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Preface 

It is not uncommon to find a special richness and vitality at the boundary 
between mathematical disciplines. With roots in linear algebra, group represen
tation theory, and combinatorics, multilinear algebra is an important example. 
Serious expeditions into any of these fertile areas require substantial preparation, 
and multilinear algebra is no exception. The first four chapters of this book con
sist of self -contained introductions to a variety of prerequisite notions. Multilinear 
algebra, proper, begins in Chapter 5 with the development of the tensor product. 
Ironically, it is there, within sight of the goal, that one encounters what is perhaps 
the most formidable obstacle. In order to prevail over what Cartan has described 
as une debauche d'indices, one must slog through an obscuring foliage of super
scripts and subscripts before reaching the heart. in Chapters 6 and 7, of this elegant 
and beautiful subject. 

Many of the topics developed throughout the book are unified in the final chapter 
by means of the rational representations of the general linear group. Emerging as 
characters afforded by these representations, the classical Schur polynomials are 
one of the keys to the overall unification. 

Throughout the book, some of the easier proofs are left to the exercises and 
some of the more difficult ones to the references. Apart from facilitating the flow 
of material, it is hoped this approach will encourage the reader to become a more 
active participant in exploring the subject. 

Applications of multilinear algebra can be found in many areas of mathematics 
and physical science, some of them well beyond the author's interest or comprehen
sion. Among those selected for inclusion in the book, graph theoretic applications 
are dominant. This does not reflect any particularly close connection between graph 
theory and multilinear algebra. However, applications to graphs suffice to give the 
flavor of more general combinatorial applications and, by keeping the focus on a 
single topic, one is able to probe a little deeper than might otherwise be possible. 

Despite the book's broad scope, remarkably little prior experience is expected 
from the reader. It suffices to be familiar with the contents of the standard third year 
undergraduate courses in abstract and linear algebra. Ideally suited for a fourth year 

vii 



viii Multilinear Algebra 

'capstone' course, Multilinear Algebra is also an attractive choice for a beginning 
graduate course. 

The book began as a series of handwritten lecture notes for an MPhil course 
at the Quaid-1-Azam University of lslamabad in 1973. A revised typescript was 
prepared later that same year for a seminar at the Instituto de Fisica e Matematica in 
Lisbon. These early versions were designed to supplement a series of lectures given 
to students whose native language was something other than English. Nevertheless, 
the lecture notes were circulated widely by the Institute for the Interdisciplinary 
Applications of Algebra and Combinatorics at the University of California, Santa 
Barbara. The present text is dedicated to the hearty folks who struggled through 
that primitive manuscript without the benefit of the author's lectures. 

That multilinear algebra has flourished in the years since 1973 can be seen 
by browsing through the references. Much of this activity was stimulated by the 
appearance in that year of the first part of Marvin Marcus's monumental Finite 
Dimensional Multi linear Algebra. With the appearance of part ll in 1975, FDMA 
became the standard reference, eclipsing the earlier classics of Bourbaki (1948) 
and Greub (1967), and overshadowing the compact treatises of Amir-Moez ( 1970s) 
and Oliveira (1973). 

Among the individuals who have contributed to the author's scholarly research 
are Jose Dias da Silva, Amelia Fonseca, Bob Grone, Tom Pate, Steve Pierce, 
and Bill Watkins. He is also grateful for the professional competence of editors 
Donald Degenhardt, Katie Emblen, Matt Giarratano, Rebecca Stubbs and Brian 
Wyreweden. 



CHAPTER 1 

Partitions 

The integer 6 is said to be "perfect" because it is the sum of its proper divisors: 
6 = 1 + 2 + 3. In this context, 1 + 2 + 3 is the same as 2 + 3 + 1 but different 
from 4 + 2. In expressing the perfection of 6 what interests us is the unordered 
collection of its proper divisors, the "partition" of 6 whose "parts" are 3, 2, and 1. 

DEFINITioN 1.1 A partition of n of length m is an unordered collection of m 
positive integers that sum ton. The m surnmands are the parts of the partition. 

NarATION 1.2 A partition of n is typically represented by a sequence 1r = 
[1r1, 1rz, •.• , 7rm]. in which the parts of the partition are arranged so that 1r1 :=::: 

1r2 :=::: · · · :=::: Jrm > 0. This convention is expressed by the shorthand notation 
1r 1- n. The length of 1r is denoted L(1r). In the present instance, L(1r) =m. 

In ordinary English usage, arranging the parts of a partition from largest to 
smallest would typically be called "ordering" the parts. This semantic difficulty 
can be the source of some confusion. It is precisely because a partition is unordered 
that we are free to arrange its parts any way we like. 

