentrations of intermediate species in the
chemical mechanism are reviewed in detail; laser-induced fluorescence,
nonlinear optical methods, and cavity ringdown spectroscopy are high-
lighted. The current status of soot monitoring with laser-induced incandes-
cence is presented with a focus on quantitative calibration. Temperature is an
important combustion parameter, and fundamentals of accurate tempera-
ture measurements are discussed. Practical combustion is dominated by the
interaction of chemistry and fluid mechanical transport; laser-based imaging
techniques are an important tool to understand laminar and turbulent com-
busting flows. Chapters on flow-field diagnostics and multidimensional diag-
nostics attack the problems of spatially and temporally resolved combustion
measurements.

The second part focuses on the current state-of-the-art application of
these laser-based techniques to practical combustion problems. Chapters

XXiii
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on rich flame chemistry and on polycyclic aromatic hydrocarbons (PAH)
and soot monitoring apply laser-based diagnostics to the important class of
fuel-rich flames. This discussion naturally leads into chapters on two-phase
fuel flows and fuel sprays in engines, followed by a detailed application of
laser diagnostics to pollutant formation in engines. Catalytic combustion,
fire suppression, combustion control, and gas turbine diagnostics round out
Part II.

The final part discusses unsolved combustion problems and how laser-
based measurements have the potential to provide the understanding needed
to find solutions for these problems. We discuss the needs for diagnostic
measurements to attack currently unsolved problems in detailed chemical
modeling, gas—surface catalytic combustion, active combustion control,
and commercial gas turbines. The book concludes with three chapters dis-
cussing the impact of toxic combustion effluent emissions on the atmosphere
and two promising diagnostics schemes to provide the needed tools for in-
situ monitoring of trace toxic species in the atmosphere; finally, a perspective
on anticipated developments and emerging techniques is given.

Each chapter is written as a stand-alone contribution, providing an educa-
tional, concise and timely review of the present status of techniques, applica-
tions and perspectives. Cross-referencing to other chapters is provided
throughout to allow for additional in-depth information related to individual
chapters. The book may thus be used in different ways: by reading from start
to end as a detailed course in combustion diagnostics, by reading individual
chapters as a source of reference, or by browsing through different sections as
a source of ideas. We intend to provide the active combustion research
scientist with an understanding of the quality and content of the measure-
ments from a variety of laser-based techniques. The book also provides
supplemental reading to graduate courses in combustion and experimental
methods in mechanical engineering. The laser-diagnostics specialist can learn
the strengths and weaknesses of the various laser-based techniques, and the
serious student can quickly get an up-to-date status of laser-based combus-
tion measurements.

As we developed the program for the 1999 Gordon Research Conference
on Laser Diagnostics in Combustion, we recognized the incredible progress
in the application of laser-based measurement tools to combustion problems.
During the summer of 2000, Professor Norman Chigier suggested that
Katharina Kohse-Héinghaus might author or edit a diagnostics book. His
subsequent encouragement of our book ideas led us to begin to enroll the
author teams during the International Symposium on Combustion in
Edinburgh.

We must acknowledge a great many people who have made this book
possible. First, we thank the forty-six contributing authors whose names
appear in the contents; not only did these experts provide the texti of the
book, but they met our very aggressive publication time schedule. In addi-
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tion, another fifty-three reviewers donated their time to provide timely, pro-
vocative, and constructive criticism for the individual chapters.

KKH wishes to acknowledge the stimulating work environment in
Biclefeld and the support, suggestions and often late-night discussions with
her collaborators and students. Especially, the scientific interaction with Dr.
Burak Atakan, Dr. Andreas Brockhinke, and Dr. Heidi Béhm has been
extremely rewarding. The involvement of KKH in the active field of research
highlighted in this book would not have been possible without the financial
support of the Deutsche Forschungsgemeinschaft and the Fonds der
Chemischen Industrie, which is gratefully acknowledged. Her special thanks
are also due to her husband, Klaus Peter Kohse, and her daughter Eva, who
both have been remarkably patient with regard to the disruptions this project
has caused in their family life.

JBJ acknowledges the encouragement, scientific discussion, and support of
Professor Ronald K. Hanson at Stanford; Ron provides an environment that
fosters fundamental science and applied problem solving, and JBJ is
delighted to work with him and the extremely capable students in his
group. He also thanks long-time colleagues David Crosley and Gregory
Smith at SRI for drawing him into this exciting field and their numerous
engaging discussions over the past eighteen years. JBJ acknowledges financial
support from the Air Force Office of Scientific Research, NASA-Ames
University Consortium, and the Office of Naval Research. Finally, JBJ
thanks his spouse, Robin Jeffries for all of his family time that she donated
to this book project.

We thank Robert Bedford, Catherine Caputo, and their employer Taylor
& Francis and Richard Cook at Keyword for supporting this endeavor. Book
publishing was a new venture for us, and they have worked hard to make ita
smooth and easy task.

Warm and especial thanks go to Regine Schréder, secretary to KKH at the
Lehrstuhl fiir Physikalische Chemie I, Universitéit Biclefeld. Regine has kept
us on track and on time throughout all phases of this project. She has tire-
lessly entreated timely response from all the contributing authors and
reviewers, and she has kept track of all the details. This book has thus
profited greatly from her able assistance.

We hope that you, the readers, find that this book improves your under-
standing of the use of laser-based diagnostics applied to combustion pro-
cesses, systems, and problems; we hope the information presented here will
be a valuable aid in your classes, laboratories, and in the solution of specific
problems.

December 2001
Katharina Kohse-Hoinghaus Jay B. Jeffries
Physikalische Chemie | High Temperature Gasdynamics
Fakultdt fiir Chemie Laboratory
Universitdt Bielefeld Mechanical Engineering Department

Stanford University
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1

Introduction

Katharina Kohse-Hdinghaus and
Jay B. Jeffries

1.1 MOTIVATION

Combustion is the world’s major source of energy; thus, it is of paramount
importance to improve combustion efficiency to effectively use natural
resources and minimize combustion-generated pollution to reduce the
impact on air quality. Combustion and optical diagnostics have been inter-
twined since Swan’s observation in 1857 of the green bands from C, emis-
sion in a candle flame. Flames became a good source for optical emission
spectroscopy and this early literature is well reviewed in Gaydon’s 1957
book [I].

The fundamental understanding needed for improved combustion devices
and processes requires collaboration of scientists representing many fields of
expertise. A minimal model of a practical combustion device requires chem-
istry, fluid mechanics, and heat transfer. Well-designed experiments are
needed for the validation of numerical combustion models. Laser-based
diagnostic techniques currently offer direct interrogation of the combustion
process. Such diagnostic measurements provide a rigid test of our under-
standing of combustion, and stimulate our ideas on how to apply this
knowledge to the control and optimization of combustion systems.
Physicists, chemists, and engineers in many groups worldwide collaborate
to develop and validate these laser methods and to interpret the results from
measurements in systems ranging from fundamental combustion studies to
practical combustion devices.

Combustion systems constitute a harsh, high-temperature environment,
which often features impressively complex chemistry and a time-varying
turbulent flow field. In addition, practical combustion often takes place at
elevated pressures and in two-phase flows. Experimental determination of
the most basic information requires significant effort: temperature, concen-
trations of major species and reactive intermediates, flow velocities, and

1



2 CHAPTER 1: INTRODUCTION

potential temporal and spatial fluctuations of these quantities must be mea-
sured, often simultaneously. Limited optical access, window deterioration,
constraints in measurement time, vibrations, and other considerations may
pose secondary problems when coupling a laser technique, or a laser-based
instrument for measurements in a practical environment.

It is evident that not one single laser technique or measurement approach
will provide all the necessary quantities to characterize a complex practical
combustor. Many different laser-based techniques and methods have been
developed to meet these demands, including Raman and Rayleigh scatter-
ing, nonlinear Raman spectroscopy, laser-induced fluorescence, multipho-
ton and pump-probe approaches, four-wave mixing and holographic grating
techniques, as well as advanced laser absorption schemes. The design, appli-
cation, and interpretation of laser-based measurements to characterize a
combustion system require a thorough fundamental knowledge of laser
physics, spectroscopy, and combustion chemistry. The fundamental princi-
ples of laser-based combustion diagnostics are treated by Alan Eckbreth [2];
this excellent book provides the background fundamentals for the techni-
ques used for spatially resolved combustion diagnostics.

In the thirty years since the first application of laser techniques to com-
bustion studies, the field of combustion diagnostics has matured signifi-
cantly. Not only have basic techniques been tested and applied, but new
concepts have been devised and more sophisticated equipment and evalua-
tion tools are available enabling more ambitious questions to be addressed.
Where the mere detection of important reactive intermediate species was an
achievement several years ago, today accurate quantitative measurement of
their concentrations is feasible. Where certain quantities could barely be
measured under clean laboratory conditions, techniques have been con-
ceived which allow measurement in the presence of particles and surfaces
and under realistic operation conditions. Where only a single quantity could
be obtained at a specific location in a pointwise measurement, one-, two-,
and three-dimensional approaches are now available. Where a single tem-
perature or concentration value could be measured at a given time, multi-
species and multiquantity concepts, often combining several laser
techniques, have been demonstrated. New lasers make new avenues and
approaches feasible with faster pulses, higher repetition rates, better beam
qualities, extended wavelength regimes and higher tunability, these proper-
ties being paralleled by similar advances in light detectors and electronics.
With these exciting possibilities, the field of combustion diagnostics remains
active in fundamental research, meeting the increasingly ambitious needs of
combustion science and the related environmental considerations. Many
techniques have meanwhile transformed into routine tools, and at least
half of the experimental studies presented ai the last Combustion
Symposia arrived at their conclusions with data from laser measurements.
The current state-of-the art of the application of laser-based measurements
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to combustion problems is presented here from the diagnostics point of
view. This book aims to arm the reader with the information to select
from the arsenal of laser-based diagnostics the right solution for their com-
bustion problem.

1.2 BACKGROUND

The multidisciplinary nature of laser-based combustion diagnostics creates a
large and diverse introductory literature. The basic physics underlying linear
and nonlinear diagnostic techniques used for spatially resolved gas-phase
measurements is reviewed by Eckbreth [2], and this book assumes the reader
is familiar with this background. For a more complete discussion of laser
physics, the text by Siegman [3] is recommended. Demtrdoder [4] provides an
overview of laser spectroscopy. The fundamental reference on molecular
spectroscopy is the series by Herzberg [5-8] and there are numerous modern
references [e.g., 9 and 10]. The design of laser-based diagnostics requires
data on the optical properties of materials and optical design; the classic
textbook on optics by Born and Wolf [11] and the Optical Society of
America Handbook [12] are recommended. General design considerations
for laser diagnostics for combustion research, including the choice of laser
sources, the selection of optical components, wavelength-selective devices
such as filters or monochromators, and detection devices are also covered by
Eckbreth [2].

Techniques such as laser-induced fluorescence (LIF), coherent anti-Stokes
Raman scattering (CARS), Raman, and Mie scattering are widely used
combustion diagnostics. The underlying physics, typical experimental
arrangements, merits, and disadvantages can be found in Ref. 2, and thus
these topics are not individually treated in special chapters here. Here we
discuss the application of these diagnostic techniques to applied combustion
problems.

1.3 ORGANIZATION

The book is divided into three parts, Techniques, Applications, and
Perspectives. The first part, Techniques (Chapters 2-9) focuses on methods
suitable for the measurement of combustion properties, including minor
species concentrations (Chapter 2), temperature (Chapter 6), and flow-
field characteristics (Chapter 7). In addition, the novel possibilities that
picosecond laser pulses (Chapter 5) and multidimensional approaches in
space and time (Chapter 8) offer for the investigation of combustion phe-
nomena are discussed. Finally, reviews are presented for some techniques
that were emerging at the time the Eckbreth book was written, including
coherent techniques devoted to measurements of intermediate species in
Chapter 3, cavity ringdown (CRD) spectroscopy in Chapter 4, and laser-
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induced incandescence (LIT) in Chapter 9. The chapter sequence of this first
section is arranged to proceed from the measurement of intermediates
(Chapters 2-5) to that of temperature (Chapter 6), flow-field parameters
(Chapters 7 and 8), and particle-related properties (Chapter 9).

During the past two decades a significant amount of fundamental infor-
mation has been published on seemingly unrelated issues such as collision
processes, polarization properties, spectral line shapes and spectral interfer-
ences, laser photolysis, laser absorption, beam steering, and beam profile
deterioration. This fundamental data combined with the basic diagnostic
principles developed in Eckbreth’s book [2] provide the opportunity for
sophisticated quantitative measurement strategies discussed in this first
part. It thus encompasses a broad variety of tools that find use in probing
detailed chemistry, pollution formation and combustion performance from
laboratory flames to practical devices. The reader’s attention is drawn to the
extensive compilation of literature references and detection strategies for
minor species in the appendix to Chapter 2.

The second part of the book, Applications (Chapters 10-18) focuses on
specific uses of laser-based diagnostics in combustion research. Even though
much combustion diagnostics research during the last decade has been
devoted to improvement of established techniques or initial demonstration
of the potential of novel approaches, many research groups have begun to
investigate increasingly complex combustion problems with an array of
diagnostics techniques. Accordingly, new measurement strategies employ a
suite of diagnostic methods to explore these applied systems to provide
design guidelines, validate numerical models, and estimate performance
parameters such as pollutant emissions. Typical combinations of diagnostic
techniques for specific combustion problems are thus outlined in this second
part, the sequence of chapters coarsely reflecting the increasing complexity
of the combustion problems. Note that appropriate diagnostic strategies
include nonlaser methods and probe techniques to complement the laser-
based measurements.

Understanding turbulence, the formation of polycyclic aromatic species
and soot, and spray combustion represent some of the most pressing ques-
tions of practical relevance that may, eventually, not be regarded as separ-
able problems. These combustion questions require innovative diagnostic
schemes and combinations to test newly evolving theories and models.

In spite of the many valuable approaches and measurement schemes that
have already been explored, the field is still confronted by the need for the
simultaneous quantitative in-situ measurement of all relevant scalar and
vector quantities in a turbulent flame, which should also reveal the pertinent
three-dimensional structures and their development in time. To assist the
fundamental understanding of the underlying processes, numerical models
increasingly ask for quantities that are not easily observable, including local
heat release or reaction fluxes.
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Part I1 begins with a chapter on fuel-rich combustion (Chapter 10) that
illuminates the complex chemistry in these flames. Similarly, chemical
aspects are treated in Chapter 11, on fire suppression. While most of the
detailed chemistry in these chapters concerns gas-phase reactions, later
chapters consider two-phase combustion systems. Chapter 12 starts with
diagnostics in catalytic combustion where heterogeneous chemistry is
directly probed on the surface under realistic pressure conditions. This chap-
ter is followed by polycyclic aromatic hydrocarbons (PAH) and soot diag-
nostics in Chapter 13; here, methods, including LII, are applied, which were
reviewed in the first part. After the description of chemically complex appli-
cations, the focus switches to more applied systems, first treating diagnostics
in turbulent flames (Chapter 14) as a prerequisite for measurements in rea-
listic devices, and then concentrating on diagnostics in spray combustion of
importance in gas turbine and engine research (Chapters 15-17). Part II
ends with a chapter on diagnostics suitable for combustion control sensors
(Chapter 18); such devices must provide data rapidly enough to enable
timely control decisions for closed-loop operation and real-time optimiza-
tion of advanced combustion devices. Although these examples of pertinent
combustion problems may not be exhaustive, they provide the reader with
valuable guidelines about which combinations of techniques may be suitable
under conditions including turbulence, swirl, dense, evaporating and com-
busting sprays, high pressure, and particle load.

Although diagnostics in combustion systems have come a long way,
unsolved questions remain. Tasks of high complexity awaiting further
advancements in diagnostics include the quantitative characterization of
sooting flames, two-phase combustion, and incineration. Furthermore, com-
bustion science is increasingly seen to branch into adjacent fields.
Combustion reactors are used to produce nanoscale materials, addressing
completely different chemical reaction sequences that may need to be inves-
tigated for an optimization of these processes. Combustion-generated pol-
lutants have an impact on climatic issues and on detailed atmospheric
reaction balances, and diagnostics requirements might thus not end at the
tailpipe. Similarly, public health considerations may require specification
not only of the size distribution but also of the chemical nature of the sur-
face of combustion-generated carbonaceous particles.