EXAMPLES 1.3 The partitions of 5 are [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], 
and [1,1,1,1,1]. The partitions of 6 having 3 parts are [4,1,1], [3,2,1], and [2,2,2). 

0 

Already, it seems convenient to introduce another shorthand notation. Rather 
than [3,1,1], [2,2,1], [2,1,1,1], and so on, we will write [3,12], [22,1] and [2,13], 

respectively. The partition [5,5,5,3,3,3,3,2,1,1] is abbreviated [53,34 ,2,12]. In this 
notation superscripts are used, not as exponents, but to denote multiplicities. In 
particular, [53 ,34 ,2,12] is a l~part partition of 31. 
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F([6, 4, 32, 2]) F([52, 4, 2, 12]) 

FIGURE 1.1 

Partitions are frequently illustrated by means of so-called Ferrers diagrams.11f 
1r is a partition of n having m parts, the corresponding Ferrers diagram, F(1r), 
consists of m rows of ''boxes". The number of boxes in row i of F(1r) is 1ri. The 
Ferrers diagrams for [6,4,32,2) and [52,4,2,12] are illustrated in Figure 1.1. 

I>EFINmoN 1.4. Suppose 1r r n. The conjugate of 1r is the partition 1r* whose 
j -th part is the number of boxes in column j of F(7r). (So, F(1r*) is the transpose 
of F(1r).) 

The conjugate of [6,4,32,2) is [52,4,2,12] as can easily be seen by glancing at 
Figure 1.1. The length of 1r* is the largest part of 1r, that is, L(1r*) = 1r1. Finally, 
the number of boxes in the j-th column of F(1r) is equal to the number of rows 
of F(1r) that contain at least j boxes, that is, to the number of parts of 1r that are 
bigger than or equal to j. In other words, the j-th part of 1r* is 

1rj = o({i: 1ri !:: j}), (1.1) 

where o(S) denotes the cardinality of the setS. 

EXAMPLE 1.5 The partition 1r is said to be self conjugate if 1r = 1r*, that is, if 
F(1r) is symmetric. There is just one self conjugate partition of 6, namely, [3,2,1]. 
The self conjugate partitions of 9 are illustrated in Figure 1.2. o 

~DODO §§§ 
FIGURE 1.2 The self conjugate partitions of9. 

1 After Norman Macleod Ferrers (1829-1903). 
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Because 1r; ~ 1ri+l for any 1r 1- n, 

1rj - i ~ 1ri+l - i 

> 1ri+l - (i + 1). 

Thus, the integers 1r1 - 1r; + i, 1 !::: i !::: L(1r), are all different. that is, 
o({1r1 - 1r; + i: 1 !::: i !::: L(1r)}) = L(1r). Similarly, the cardinality of 
{1r1 + 1rj - i + 1: 1 !::: i !::: 1rt} is 1r1. What may not be so obvious is that 
these two sets are disjoint. 

LEMMA 1.6 Suppose 1r 1- n. Ltt N = 1r1 + L(tr). Then {1, 2, •.. , N} is the 
disjoint union of S and T, where S = {1r1 - 1r; + i: 1 !::: i !::: L(1r)} and 
T = {1r1 + trj - i + 1 : 1 !::: i !::: trt}. 

Proof It suffices to show that S n T = ~. Observe that 

1ri -1r; + i = 1rl + trj- j + 1, 

if and only if i + j - 1 = 1r; + trj. To see that this is impossible, suppose 
first that 1r; ~ j. Then, from Equation (l.l),trj = o({k: 1rk ~ j}) ~ i, and 
1r; + trj ~ j + i > i + j - 1. Therefore, we may assume 1r; !::: j - 1, in 
which case, trj = o({k: 1rk ~ j}) < i. But, 1r; !::: j- 1 and 1ri* !::: i- 1 imply 
1r; + trj !::: i + j - 2 < i + j - 1. D 

We now discuss "ordering" the different partitions of n. 

DEFINITION 1.7 Let (a)= (a1,a2, ... ,a,) and (b)= (b!.~ •... ,bs) be two 
sequences of real numbers satisfying a1 ~ az ~ · · · ~ a, ~ 0 and b1 ~ ~ ~ 
· · · ~ bs ~ 0. Then (a) majorizes (b), written (a) >- (b), if 

I I 

I: a; ~ Lb;, 1!::: t!::: r, (1.2) 
i=l i=l 

and 

(1.3) 

ExAMPLE 1.8 Suppose n is a fixed positive integer. If 1r 1- n, then 1r = 
[1r1 1 1r21 ••• I 1rm] is a nonincreasing sequence of positive real numbers. If p = 
[PI. pz, ..• , Pk] is another partition of n, then 1r1 + 1r2 + · · · + 1rm = n = 
PI + P2 + · · · + Pk· and Equation (1.3) is satisfied automatically. 
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Suppose n = 8. If 1r = [5,2,1], and p = [32,12], then 1r > p because 5 ~ 3, 