The third part of the book, Perspectives (Chapters 19-26) concentrates on
some of these unsolved questions and on directions for future research. This
is intended to articulate more clearly the needs for tomorrow’s combustion
investigations that may profit from advanced diagnostics, and to identify
new avenues for application of similar techniques and instrumentation in
related fields. Again, the sequence is ordered roughly with increasing com-
plexity of (or decreasing knowledge of) the system to be analyzed. As a
characteristic feature, some of these brief statements are written from the
modeler’s perspective, explaining their wish list for model design and vali-
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dation. In this spirit, Chapter 19 starts with the needs for diagnostics that
would improve detailed chemical models, concentrating on gas-phase chem-
istry. Heterogeneous systems are addressed when discussing catalytic com-
bustion in Chapter 20. The following chapters identify the diagnostic needs
for active combustion control (Chapter 21) and for gas turbine combustor
model validation (Chapter 22). The last chapters in this part focus on pro-
spective diagnostic applications in combustion material synthesis (Chapter
23), on toxic emission control (Chapter 24), on monitoring combustion
effluents (Chapter 25), and on advanced sensor techniques for measuring
combustion-related atmospheric pollution (Chapter 26). With that, the
reader’s attention is not only drawn to the combustion device itself, but
to the ambitious questions that diagnostics related to combustion might
be able to solve on a more global perspective. Naturally, these chapters
highlight some of the potential ascribed to methods that have been discussed
in the previous parts of the book.

Finally, in Chapter 27 titled “Continuing Developments,” we highlight
diagnostic schemes and strategies that potentially will join the arsenal of
tools for laser-based combustion diagnostics.

1.4 REFERENCES

1. Gaydon, A.G., The Spectroscopy of Flames, Chapman and Hall, London,
UK, 1957.

2. Eckbreth, A.C., Laser Diagnostics for Combustion Temperature and Species,

2nd Ed., Gordon and Breach, UK, 1996.

Siegman, A.E., Lasers, University Science Books, Mill Valley, CA, 1986.

Demtroder, W., Laser Spectroscopy, 2nd Ed., Springer-Verlag, Berlin 1981.

5. Herzberg, G., Molecular Spectra and Molecular Structure, Vol. I: Spectra of
Diatomic Molecules, 2nd Ed., Van Nostrand Reinhold Company, New York,
1950.

6. Herzberg, G., Molecular Spectra and Molecular Structure, Vol. II: Infrared
and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold
Company, New York, 1945,

7. Herzberg, G., Molecular Spectra and Molecular Structure, Vol. III: Electronic
Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand
Reinhold Company, New York, 1966.

8. Huber, K.P., and Herzberg, G., Molecular Spectra and Molecular Structure,
Vol. IV: Constants of Diatomic Molecules, Van Nostrand Reinhold Company,
New York, 1979.

9. Steinfeld, J.I., Molecules and Radiation: An Introduction to Modern Molecular
Spectroscopy, The MIT Press, Cambridge, MA, 1978.

10. Bernath, P.F., Spectra of Atoms and Molecules, Oxford University Press,
Oxford, UK, 1995,

I11. Born, M. and Wolf, E., Principles of Optics, Tth Ed., Cambridge University
Press, Cambridge, UK, 1999.

12. Bass, M., ed., Handbook of Optics, 2nd Ed., McGraw-Hill, New York, 1995.

bl



Techniques

Sed demonstratio Tonge optima est experientia.
(By far the best proof is the experiment.)

Francis Bacon
Novum organum sive vera de interpretatione
naturae, London, 1620



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

2

Detection of Minor Species with
Laser Techniques
Kermit C. Smyth and David R. Crosley

2.1 INTRODUCTION

Combustion can be thought of as a self-sustaining reactive flow, in which
chemical energy is converted into heat. Thermochemistry, fluid dynamics,
mass and heat transport, and chemical kinetics all play significant roles in
combustion processes. System efficiency, be it in a steady-state flame, or a
transitory process such as an explosion or internal combustion engine, is
usually the prime issue in combustion. Efficiency is generally governed by
the first three topics; detailed knowledge of the reaction kinetics of minor
species is usually not needed for efficiency considerations.

However, the chemistry of those minor species, present at concentrations
ranging from 1% down to the parts per billion level, plays key roles in other
combustion problems. The major questions concern pollutant formation
(NO,, SO,, soot, toxic organic compounds), flame ignition, and inhibition
of flames. Because of increasingly stringent environmental regulations,
understanding the chemistry of pollutant formation is a major topic in
combustion research. This chapter focuses on the measurement in flames
of those minor species important in these processes. Much of our discussion
will center on the technique of laser-induced fluorescence (LIF), which has
become the predominant method used for minor species measurements in
flames. This owes to the ease of the measurement technique, the existence of
a pertinent data base for interpretation, and the possibility of two-dimen-
sional imaging. We will briefly mention other approaches, some of which are
covered in other chapters of this book. Of the minor species, the OH, NO,
and CH radicals are by far the most frequently investigated, due to their
importance in flames and well-established measurement strategies, and we
will give them the most attention.
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Furthermore, we will discuss measurements made only in simple flow
fields, that is, laminar flames of various types. In such flames, chemical
pathways can be investigated in detail, since mixing and other transport
processes are much simpler than in a turbulent flow field. Measurements
of the radical species form demanding tests of predictive chemical mechan-
isms needed to understand the chemistry in more complex flows, where
mechanisms cannot be isolated for study. What is needed are quantitative
profiles of individual species, preferably absolute, and accurate temperature
measurements. Nonetheless, minor species measurements in turbulent com-
bustors can serve as qualitative checks on both chemistry and mixing phe-
nomena. That is, our philosophy is to develop an understanding of the
chemistry under the simplest, most controllable conditions tested via mea-
surement of minor species, and then later insert that improved understand-
ing of chemistry into computational codes describing more complex
systems.

Unlike stable combustion gases, free radicals do not survive a sampling
line leading to, e.g., a gas chromatograph or Fourier transform infrared
spectrometer. Thus it is important that the methods for detecting radicals
are noninvasive, that is, they require no sampling head inserted into the
flame. (A molecular beam mass spectrometer can detect numerous radicals
but also perturbs the flame at the point of measurement.) The text portion of
this chapter will first list noninvasive, laser-based techniques for minor spe-
cies measurements, referring often to other chapters; and then we shall
undertake a more detailed description of LIF. Both relative and absolute
concentration profile measurements will be discussed. We also include a
section on selected papers comparing detailed model predictions with
minor species measurements. The heart of this chapter is the table listing
60 minor species relevant to flame chemistry investigations, included as an
appendix. Excitation and detection schemes, the type of flame in which the
measurement is made, and pertinent references are included. A few minor
species of importance in combustion have been studied only in flow tubes,
reactors, and photolysis experiments, and these are included. In the text we
comment on other species crucial to particular problems, such as polyaro-
matic hydrocarbons or metals, that we have not included in the table.

2.2 LASER-BASED MEASUREMENT TECHNIQUES FOR MINOR SPECIES
2.2.1 Laser-Induced Fluorescence

In laser-induced fluorescence a laser is tuned to a wavelength matching that
of some absorption line of the atom or molecule of interest. That species is
then elevated to an electronically excited state, from which it fluoresces, and
this fluorescent emission is then detected. Tuning the laser traces out the
absorption spectrum, providing secure identification. Temperature can also
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be measured by determining the distribution of the molecules over their
rotational and/or vibrational levels. LIF can be used for pointwise measure-
ments, which are the most useful for understanding flame chemistry.
However, LIF is also very convenient for two-dimensional planar images
of the minor species distribution throughout a flame.