5 + 2 ~ 3 + 3, 5 + 2 + 1 ~ 3 + 3 + 1, and 5 + 2 + 1 = 3 + 3 + 1 + 1. If 1r = 
[5,2,1] and p = [42], then neither partition majorizes the other. Thus, majorization 

is a partial order. Figure 1.3 exhibits the "Hasse Diagram" for the partitions of 6 

partially ordered by majorization. o 

Of the many conditions equivalent to majorization, one of the most useful 

involves doubly stochastic matrices. 

tEB 

§§ r 

FIGURE 1.3 The partitions of 6 partially ordered by majorization. 
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DEFINITION 1.9 The n-by-n (entrywise) nonnegative matrix S = (S;j) is doubly 
stochastic if its rows and columns all sum to 1, that is, if 

n 

:~:::Sii = 1, 1 ~ i ~ n, 
j=l 

n 

and L:s;j=1, 1~j~n. 
i=l 

THEOREM 1.10 Let (a) = (a1, a2, .•. , an) and (b) = (bt. h2 •... , bn) be two 
sequences of real numbers satisfying a1 2:: a2 2:: • • • 2:: an 2:: 0 and b1 2:: h2 2:: 
• • • 2:: bn 2:: 0. Then (a) majorizes (b) if and only if there is a doubly stochastic 
matrix S such that (b) = (a)S. 

Theorem 1.10 is stated for the case in which both sequences have the same 
length. Because adding zeros to the end of the shorter sequence does not affect 
majorization, this hypothesis does not impose any real restriction. A proof can be 
found in [Hardy, Littlewood & P61ya (1967), pp. 47-49] or [Marshall & Olkin 
(1979), p. 22]. 

ExAMPLE 1.11 We saw in Example 1.8 that [5,2,1] >- [32,12]. As an illustration 
of Theorem 1.10, observe that (3,3,1,1) = (5,2,1,0)5, where 

(
2 3 1 0) 

1 4 0 0 2 
S=6 0 3 1 2 . 

0 0 4 2 

IfS is an n-by-n doubly stochastic matrix then [Birkhoff (1946)] there exist 
permutation matrices P1, ~ •. . . , Pk and positive real numbers 81, ~ •••• , (Jk such 
that81 +~ + .. · +9k = 1 and 

In other words, S is a convex combination (or ''weighted average") of permutation 
matrices. Using these terms, Theorem 1.10 can be restated as follows: (a) majorizes 
(b) if and only if (b) is a convex combination of rearrangements of (a ).In particular, 

1 1 
(3, 3, 1, 1) = 3(2, 5, 0, 1) + 3(5, 1, 0, 2) 

1 1 + 6(2, 5, 1, 0) + 6(2, 1, 5, 0). 

D 

Apart from their intrinsic interest, the partitions of n have a variety of uses, one 
of which involves symmetric polynomials. 
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0EFoonON 1.12 A polynomial /(Xt, X2, ... , Xk) issymmetricinXt, X2, ... , Xk 
if its value is unchanged by any permutation of the k variables, that is, if 
f(xt. x2, ... , Xt) = /(Xa(l)• Xa(2)• ... , Xa(l)), for every permutation a of 
{1, 2, ... 'k}.2 

Perhaps the most natural way to begin a discussion of symmetric polynomials 
is with the notorious "multinomial theorem". 

THE MULTINOMIAL THEOREM 1.13 /fn is a positive integer; then 

(XI + x2 + · · · + Xt)" = ~ ( n ) x~' xi2 
••• x~t, (1.4) 

L.., rt, 7"2, ••• , r1 

where the sum is over all nonnegative integer sequences, (rt, r2, ... , r1 ), satisfying 
rt + r2 + · · · + rt = n, and 

is the corresponding mullinomilll cHJfickllt. 

Proofs can be found in any of the standard books on combinatorics. 3 

ExAMPLE 1.14 The coefficient of b4c2 in (a+ b + c)6 is 

( 
6 ) 6! 6! 

0, 4, 2 = 0!4!2! = 4!2! = 15
• 

Because (a + b + c)6 is symmetric in a, b, and c, the coefficients of a4b2 and 
a2c4 in (a +b+c)6 must be 15 as well. One "piece" of the multinomial expansion 
of (a+ b + c)6 is 15p(x), where 

p(x) = a4~ + a4~ + a2b4 + a2c4 + b4~ + b2c4. (1.5) 

D 

DEFINmoN 1.15 Let k and n be positive integers, and 1r be a partition of n of 
length m~ k. 1be monomial symmetric function 

(1.6) 

where the sum is over all different rearrangements, (rt. r2, ... , rt). of the k-tuple 
(7rt,7r2, ... , tr,., 0, 0, ... , 0), obtained by appending k-m zeros to the end of 1r. 

If m > k, then M"(Xt, x2, ... ,Xk) = 0. 

211is is wby tbe group of all pennutatioDs of {1.2 •... ,1} is called tbe "symmettic" group. 
3See, for example, [Merris (1996)]. 
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If m = 2, le = 3, and 1r = [1rt, 1r2] = [2, 2], then the "different rearrangements" 
of (2,2,0) are 

(2, 2, 0), (2, 0, 2), and (0, 2, 2), 

not the six rearrangements of the different looking symbols rrr, 1r2, and 0. Thus, 

M[2,2J(x, y, .z) = x2y2 +x2.z2 + lz2. 

The "piece" of the multinomial expansion of (a + b + c)6 exhibited in 
Equation (l.S) is 

M[4,2J(a, b, c) = a4b2 + a4~ + a2b4 + a2c4 + b4~ + b2c4• 

Any symmetric polynomial is a linear combination of minimaJJy symmetric pieces, 
namely, the monomial symmetric functions. We shall have more to say about this 
presently. 

ExAMPLE 1.16 There are exactly seven partitions of 6 having three or fewer parts. 
So, there are seven (nonzcro) monomial symmetric functions of degree 6 in the 
three variables a, b, and c. They are 

and 

M[6J(a, b, c) = a6 + b6 + c6 , 

Mrs.l)(a, b, c)= a5b + a5c + ab5 + ac5 + b5c + bc5, 

M[4,2J(a, b, c)= a4b2 +a4c2 +a2b4 +a2c4 + b4~ + b2c4 , 

M13zl(a,b,c) =a3b3 +a3c3 +b3c3, 

M[4,PJ(a, b, c)= a4bc+ab4c +abc4 , 

M[3,2,1J(a, b, c) = a3b2c + a3bc2 + a2b3c + a2bc3 + ab3~ + ab2c3, 

M[2lJ(a, b, c)= a 2b2c2. 

Setting M" = M"(a, b, c) we obtain, from the multinomial theorem, that 

(a+ b + c)6 = M[6J + 6Mrs.l) + 1SM[4,21 + 20M[3zl 

+ 30M14,I2J + 60M[3,2,1J + 90Mrzl1. 

0 
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If 1r = [1r1, 1r2, ••• , 11'111 ] is some fixed but arbitrary partition ofn, define 

( ") n! = I I 1· 
1T 11'! .11'2 • ••• 11',. 

Using this notation, the multinomial theorem can be restated as follows: 

THEOREM 1.17 If n is a positive integer, then 

(XI +x2+· · ·+Xk)11 = L:(:)M1r(X!,X2,···•Xk). (1.7) 
ll'l-11 

We now give special names to the two "extreme" monomial symmetric func

tions, the ones corresponding to the partitions [n] and [111
]. 

NarAnoN 1.18 Let P,(xt. x2, ... , Xt) = M£,J(Xt, x2, ... , Xk) and 

E,(X!, X2, ... 'Xk) = M[l•J(X!, X2, ...• Xt). 

It is easy to recognize P,; it is the n-th power sum, 

What about E,? 

ExAMPLE 1.19 Let's choose k = 4. Then 

Et(a, b, e, d)= M[IJ(a, b, e, d)= a+ b +e+d; 

E2(a, b, e, d) = M[PJ(a, b, e, d) =ab+ ae +ad+ be+ bd + ed; 

E3(a, b, e, d) = M[PJ(a, b, e, d) = abe + abd + aed +bed; and 

E4(a, b, c, d)= Mu•1(a, b, c, d) =abed. 

Evidently, E,(a, b, c, d) is the sum of all C(4, n) (binomial coefficient ( ~ )> 
products of the x 's taken n at a time. o 

If(r,, r2, ... , rt)issomerearrangementofthesequence(1, 1, ... , 1, 0, 0, ... , 0) 

consisting of n ones followed by k - n zeros, then 

X'•x'2 x'• - x· x · x · 
1 2 • • • k - •• •z • • • •• • 

where i 1 < i2 < · · · < i11 • Summing over the different rearrangements gives 

(1.8) 

where the summation is over all C(k, n) sequences (i,, i2, ... , i 11 ) satisfying 

1 !: ;, < i2 < ... < i, !: k. 
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DEFINmoN 1.20 Denote by f 11 ,k the Set of all functions from {1, 2, ... , n} into 
{1, 2, ... , k}. Let Q,.,k be the subset of r,.,k consisting of the C(k, n) strictly 
increasing functions. 