LIF is the most successful technique used in flame studies of minor species
concentrations. The method has gained maturity in the field of combustion
research. Early studies were dominated by proof-of-concept and demonstra-
tion experiments. By 1992, at the Twenty-Fourth Combustion Symposium,
LIF was used in 13% of all papers (oral plus poster) reporting any kind of
experimental result. Notably, in each case LIF was utilized for a combustion
study, and no new diagnostics papers appeared. By 1998, at the Twenty-
Seventh Symposium, 20% of all published experimental papers involved
LIF applications.

LIF is generally easy to implement, especially for the popular species OH,
CH, and NO, where a significant database for spectroscopy, quenching, and
energy transfer already exists. However, there are many complications
which must be considered to obtain accurate, quantitative results. Many
of these concern the energy transfer among individual rotational, vibra-
tional, and electronic levels during the measurement. These will be discussed
briefly in the following section and covered in more detail in Chapter 5.

There have been several reviews of LIF techniques and measurements.
Historical progress can be followed in two books on general laser diagnos-
tics in combustion [1,2]. Two articles published in Progress in Energy and
Combustion Science are especially noteworthy. The first [3] is a comprehen-
sive treatise (over 700 references) on many experiments concerned with the
detection of minor species in flames. Several techniques are discussed,
although the emphasis is on LIF. The second [4] concerns LIF only, and
describes the mathematical formalism of LIF and of collisions that compli-
cate the signal; much detail about experiments and instrumentation is given.
The use of tunable excimer lasers for both LIF and Raman measurements in
flames is the topic of another comprehensive review [5]. These excellent
papers contain more detail about the detection of minor species than
space allows here, and this chapter is meant in large part to provide an
introduction to the method in the text and build upon those articles in the
table.

A few minor species, particularly O, H, N, and CO, cannot be accessed in
a flame by the absorption of a single laser photon, because vacuum ultra-
violet light must be used to reach their first excited electronic states. In these
cases successful detection is achieved by tuning the laser to a wavelength
where the species absorbs two photons at the same time. Two-photon LIF
presents additional challenges in quantification, which will be discussed
below.
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Two-dimensional imaging by LIF has become very popular, especially for
mapping flame zones by OH LIF in complex systems. Most such experi-
ments utilize a KrF laser at 248 nm; they may suffer from lack of quantita-
tion but in many cases that is not an important issue. We refer the reader to
Ref. 5 and to Chapters 7 and 8, which discuss imaging by LIF and other
methods, for further details.

2.2.2 Resonantly Enhanced Multiphoton Ionization (REMPI)

The REMPI technique is a multiphoton process. The first step is accessing
an excited state by absorption of one or more photons. An additional laser
photon ionizes the molecule directly from the excited state. The process is
described in the table by numbers » + m, where # is the number of photons
in the first step and m the number in the second, for example, 2 + | REMPI
at 333.5 nm has been used to detect the important CHj; radical in flames [6].
The signal is detected by the electrons ejected from the molecule, which are
collected by an anode inserted into the flame.

REMPI can exhibit exceptional sensitivity and can be configured to give
essentially point measurements. In general, REMPI and the other techniques
noted in this section have similar sensitivities for those species amenable to
more than one approach. It is also very well suited to the measurement of
species which can be excited but do not fluoresce. For example, CH; has an
excited state which can be accessed by a laser photon at 217 nm, but it
predissociates so rapidly that fluorescence does not occur. However, the
methyl radical can be ionized in a multiphoton process using a different
electronically excited state, as noted above [6]. REMPI has also been applied
to a variety of species and has found important applications for detecting
hydrocarbon radicals in sampled gases. These are not included in the table;
for examples see Refs. 7 and 8 and Chapter 22. Also not included are the
wealth of REMPI results on species containing second and third row ele-
ments reported by Hudgens and coworkers in, for example, Ref. 9.

On the other hand, REMPI is not truly a noninvasive technique, that is,
unlike LIF and the techniques listed below, it requires an anode in the flame
itself. In order to make reliable relative concentration measurements in
flames, the sensitivity of the probe as a function of flame position must be
determined. Examples have been presented for both diffusion [10] and pre-
mixed [11] flames.

2.2.3 Degenerate Four-Wave Mixing (DFWM)

The DFWM approach utilizes three laser beams. It is a nonlinear process
like coherent anti-Stokes Raman spectroscopy (CARS) but, like LIF, oper-
ates on real transitions. It combines some attributes of both processes: it
produces a fourth coherent beam that can be spatially filtered to eliminate
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background (unlike LIF where the fluorescence is emitted throughout the
entire 4 steradians sphere); like CARS, it depends on x©®, the nonlinear
susceptibility of the molecule and can be used in a broadband mode; like
LIF, it can be used to produce images. As with REMPI, DFWM is of
particular consequence in measuring species that have excited states but
do not fluoresce, such as the methyl radical at 217 nm [12]. However,
DFWM is a more complex optical process to implement, and its spatial
resolution can be limited, so despite its attributes it has not been used widely
for flame structure measurements.

DFWM, as well as CARS and LITGS (laser-induced thermal grating
spectroscopy) will be covered in detail in Chapter 3. We do list DFWM
measurements in the table, but shall not discuss it further here.

2.2.4 Cavity Ringdown (CRD) Spectroscopy

CRD is the newest laser technique to be applied to study minor species
important in combustion chemistry. In this approach, a pulsed laser is
tuned to some absorption transition of the molecule of interest; a small
fraction of the beam is inserted into an optical cavity made by two mirrors,
between which the flame is situated. When the flame is off, the photons
reflect back and forth throughout the cavity, diminished in each round
trip by the (small) transmission of the mirrors and any scattering in the
gases inside the cavity. This produces an exponentially decaying signal,
which is observed with a photomultiplier or photodiode located behind
one of the mirrors. When the flame is on, and the minor species of interest
is present, absorption of the tuned laser light by that species adds to the loss
per pass, resulting in a faster decay and thus a measurement of the total
absorption.

Like REMPI and DFWM, CRD requires only that the molecule absorb
laser light, so that nonfluorescing molecules are accessible. This direct
absorption method provides absolute concentrations with no calibration if
the relevant absorption coefficient is known. However, the effective path
length needs to be known accurately. If the absorbing species is not evenly
distributed along the cavity path, the actual distribution must be taken into
account for quantitative measurements. Even a carefully controlled flat
laboratory flame, such as that on a McKenna type sintered disk burner
used in many studies of flame chemistry, can exhibit curvature. As a con-
sequence, the resulting species profile can be broadened. One way of dealing
with this problem is to image LIF from the CRD laser, directly giving the
effective absorption path length [13].

The CRD technique will be described in detail in Chapter 4; again, we list
measurements in the table but do not discuss it further here.
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2.2.5 Tunable Diode Laser (TDL) Absorption

Tunable diode lasers operate in the infrared or far red regions of the spec-
trum. They can be used to detect species present at moderate concentrations,
such as CO and NO, with great success. Applications have been in shock
tubes and flames, and for process control where rapid feedback is needed.
With multipass absorption and frequency modulation techniques, TDL
spectroscopy can be quite sensitive; it and its uses are covered in Chapter 18.

TDL absorption has also been applied to species that appear in minor
amounts in flames, such as OH, C,H,, and several fluorine-containing radi-
cals. The table also includes measurements on species of combustion inter-
est, such as HO, and C,H;, but not yet demonstrated in flame
environments. For applications to minor species detection in flames, TDL
absorption suffers from two problems. First, like CRD and the techniques
described below, it is a line-of-sight method and as such can provide useful
profile information only in well-characterized one-dimensional and two-
dimensional flames. Second, unless the pressure is low enough, considerable
line broadening of the rotational/vibrational transitions occurs. The wings
of broadened lines of major species can obscure the small absorptions due to
minor species. For example, H,O lines can mask OH stretches, and hydro-
carbons can mask CH stretches. For this reason, we would not expect TDL
absorption to be of widespread value for minor species measurements in
atmospheric pressure flames. For flames at lower pressure (many studies are
made in the 25-40 Torr region) TDL absorption has proven to be valuable
[14].

2.2.6 Other Methods

There are several other methods that have been used for the measurement of
minor species in flames or other reactive flow systems. They have not found
widespread use in the combustion community, largely due to difficulty in
implementation or lack of quantitative, spatially precise information. We
list these methods together with relevant references, but shall not discuss
them further.