There is a natural one-to-one correspondence between the functions {3 E r 11 ,~: 

and the integer sequences (it, i2, ... , i,.) satisfying 1 ~ i1 ~ k, 1 ~ t ~ n, 
namely, {3 .... ({3(1), {3(2), ... , {3(n)). We will feel free to abuse the language by 
identifying r ,.,k with a set of sequences. Thus, 

r2,3 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}, 

and Q2,3 = {(1, 2), (1, 3), (2, 3)}. 
Using Definition 1.20, we may rewrite Equation (1.8) as 

E,.(xt,X2, ••. ,x~:) = L Xp(l)XtJ(2) .. . xpc,.>· 
/JEQo.l 

(1.9) 

DEANmoN 1.21 The "extreme" monomial symmetric function, E,. (xt. x2, ••• , Xk) 
is the n-th elementary symmetric function of x1, x2, ... , Xk.lt is useful to define 
Eo(xt, x2, ... , Xk) = 1. 

Elementary symmetric functions are familiar objects. They express the coeffi
cients of a manic polynomial in terms of its roots. If, for example, a, b, c, and d 
are complex numbers, then (Example 1.19) 

where E,. = E,.(a, b, c, d), 1 ~ n ~ 4. 

FUNDAMENTAL THEOREM OF SYMMETRic FUNCTIONS 1.22 Any polynomial, symme
tric in the variables Xt, x2, ... , Xk, is a polynomial in the elementary symmetric 
functions E,.(xt, x2, ••• , Xk), I ~ n ~ k. 

Proof Let f = f(xt, x2, ... , x~:) be a symmetric polynomial of (total) degree p. 
Write/= fo+ ft + .. + /p. where/;= /;(xt. x2, ... ,Xk)isthe{homogeneous) 
part of f consisting of all terms of degree i. It will suffice to show that /; is a 
polynomial in the elementary symmetric functions for a fixed but arbitrary i. 

Suppose 

(1.11) 

is one of the monomial terms that occur in /;. Then r1 + r2 + · · · + rk = i. By 
symmetry, we may assume that 

Tl ~ T2 ~ • • • ~ Tt > 0 = Tt+l = '• • = Tk• 
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Among all partitions of i occwring as the sequence of exponents in the monomials 
off;, assume [Tl, T2, ••• , T1] is last in lexicographic (dictionary) order. That is, 
without loss of generality, we may assume T1 is the largest single exponent that 
occurs in any monomial in /;; T2 is the maximum second largest exponent among 
all the monomials that occur in /; and have Tl as their largest exponent; TJ is the 
maximum third largest exponent among all the monomials that occur in /; and 
have T1 and T2 as their two largest exponents; and so on. 

Consider 

(1.12) 

where En = En (xl, x2, ... , Xl), 1 !:: n !:: k. In lexicographic order of its 
exponents the last monomial that occurs in (1.12) is 

We would like to choose s1, s2, s3, and so on, so that 

This requires that 

Tl = Sl + S2 + S3 + • • • +Sic, 

T2 = S2 + S3 + · · ·+Sic, 

(1.13) 

These equations are satisfied when s1c = Tic, Slc-l = Tie-l -Tic, ••• , s2 = T2 - TJ, 

and s1 = Tl - T2. If we make these choices, then either 

~ E81 E-'Z E81 0 Jl- c 1 2 ••• le = . 

or it is a symmetric homogeneous polynomial of degree i, each of whose monomial 
terms comes before (1.11) in lexicographic order. Because dictionary ordering is 
a total order, the result follows by induction. o 

Suppose I = l(xl. x2, ... , x~c) is a symmetric homogeneous polynomial of 
degree n. Then I is, simultaneously, a polynomial in the elementary symmetric 
functions En(Xl, x2, ... , x~c), 1 !:: n !:: k, and a linear combination of the 
monomial symmetric functions M1r (xl, x2, ... , x~c), 1r 1- n. Conversely, if c1r, 
1r 1- n, are constants, then 
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g(xi, Xl, ... , XA:) = L cli'Mli'(XI, Xl, ... , XA:) 
ll'f-11 

defines a symmetric homogeneous polynomial of degree n. If 

11 

for all 1r, then g(xi, xz, ... , Xt) = (XI + xz + · · · + Xt)". What about some other 
choices? An important and interesting example arises when C~r = 1 for all 1r. 

DEFINmoN 1.23 Let XI, Xl, ... , Xk be independent variables. Their n-th homo
geneous symmetric function is defined by 

H,.(x., Xl, ... , Xt) = L M1r(xi, xz, ... , Xt). (1.14) 
Jrf-n 

It is convenient to define Ho(xi, Xl, ... , Xt) = 1. 

EXAMPLES 1.24 

Hl(a, b, c) = M[lJ(a, b, c)+ Mu2J(a, b, c) 

= Pz(a, b, c)+ El(a, b, c) 

= (al + bl + c2) + (ab + ac +be), 

H3(a, b, c) = M[JJ{a, b, c)+ M[2,IJ(a, b, c)+ MtPJ(a, b, c) 

and 

= (a3 + b3 + c3) + (alb +ale+ abl + acl + blc + ix?) + abc, 
(1.15) 

H4(a, b, c)= M[4J(a, b, c)+ M[3,IJ(a, b, c)+ M[l2J(a, b, c)+ M[l,I2J(a, b, c) 

= (a4 + b4 + c4
) + (a3b + a3c + ab3 + ac3 + b3c + bc3) 

+ (albl + alcl + blcl) + (albc +able+ ab~). 

0 

From the definition, each monomial of (total) degree n in the variables 
XI, Xl, ... , Xk occurs in H,. (XI, Xl, ... , Xt) exactly once. This leads to a formula 
for H,.(xi, Xl, ... , Xt) analogous to Equation (1.9). 
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OEFINmoN 1.25 Denote by G,.,k the subset of r ,.,k consisting of all C (n+k-1, n) 
nondecreasing functions from { 1, 2, ... , n} into { 1, 2, ... , k}. 

For all n and k, Q,.,k C Gn,k· As (lexicographically ordered) sequence sets, 

G2,J = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}, and 

GJ,J = {(1, 1, 1), (1, 1, 2), (1,1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), 

(2, 2, 2), (2, 2, 3), (2, 3, 3), (3, 3, 3)}. (1.16) 

Using Definition 1.25, we can rewrite Equation (1.14) as 

H,.(XJ,X2o•••oXk}= L XfJ(l)XfJ(2)•••XfJ(11)• (1.17} 
fJEGo.1 

We now return to the observation that any symmetric polynomial is a linear 

combination of "minimally symmetric pieces". 

OEFINmoN 1.26 Suppose XJ, x2, ... , Xk are independent indeterminates (vari

ables) over the field C of complex numbers. Denote by C[x1, x2, ... , XA:] the set of 

polynomials in XJ, x2 •... , Xk with complex coefficients. Let SC,.[xJ, x2 •••. , XA:] 

be the subset ofC[xJ, x2 •... , XA:] consisting of the zero polynomial together with 

all symmetric homogeneous polynomials of degree n. 

THEoREM 1.27 The set {M~r(XJ,X2, ... , XA:): 1r 1- n, L(1r) ~ k} is a basisofthe 
vector space SC,. (XJ, X2, ... , XA:). 

Proof Let M~r = M~r (XJ, x2, ... , XA:), 1r 1- n. The only thing remaining to be 

proved is the linear independence of {M": 1r 1- n, L(1r) ~ k}. 

Suppose 

L c1rMtr = 0, 
Jrl-11 

L(1r)~k 

(1.18) 

the zero polynomial. Let p = (pJ, P2, ... , Pr ], r ~ k, be a partition of n. Consider 

the term 

occurring in Equation (1.18). Taking partial derivatives of (1.18) with respect to 

XJ, PI-times, with respect to x2. P2-times, ... , and with respect to x,, p,-times, 

we deduce that 

Pl !P2! ... p,!cp = 0. 

0 
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Application to Graphs 

Let V be a set. Denote the family of its 2-element subsets by v<2>. Then, for 
example, 

{a, b, c}<2> = {{a, b}, {a, c}, {b, c}}; 

{1, 2, 3, 4}(2) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}; 

and {x, y)<2> = {{x, y}}. If o(V) = n, then o(V<2>) = C(n, 2). 

DEflNITioN 1.28 A graph consists of two things, a nonempty finite set V, and a 
(possibly empty) subset E of v<2>. If G = (V, E) is a graph, the elements of V are 
its vertices and the elements of E its edges. When more than one graph is under 
consideration, it may be useful to write V (G) and E (G), respectively, for the sets 
of vertices and edges. If e = {u, v} e E(G), then u and v are adjacent vertices, 
incident with e. Two edges are adjacent if their set -theoretic intersection consists 
of a single vertex. 

EXAMPLE 1.29 If V= {1, 2, 3, 4, 5}, then v<2> has 10 elements and 210 subsets. 
Hence, there are 1024 different graphs with vertex set {1, 2, 3, 4, 5}. 

It is common to draw pictures of graphs in which vertices are represented by 
points and points representing adjacent vertices are joined by line segments (or 
arcs). If E = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}}, then each of the pictures in 
Figure 1.4 illustrates H = (V, E). Note that H is not connected; vertex 5 is an 
"isolated" vertex. o 

0 0 

0\?l 
o-o 

0'>-Sl 
FIGURE 1.4 Pictures of graph H. 