Photoacoustic spectroscopy [15] relies on the heating produced locally in
the flame as the molecule of interest absorbs laser light. This heating (even a
few K) produces a shock wave that can be detected with a microphone (and
often heard audibly). However, the shock originates along the laser beam
and, despite sensitivity comparable to LIF, spatial definition is poor.

Intracavity absorption has been described and compared with CRD for
HCO and 'CH, [16]. In this method, the flame burns inside the laser cavity
itself. Per pass losses owing to absorption by the species of interest as the
laser is tuned decrease the laser gain and can be easily observed in the laser
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output. As with CRD, effective path lengths must be known for quantitative
measurements.

Amplified spontaneous emission (ASE), as with two-photon LIF, begins
with two photon excitation to a highly elevated electronic state of the species
of interest (in particular H, N, O, and CO). In LIF, the excited species
fluoresces into one or more lower lying excited states. In ASE [17], the
upper state is pumped strongly enough to produce a population inversion
between it and other excited states to which it can emit light. Stimulated
emission then occurs; it propagates along the laser beam and can be distin-
guished from the simultaneously occurring fluorescence by its strength in the
beam direction. In a study of ASE in O atoms in H,/O, flames [18], the ASE
was found to be 10* times as strong as the LIF. However, ASE has poor
spatial resolution because the gain occurs all along the laser path. In addi-
tion, studies have shown that for H atoms [19] and O atoms [20] accurate
concentration profiles are not obtained with ASE.

2.3 LASER-INDUCED FLUORESCENCE

Most LIF measurements are made using a pulsed laser; the increased inten-
sity during the short (typically 3—10 ns long) laser pulse usually discriminates
well against background chemiluminescent emission from flame radicals.
For a pulsed laser, the fluorescence signal S measured in an LIF experi-
ment in a single laser pulse is given (in mV across a known impedance, for
example, in a boxcar integrator) by:

Sg = Bl Tt Nfg @ F(2/4m)enV 2.1

Here, B is the Einstein absorption coefficient divided by the speed of light,
given in m?/J - cm; I, the laser spectral power density per unit area, divided
by the laser bandwidth, J/m%s-cm™!; T" a linewidth integral reflecting the
overlap between laser and absorption line bandwidths; 7 the laser pulse
length; N the number of molecules (cm™) in the ground electronic state and
the desired result of the experiment; f, often termed the Boltzmann frac-
tion, the portion of those molecules in the particular electronic—vibrational—
rotational level(s) being excited by the laser; ® the fluorescent quantum yield
from the excited state, that is, the number of photons emitted per molecule
excited and a key quantity affected by collisions and dissociation as dis-
cussed later; and Fy the fraction of fluorescence collected within the detector
bandwidth. The remaining terms are 2, the solid angle of fluorescence
collected by the detector, ¢ and n the transmission and photoelectron effi-
ciencies of the detector system, and V the interaction volume observed. It
should be noted that this equation holds only in the linear limit, that is,
when BI} 7 is small enough that only a small fraction of the population in
the absorbing ground state level is excited. Operation under “saturated”
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conditions, when a significant fraction of that population is excited, will be
discussed briefly later.

This last set of terms, (2/4m)enV, is crucial to determining absolute mea-
surements via LIF when direct absorption measurements are not possible;
this quantity must then be obtained using some type of calibration scheme
as discussed further below. Many measurements made in flames are relative
profiles of concentration as a function of height above a flat burner, radius
and height in an axisymmetric flame like a Bunsen burner, or distance
between fuel and air inlets in a diffusion flame such as on a Wolfhard-
Parker burner. Precise relative measurements show an Sg depending only
on the spatially varying terms I, N, fg, and ®; the precision in determining
N from Sk is only as good as the precision in the variation of the other three
quantities.

A particular minor species is usually identified by its characteristic ‘“‘exci-
tation™ scan, that is, the fluorescence resulting as the laser wavelength is
scanned through the molecule’s absorption spectrum. Such an excitation
scan is illustrated in Fig. 2.1 for the B*S™—X°II transition of CH. Each
line corresponds to one (or more, if overlap occurs) rotational level of the

| l T ¥ 14
"
76 5 4 3 R,(N") 24
Ll 1 1 1 1
1 1 1] )
8 9 10 . 11
76 5 4 3 RN 2
L 1 ! 1 [
i 1 1 1
8 9 10 11

Intensity

L)L

I 2 | L 1 L 1 | L 1 L L | Il L Il 1 | 1

3872 3874 3876 3878
Wavelength (A)

Fig. 2.1 Excitation scan through the R branch of the (0,0) excitation band of the
B*=~-XTI band system of the CH radical, in an 8 Torr CH4/O, flame;
a 10 ns integration gate was used. [37] (Courtesy of the Optical Society
of America.)
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ground electronic state. When the rotational energy distribution is thermal
(always the case in flames because chemical removal is slower than rota-
tional energy transfer), the relative intensity of each line can be related to the
population of each level (i.e., fg) via Eq. 2.1, and hence yield the temperature
at the local point of measurement. An accurate and spatially precise tem-
perature determination is crucial for obtaining meaningful comparisons
with model predictions, as discussed later. In low-pressure flames, where
good spatial resolution can be achieved, precision of 30 K has been reason-
ably claimed. The analysis of Eq. 2.1 must account for the rotational level
dependence of B, ®, and Fp, which is most noticeable in hydrides, i.e., OH,
CH, and NH. The effect on these quantities is a manifestation of the large
rotational energy spacing in these molecules.

For polyatomic molecules, spectroscopic complexity increases. Figure 2.2
shows excitation scans for NCO, present in abundant quantity in a
CH,4/N,0 flame. This is a linear triatomic species, with spectroscopic data
reasonably well understood; however, the much larger number of vibra-
tional levels makes the spectrum quite complex. Moreover, in a polyatomic
molecule the population at flame temperature is spread over a large number
of rotational and vibrational levels, making fg much smaller than in the case
of a diatomic, thus leading to lower signal intensity for the same concentra-
tion. )

Although the table shows a large number of minor flame species that can
be measured using LIF, there are three molecules that are by far the most
popular: OH, CH, and NO. This fact derives from their relative ease of
measurement, the existence of large databases of spectroscopic (B, fg, and
Fp) and collisional (®, Fy) information, and their importance in many flame
measurements. We will emphasize discussion of LIF measurements of these
species; see the appendix references to measurements using a wide variety of
additional approaches.

2.3.1 Spectroscopy

Many years of experimental and theoretical work have gone into determin-
ing spectroscopic parameters for OH, CH, and NO. Recent studies of both
kinds have been undertaken on these three species at SRI International, with
the results collected in a program entitled LIFBASE [21,22]. This program
calculates absorption and emission transition probabilities, and can simulate
spectra for both thermal and nonthermal rotational/vibrational distribu-
tions in the absorbing or emitting state. (A few other molecules—N7,
CN, CF, and SiH—are also given in LIFBASE but the underlying experi-
mental data are not as well determined as for OH, CH, and NO.) For a
comprehensive set of spectroscopic coefficients and band systems of dia-
tomic molecules, see Huber and Herzberg [23].
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Fig. 2.2 Excitation scans for the A°X*—X?[1, electronic transition of the linear

NCO radical in the reaction zone of a CH,;/N,O flame at atmospheric
pressure. The rotational structure is similar to that of a diatomic but the
vibrational structure is much more complicated. Top: total spectrum
over the range of a single laser dye. Middle: 4 nm portion showing the
region of the 000 <« 000 vibrational band. Bottom: region 0.45 nm in
extent showing the rotationally resolved ©P,, branch, with a head near
J ~ 70. (Courtesy of The Combustion Institute.)
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2.3.2 Collisions