EXAMPLE 1.30 Not only can one graph be illustrated by different pictures, but 
one picture can represent different graphs! If W = {p, q, r, s, t} and F = 
{{q, s}, {q, t}, {r, s}, {r, t}, {s, t}}, then the fourpicturesinFigure 1.4 also illustrate 
K = (W, F). D 

We are not so much interested in different graphs as in nonisomorphic graphs. 
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DEFINmoN 1.31 Let G1 = (V, E) and G2 = (W, F) be graphs. Then G1 is 
isomorphic to G2 if there is a one-to-one function I : V -+ W such that vertices 
u and v are adjacent in G1 if and only if l(u) and l(v} are adjacent in G2, that 
is, such that {u, v} E E if and only if {f(u), l(v)} E F . The function I is an 
isomorphism from G1 onto G2. 

If G 1 and G2 can be illusttated by the same picture, then they are isomorphic. 
To each point of the picture there corresponds a unique vertex v1 of G1 and a 
unique vertex V2 of G2. The function that sends v1 to V2 (for every point of the 
picture) is an isomorphism. It is more challenging to tell when graphs illusttated 
by different pictures are isomorphic. 

EXAMPLE 1.32 The so-called "Petersen" graph, G1, is illusb'ated in Figure 1.5. It 
is isomorphic to the graph G2, pictured in the same figure. The proof that G 1 and 
G2 are isomorphic is "by the numbers". If V(G1) = {0, 1, 2, .. . , 9} = V(G2), 
then l(i) = i, 0!: i !: 9, is an isomorphism. (Check it out: Confirm that i and j 
are adjacent in G1 if and only if they are adjacent in G2.) Such a pair of labeled 
figures may be considered a proof of isomorphism (provided, of course, that it 
"checks out"). o 

2 3 
0 

1 

FIGURE 1.5 The Petersen graph. 

It is an immediate consequence of the definition that isomorphic graphs have the 
same numbers of vertices and edges. Consequently, if G 1 and G2 do not share these 
properties, they cannot be isomorphic. Properties that isomorphic graphs must 
share, are called graph invariants. We now introduce another graph invariant. 

DEFlNmoN 1.33 LetG =(V, E) beagraphwithvertexset V= {v1, Ul •.. ., v,}. 
The degree of v E V, denoted d(v), is the number of edges of G that are incident 
with v (which is equal to the number of vertices of G that are adjacent to v). When 
more than one graph is under consideration, it may be useful to write d ( v) = dG ( v ). 
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The degree sequence is d(G) = (d1, d2, ... , d,.), where d1 ~ d2 ~ · · · ~ d,. ~ 0 
are the degrees of the vertices of G, arranged in nonincreasing order. (We are not 
necessarily assuming that d; = d(v;).) 

THEOREM 1.34 The degree sequence is a graph invariant. 

We can determine from d (G) both n, the number of vertices of G, and m, the 
number of its edges: n is just the length of the sequence d(G), and m is given by 
what has come to be known as the "first theorem" of graph theory. 

THEOREM 1.35 Let G ={V, E) be a graph with vertex set V= (v1, V2 •••• , v,.}. 
/fo{E) =m, then 

" 
Ld(v;) =2m. 
i=l 

Proof By definition, d(v) is the number of edges incident with vertex v. Thus, 
in summing the vertex degrees, each edge is counted twice, once at each of its 
vertices. o 

0 

0/ '-a 
o-o 

FIGURE 1.6 Nonisomorphic graphs with the same degree sequence. 

EXAMPLE 1.36 The nonisomorphic graphs G 1 and G2 in Figure 1.6 share the 
degree sequence {2,2,2,1,1). o 

If G is a graph with n vertices and m edges, it follows from Theorem 1.35 that, 
were it not for isolated vertices (of degree 0), d(G) = (dt, d2, ... , d,.) would be a 
partition of2m. When speaking of the Ferrers diagram of d (G) it will be understood 
that vertices of degree 0 go unrepresented. Similarly, let dj = o((i: d; ~ j}). Then 
the conjugate degree sequence, d*(G) = (dj, di· ... , t/k). is the conjugate of 
the partition of 2m whose parts are the nonzero vertex degrees of G. 