The influence of collisions is the most troublesome aspect of making accu-
rate profile measurements (absolute or relative) of minor species using LIF.
Figure 2.3 illustrates the situation using as an example excitation of the
v’ = 1,v” = 0 vibrational band of the OH molecule’s 42T —X?TI; electronic
band system. The initially excited v’ = 1 level fluoresces to both v” = 0 and
1 (not shown in the figure). However, it also undergoes collisions.
Rotational energy transfer (RET) distributes the population from the initi-
ally excited rotational level (/') among other J' levels of v’ = 1, and these
can have different radiative and collisional characteristics. Vibrational
energy transfer (VET) moves population downward into v’ = 0, resulting
in a possible nonthermal J' population in that level (this occurs in OH [24]).
However, fluorescence observed in the (0,0) band, as illustrated in the figure,

Q
Dye
Laser
282 nm
Fiuorescence
308 nm
R
\ 4 /
\ [/ v =0
\V4

Fig. 2.3 Schematic diagram of collisional effects important in flame diagnostics
when exciting v’ = | in the upper state and observing the (0,0) band in
fluorescence to the ground state. For definition of symbols, refer to the
text. (Courtesy of the American Geophysical Union.)
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avoids scatter from laser light, and can be advantageous; moreover, excita-
tion to v’ = | via the weaker (1,0) band can help avoid problems of optical
thickness in the flame. RET affects the J' population distribution in v’ = 0,
causing complications similar to those in v’ = 1. Quenching (Q) removes the
electronically excited OH molecule altogether, transferring population to v”
levels within the XTI, ground electronic state that emit no light during the
experiment. Moreover, a molecule can undergo predissociation (P) if the
excited state lies higher than the dissociation limit and there exists a state
that can couple excited and predissociating states (P is not illustrated in the
figure). Both the Q and P processes are also J and v dependent in general. In
some cases, when the excited electronic state is not the lowest lying one,
electronic energy transfer can populate a lower level which also emits, but of
course with a different Fj. This is the case, for example, in CH where
excitation of the B°X™ state (Fig. 2.1) results in some energy transfer to,
and emission from, the A%A electronically excited state. Finally, all of these
processes are temperature dependent.

This daunting complexity suggests at first that quantitative measurement
of minor species in flames is a very difficult task. However, the picture is
usually somewhat simpler than shown in Fig. 2.3. If the v’ = 0 level of the
lowest electronic state is excited, VET and electronic transfer need not be
considered. There is often enough information to estimate the influence of
rotational redistribution. For OH, CH, and NO enough is known about
collisional effects under flame or flamelike conditions to obtain good relative
profiles, which if desired can often be calibrated to absolute values at some
point. Kohse-Héinghaus [3] presents an excellent and comprehensive dis-
cussion of the state of the art in 1994. Since then, there are only a few
pertinent publications to be mentioned here.

2.3.2.1 (Quenching of OH, CH, and NO

Paul and coworkers at Sandia have made quenching measurements in shock
tubes, measuring time decays for NO and OH in various mixtures of gases
so as to determine bimolecular quenching cross-sections at high tempera-
tures. OH quenching is reported [25], and the results are summarized gra-
phically [26]. Also listed are the parameters of a fit to a model [27]. This
model concept is an electron transfer (harpoon) mechanism, important at
large internuclear separation and operative at high temperature. If no other
physical mechanism took part in quenching, there would be little tempera-
ture dependence, in agreement with shock tube measurements [25].
However, OH forms a collision complex which lives sufficiently long to
contribute to quenching at lower temperatures [28], owing to attractive
force interactions between OH and its collision partners. The full model
[27] takes this into account by anchoring the fit to quenching measurements
near 300 K, measured in flow tubes.
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Quenching for NO has been measured over the entire temperature range
from 200 to 2500 K, in flow cells, flames, and shock tubes, as discussed in
Ref. 3, which gives pertinent prior references, and in Ref. 29. NO behaves
like OH for all colliders studied except N, and CO, that is, with attractive
force interactions resulting in collision cross-sections decreasing monotoni-
cally with increasing temperature to a constant value. For N,, a very ineffi-
cient collider at room temperature, quenching increases sharply with
temperature, and, though still a small cross-section, could be significant
due to the amount of N, present in many flames.

CH quenching appears to be dominated in general by repulsive force
collisions, so that cross-sections increase with increasing temperature [30] .
The exceptions are the polar colliders NH; and H,O; unfortunately the
cross-section for quenching of CH by H,O has not been measured above
415 K. Such measurements would be most valuable.

A study of quenching of v’ = 0 in the lowest electronically excited states
for these three important radicals is presented in [31]. Measurements as a
function of height above the burner were performed in a low-pressure flame
using direct time decay of fluorescence. Quenching cross-sections as a func-
tion of temperature for major species colliders were selected from literature
values (in some cases disagreements exist), and simple parametrizations
given. A two-parameter form sufficed for the cases of OH and NO where
attractive forces govern, whereas modified Arrhenius forms were necessary
for some NO and CH cross-sections. A computer model of the flame chem-
istry, using a measured temperature profile as input, predicted cross-sections
for comparison with experiment. The results were quite good for NO and
OH. For the case of CH, the profile appeared reasonable, although the
absolute value is uncertain, owing to the lack of knowledge of the efficiency
of H,O as a CH quencher at high temperature.

The results in Ref. 31 are encouraging. [f one can reasonably estimate the
temperature and major species concentrations at the point of measurement,
quenching of NO and OH should be predictable within £30%. In both
cases, H,0 is a major quencher. A measurement of the temperature alone
(c.g., by Rayleigh scattering) can often be used to estimate the major species
in many flames. For CH, the same would be true if quenching by H,O at
higher temperatures were known.

A method of avoiding quenching can be used if the pressure is low enough
(<~ 50 Torr) that the fluorescence can be time resolved. A detection gate is
opened promptly after the laser pulse ceases and is left on only for a short
time, perhaps 10% of the total decay. During this time, the excited mole-
cules are little affected by quenching (or other potential energy transfer
processes). This prompt/short gate method was first applied to OH [32].
Other approaches exploiting processes competing with quenching are dis-
cussed below. If a picosecond laser excitation pulse is used (see Chapter 5),
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direct time decay measurements can be made at atmospheric pressure, giving
the total quenching rate, as also discussed in Chapter 5.

2.3.2.2 Rotational and Vibrational Energy Transfer in Temperature
Measurements

At Bielefeld a few studies have been made after the publication of Ref. 3.
RET and quenching were investigated at high temperatures [33], resulting in
a rate equation model (termed LASKIN) including VET, RET, and Q [34]
sufficient for including collisional effects in quantitative temperature mea-
surements for OH. Of special importance is the attention given to initial
excitation of v’ = 1 in the 42X electronic state. It can be necessary 1o excite
OH into this level, rather than v’ = 0, to avoid optical depth problems in
both the absorption and emitting transitions. Much of the work at Bielefeld
since that time has centered on energy transfer studies in flames at atmo-
spheric pressure using picosecond laser excitation and fast decay time mea-
surements; these experiments are described in detail in Chapter 5. Results on
OH VET in a shock tube at high temperatures have also been presented [35].

We choose for illustration one example of the influence of rotational
energy on temperature measurements. (Temperature measurements in gen-
eral are discussed in Chapter 6.) CH can be used as a flame thermometer,
exciting into either the 4°A or B*S~ states. Because of RET, VET, energy
transfer among these two states, and predissociation at high rotational levels
in the B state, complications can occur. An earlier study [36] showed dis-
crepancies of as much as 20% in temperatures measured using the two band
systems. A recent investigation [37] attributes this to rotational-level-depen-
dent transition probabilities, and RET into and out of predissociating levels.
Once these are accounted for, temperatures measured using both band sys-
tems are in good agreement.

2.3.3 Multiphoton LIF

For some flame species, the first electronically excited state lies far in the
vacuum ultraviolet, at a wavelength where it is hard (or impossible) to pro-
duce laser radiation or where it cannot penetrate laboratory air or flame
gases. Notable minor flame species that fall into this category are H, C, N,
0, and CO. These can be accessed by the absorption of two (or, in the case of
H, also with three) photons simultaneously, proceeding through a virtual
state. The absorption is of course weaker than in the case of resonant absorp-
tion but can produce easily measurable signals in flames. While multiphoton
LIF can give signal profiles, they are often difficult to analyze quantitatively.
This can owe to problems in defining the (nonlinear) interaction volume in
the flame, but also because the high laser intensities needed for two-photon
excitation can dissociate other flame species, producing unwanted chemistry
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(including sometimes forming the very species one is trying to probe). For
example, H,O and CO, photolysis can occur at the wavelengths used for
exciting H and CO, respectively. Multiphoton LIF can provide accurate
information on the positions and shapes of species profiles, so long as mea-
surements are made as a function of laser fluence to identify possible inter-
ferences and photochemical perturbations. In general, these problems are
minimized for: (a) fewer photons required in the excitation step (with the
advent of beta-barium-borate frequency doubling crystals, more than two
are never required); (b) longer excitation wavelengths; and (c) leaner stoi-
chiometries at the measurement position.

2.3.4 Saturated LIF

For a simple two-level system, the balance between upper and ground state
populations (assuming for simplicity equal degeneracies in each state) can be
given by

Nu/Ng=BI_f(A+ BI_+Q + P+ PI,) 2.2)

with A the Einstein emission coefficient, /;, BI, as before, Q and P the
quenching and predissociation rates, P; a photoionization rate coeflicient;
all quantities are in units of s™'. B/, in the denominator denotes stimulated
emission from u to g. This equation holds only when the laser pulse is on,
that iS, I|_ 75 0.

Due to the complexity of the various quenching and energy transfer pro-
cesses described above, a number of approaches have been proposed whereby
a given term in the denominator is made sufficiently larger than Q to yield a
quenching-independent measurement. However, Eq. 2.2 shows that an una-
voidable cost is signficant reduction in signal strength, and these schemes
have not found widespread application for quantitative measurements.

An early strategy attempting to overcome the complications of collisions
was to operate at very high laser power, so that B/ »> A+ Q+ P+ Pl
with a fluorescence signal still proportional to AN,. To make this approach
quantitative, one must know the degree of saturation, deal with the fact that
collisions do occur, and understand the volume of laser interaction in this
highly nonlinear situation. Detailed discussion is given in Ref. 4.
Measurements using NO in a variety of flames (referenced in the appendix)
are good examples when saturated fluorescence proves very useful.

A related technique, when photoionization cross-sections are suitably
large, is increasing the laser intensity /; to a point where P/, dominates
the denominator. If the photoionization cross-section is well known, this
can be used for quantitative measurements [38] but the method has not
found widespread application. Yet another approach, utilizing a transition
where P is large, is described immediately below.
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2.3.5 Predissociative LIF

If one excites a state that predissociates fast enough, P can dominate the
terms in the denominator of Eq. 2.2 so that knowledge of quenching (or any
other kind of collisions) is also not needed. This approach has most often
been applied to the v’ = 3 state of the OH radical, which predissociates in a
few picoseconds (a typical lifetime for a quenched OH radical in v’ =0 at 1
atm is about 1.8 ns, as calculated from the quenching rate coefficients in Ref.
31). Moreover, excitation of v’ = 3 is accessible using a tunable KrF laser
operating near 248 nm. Such a laser can be made powerful enough to create
images of OH despite the low oscillator strength in the (3,0) transition. This
approach has proven very popular for locating OH in complex flows, but
has not been used for determination of OH concentrations and chemical
structure in laminar flows.

Again, there are problems in making this method quantitative, even for
relative measurements. Although collisions are few, they populate lower
lying vibrational levels of OH that have much higher quantum yields, so
that about half the light emitted after exciting v’ = 3 is dominated by com-
plex collisions. This was recognized in the first paper on KrF excitation [39]
and quantified later [40]. The key to successful measurements is detecting
only the transitions that originate from v’ = 3, but this decreases the signal
strength. In many cases reported in the literature, all fluorescence was
detected, resulting in signals whose correct interpretations must include
complex collision processes. Moreover, the high laser intensities depopulate
the ground state levels, blurring the meaning of the Boltzmann fraction [41].
These and other issues (including excitation of other species such as O,) are
discussed in the comprehensive review of excimer laser applications to com-
bustion [5].

2.3.6 Absolute Concentration Measurements with LIF

Species profiles range from raw signal intensities through relative profiles to
calibrated absolute concentration measurements. The quality of the trans-
formation from raw signals to reported concentrations determines the value
of profile results. In many cases, precise relative concentration profiles form
excellent tests of models of flame chemistry. By precise, we mean accounting
for the variation in fg, T, Fy;, and collisional effects throughout the flame.
In other cases, however, it is desirable to have absolute concentration
measurements of minor species. An important example is quantitative mea-
surements of the CH radical in hydrocarbon flames (particularly methane or
natural gas) where the prompt Fenimore mechanism can be a major source
of NO. The key reaction in this mechanism is CH 4+ N, — N 4+ HCN (it has
been recently proposed [42] that the products are not these but NCN + H).
Thus the ability to predict NO concentrations in natural gas flames, a crucial
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issue for industry, is predicated on the ability to predict the absolute con-
centration of CH.

For short-lived free radicals or atoms such as OH, CH, H, and O, abso-
lute measurements pose a problem because there is no way of introducing
known amounts of these radicals in flames. For stable species such as CO
and NO, the flames can be seeded with known amounts of these compounds,
but even then chemical reactions can alter the flame concentration com-
pared with that in the flows. For example, introducing large amounts of
NO into a flame can alter the flame chemistry; moreover, the presence of CH
radicals causes NO in even small quantities to be reburned in hot later stages
of the flame [43]. Thus the delivered, calibrated amount can differ from the
concentration measured downstream.

For absolute measurements of free radicals, a variety of techniques is
available. These include direct absorption, independent determination of
the quantity (2/4m)enV in Eq. 2.1, the use of partial equilibrium assump-
tions, and comparison to a known quantity of radicals either by calculation
or by measurement in a separate system.

OH can be calibrated in two ways. The first is direct absorption, the second
is calculation. OH is often present even in low-pressure flames in sufficient
amount that direct absorption measurements can be made. These are best
done in the burnt gases of premixed flames where the OH concentration is
greatest and varies little in space. The accuracy of this mode of calibration
reflects the accuracy in determination of the absorption path length. The
same technique may be used in atmospheric pressure flames, although care
must be taken to ensure that the flame is optically thin, or else a curve of
growth analysis must carried out. Second, OH is found in burnt gases in full
or partial equilibrium among O, H, and H,O in premixed flames (but not in
hydrocarbon diffusion flames [44]). If the temperature is known at the point
of measurement (e.g., by an OH excitation scan), one should be able to
reliably calculate the concentration of OH. A measurement in the burnt
gases can then serve as a calibration for the entire concentration profile.

CH forms an interesting problem. This radical is not present in high
enough quantity in low-pressure flames for direct absorption measurements
(although it can be detected by CRD). The approach to absolute LIF mea-
surements of CH is described in Ref. 45; both the 4-X and B—X systems
were used. Referring to Eq. 2.1, B was known from spectroscopic studies, /i
was measured (and kept at very low pulse energies, in the few wl/pulse
range, to ensure linear excitation with no saturation). fz was calculated
using temperature measurements by excitation scans in the CH spectrum
at the point of measurement; I' was calculated from a convolution of the
laser and CH Doppler bandwidths, the latter changing with temperature;
and 7, was directly measured. ® was directly determined by the time decay
of the fluorescence, which was some tens of nanoseconds in this 40 Torr
flame. F; was determined by fluorescence scans.
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This leaves the term ($2/4m)enV to be determined. This was measured as a
collective single quantity using both Rayleigh scattering in N, and Raman
scattering in H,. (The use of Rayleigh scattering was first described in Ref.
46.) The same term enters into these scattering signals as into the LIF, so all
that is needed further is knowledge of the scattering cross-sections and
number density of the scatterers. Thus four independent determinations
were made: the two electronic systems and the two scattering approaches.
The result showed that the GRIMech chemical mechanism [47], which was
known to have difficulties in predicting prompt NO in methane/air flames,
was suffering from an inability to correctly predict absolute CH concentra-
tions. New measurements of the CH + O, reaction in a shock tube [48,49]
showed where the correction was needed. Currently this mechanism does an
excellent job of predicting CH in lean and stoichiometric flames (although
not so well in rich ones); see Chapter 19 of this book.

Because of the importance of the CH absolute measurement, an indepen-
dent experiment using CRD spectroscopy was later performed on the same
flame [13]. After proper consideration of the nonhomogeneous path length,
the LIF and CRD measurements were found to be in excellent agreement.

This same approach of Rayleigh scattering has been applied to determine
absolute concentrations of electronically excited, emitting CH and OH
molecules [50,51]. These are formed by chemiluminescent reactions directly
producing the radicals in their excited states. In many practical flames LIF is
not available and chemiluminescence is the only approach that can be used.
This emission does not yield the important reactive ground state radical
concentrations, but if enough is known about the chemiluminescent reac-
tions themselves, it can be used reliably as a diagnostic for flame structure;
see also Chapter 21 for more information on chemiluminescence sensors for
combustion control.

Another approach to absolute measurements is formation of known
amounts of the radical in a calibration cell. An important example is abso-
lute measurements of O and H performed in the early 1980s (references are
given in the appendix, and the work is summarized in Ref. 3). In this case,
measurements were made in a flame; a flow cell containing known amounts
of the atoms replaced the flame without changing the optical setup, and the
measurements were repeated.

A similar philosophy using photodissociative formation of radicals has
been applied to the HCO radical, which is important in flame propagation
and may serve as a marker of heat release [52]. To determine the absolute
concentration of HCO [53], acetaldehyde (CH;CHO) was photolyzed by an
excimer laser at 308 nm and LIF measured via the B-X system with a
tunable laser near 258 nm. The CH;CHO cross-section at 308 nm is
known (and was also directly measured); the quantum yield for HCO for-
mation is well established at 93% at this wavelength. The differences in I,
8- and ® between flame and cell are accounted for. The quantity (2/4m)enV
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is the same in both experiments. It has been suggested [54] that this same
photodissociation could also be used for determining absolute concentra-
tions of the very important CH; radical.

In the case of O and H atoms, partial equilibrium arguments have also
been used to establish their maximum concentrations, based on measure-
ments of OH, stable species, and the temperature. Examples include H
atoms in premixed and diffusion flames [44, 55] and O atoms in turbulent
diffusion flames [56].

2.4 COMPARISON WITH MODELS OF COMBUSTION CHEMISTRY

As noted in the introduction, the purpose of this chapter is a discussion of
laser measurements of trace species to understand combustion chemistry.
Properly chosen and quantitatively measured, these radicals can form very
stringent tests of the flame chemistry. Accuracies and uncertainties in flame
chemistry models, and comparisons with experiment, are discussed in
Chapter 19.

Some important conclusions are drawn from that chapter and from prior
experience in model-measurement comparisons. References 57-61 are good
examples of such comparisons, although this list is not comprehensive. As
throughout this chapter, we consider laminar flames and LIF measurements
as the subjects of such comparisons. First, it is important to measure the
temperature field accurately. Various types of temperature measurements
are discussed in Chapter 6. When LIF temperatures are measured for a
given radical at the same place in the flame as the concentration, accurate
spatial precision is achieved. OH, CH, and a small fraction of added NO can
be used for this purpose, although care must be taken in interpreting the
data [36]. Full excitation scans as in Fig. 2.1 provide the most complete data
set, and can result in temperatures precise to ~ £30 K, sufficient to compare
to chemical model predictions.

A smaller subset of lines may be used as well. One simplified method is the
use of two rotational lines coming from levels of different energy; a separa-
tion of around kT is needed for sufficient accuracy. This has been applied to
three pairs of two closely spaced lines in OH [62], for example, @,(11) and
R,(8) differ in energy by about 1980 K (1376 cm™'). An even simpler method
is choosing a single rotational level of NO seeded into the flame; this level
must have an fp that is nearly temperature independent or can be iteratively
corrected. The signal then gives the NO density, which can be directly related
to the temperature by the ideal gas law for a constant pressure condition,
assuming no NO dilution or chemical reaction occurs. One-line and two-line
NO temperatures have been compared with full OH R-branch excitation
scans [63]. It was found that one-line temperatures were in error by as
much as 25% (unless dilution and reaction corrections can be made reliably
with a model). The two-line NO temperatures agreed well with the OH scans.



28 CHAPTER 2: DETECTION OF MINOR SPECIES WITH LASER TECHNIQUES

A second important conclusion from Chapter 19 is that some trace species
often do not tell much about the flame chemistry. At higher temperatures in
the flame, H, O, OH, and H,0 are in a quasi-equilibrium, so OH measure-
ments do not provide much insight into chemistry; they really just inform
the experimenter that the flame is actually burning. On the other hand, an
OH profile needs to be made; any disagreement with predictions reveals real
problems with the model (likely transport or fluid dynamic considerations)
or the measurement itself. By contrast, CH and HCO provide good tests of
chemistry in hydrocarbon flames. For a given flame, the trace species to be
measured (besides OH) should be chosen from a combination of sensitivity/
uncertainty analysis as described in Chapter 19. Absolute concentrations
can be a much more powerful test of the model than only the widths and
positions of relative profiles.

Third, agreement should be considered quantitatively, not by a visual
inspection of the profiles. Uncertainties in both model predictions and
experiment should be taken into account when making a comparison
between model and measurement. We again refer to Chapter 19 for an
excellent illustration using CH.

2.5 OTHER MINOR SPECIES

This discussion has centered on OH, CH, and NO, the most popular species
for which LIF or other laser-based measurements are made. A total of 57
other species are given in the appendix. For the sake of length, many other
molecules are not included; they are mentioned here.

We have omitted polyaromatic hydrocarbons, whose measurement is
addressed in Chapter 13. Many other larger molecules which are products
of incomplete combustion and can be made to fluoresce (e.g., benzene,
acetaldehyde) are not given. At flame temperatures, the partition function
for such species is very large and the signals small because the population is
distributed over many levels. We do not include metals, most of which can
fluoresce, or their compounds such as HgCl or VO which have appropriate
electronic states for LIF detection. For such species we refer the reader to
standard compilations, in particular for atoms [64] and for diatomics [23]. A
few fluorine-containing fire suppressant molecules are included in the appen-
dix owing to the increasing importance of such studies (see Chapter 11).
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2.7 APPENDIX: LITERATURE REVIEW OF FLAME MEASUREMENTS OF MINOR
CONSTITUENTS

The following table is intended to be a guide to the best papers for the
measurement of minor species concentrations in flames using laser-based
diagnostics. It contains information on 60 species with 302 references, and
was completed on May 24, 2001. Special emphasis is placed on in-situ
measurements (as opposed to sample-and-detect approaches), in particular
on reports of profile measurements obtained under laminar combustion
conditions. In general, laser-induced fluorescence is the preferred method
when possible, especially when combined with absorption measurements or
other calibration schemes to yield quantitative profile data. For this reason
LIF papers are listed first, followed by citations to other approaches.

Please note: First observations of a species and first applications of a
given technique are not cited when more comprehensive and thorough
investigations have subsequently been reported. For the most often studied
molecules—OH, CH, and NO—only a few of the many hundreds of LIF
papers are included. In contrast, essentially all of the papers are cited for
species where few measurements are known. Selected work on spectroscopy
and imaging strategies is also listed.

2.7.1 Guide to Abbreviations

* Wavelengths (nanometers) are given in air, and energies
(wavenumbers) are given in vacuum

ABS Absorption (see also CRD and TDL)

ASE Amplified Spontaneous Emission

CARS Coherent Anti-Stokes Raman Scattering

CRD Cavity Ringdown

2C-LIGS Two-Color Laser-Induced Grating Spectroscopy
2C-RFWM Two-Color Resonant Four-Wave Mixing
DFWM Degenerate Four-Wave Mixing

EM Emission

ICLAS Intracavity Laser Absorption Spectroscopy
LIF Laser-Induced Fluorescence

MP-LIF Multiphoton Laser-Induced Fluorescence

OA Optoacoustic

PAD Photoacoustic Deflection

PD Photodissociation

PTD Photothermal Deflection

POL Polarization

REMP! Resonance-Enhanced Multiphoton Ionization

TDL Tunable Diode Laser
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