THEOREM 1.37 Let G be a graph with n vertices, m edges, and degree sequence 
d(G). Then d*(G) majorizes d(G). 
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1 

FIGURE 1.7 

Proof Consider the graph G, illustrated in Figure 1. 7, in which the vertices are 
numbered in such a way that d(vi) = di. Figure 1.8(a) exhibits a variation on the 
Ferrers diagram for d(G) = (4, 3, 2, 2, 1) in which the boxes have been replaced 
by numbers. Because vertex 1 has degree 4, there are four 1 's in the first row of the 
diagram. The three 2 's in the second row correspond to the degree of vertex 2, and 
so on. Now, rearrange the numbers, but not the shape, of this "Young Tableau" so 
that row i contains, in increasing order, the numbers of the vertices of G adjacent 
to vertex i. Figure 1.8(b) is the result. 

l l 

2 2 2 

3 3 

4 4 
s 

(a) 

FIGURE 1.8 

2 3 4 s 
l 3 4 

l 2 

2 

(b) 

Note that the first column of variation (b) contains all the 1 's. All the 2's are 
contained in the first two columns, all the 3's in the first three columns, and so on. 
In general, for any graph, the first r columns of the analog of variation (b) contain 
all the 1's, all the 2's, . .. , and all the r's. In particular, the sum of the lengths of 
the first r rows of the analog of variation (a) is at most the sum of the lengths of 
the first r columns of the analog of variation (b). Because the two variations have 
the same shape, the proof is complete. o 

Theorems 1.35 and 1.37 give necessary conditions for a nonincreasing sequence 
of nonnegative integers to be the degree sequence of a graph. 

DEFINITION 1.38 Let m be a positive integer. A partition 1r = [1r1, 1r2, ••• , rr11 ] of 
2m is graphic if there is a graph G such that d(G) = 1r. 
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DEFINITION 1.39 The trace of partition 1r is /(1f) = o({i: 1f; :=::: i}). 

If F(1r) is the Ferrers diagram corresponding to 1r, then j(1r) is the length of 
its main diagonal. 

THEOREM 1.~ Suppose 1f = [1ft, 1r2, •.• , 1f11 ] is a partition of the positive 
integer 2m. Let 1r* = [1rj, 1r2, .•• , 1r;] be its conjugate partition. Then 1r is 
graphic if and only if 

, , 
I: 1r: :::: I::<1fj + 1>. 1 ~ r ~ t<1r>. (1.19) 
i=t i=t 

Proof The proof uses the same variations, (a) and (b), of the Ferrers diagram of 
d(G) that were useful in the proof of Theorem 1.37. (See Figure 1.8.) Because 
no vertex is adjacent to itself, no row in variation (b) contains its own number. In 
particular, the (1,1)-entry is not less than 2. Therefore, in addition to all the 1's, 
the first column of variation (b) contains a number larger than 1, so dj :=::: dt + 1. 

Since the (1,1 )-entry of variation (b) is at least 2, and since the numbers in 
the first row are strictly increasing, the (1,2)-entry must be at least 3. If d2 :=::: 2 
then, because the second vertex is not adjacent to itself, the (2,2)-entry can be no 
less than 3 as well. Therefore, all the 1's, all the 2's, and at least two numbers 
no smaller than 3 occur in the first two columns of variation (b). This means 
dj + d2 :=::: dt + d2 + 2 = (dt + 1) + (d2 + 1). As long as d, :=::: r, we can use the 
same argument to prove that 

thus establishing the necessity of Condition (1.19). 
To prove sufficiency, suppose 1r = [1ft, 1r2, ••. , 1f11 ] is a partition of 2m that 

satisfies Inequalities (1.19). Consider the extreme case in which 1rj = 1f; + 1, 
1 ~ i ~ j(1r). To produce a graph with degree sequence 1r, begin with the vertex 
set V = {1, 2, ... , n}. "Construct" edges from vertex 1 to each of 2, 3, ... , n. 
Because n = 1rj = 1ft + 1, we have produced a graph in which dt = 1ft, and 
d2 = d3 = · · · = d11 = 1. If /(1f) = 1, then 1r2 = 1, and we are finished. 
Otherwise, construct edges from vertex 2 to each of 3, 4, ... , 1r2 + 1. (This is 
possible because we have reserved "room" for 1r2 = 1r2 + 1 vertices of degree 2 
or more.) So far, we have produced a graph in which dt = 1ft and d2 = 1r2. If 
f (1r) = 2, we are finished because F(1r) is completely determined by its first f (1r) 
rows and columns. If 1r3 :=::: 3, draw edges from vertex 3 to each of 4, 5, ... , 1r3 + 1 
(which is possible because 1rj = 1f3 + 1). After three steps, we have dt = 1ft, 

4Wbite this result has been attributed to Hasselbarth [Sierksrna & Hoogeveen (1991)), it seems to 

have been published fint in [Ruch & Gutrnan (1979)). 
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d2 = 1r2, and d3 = 1r3. At the end of /(7r) steps, we will have produced a graph 
satisfying d; = 7r; , 1 ~ i ~ n. 

To complete the proof of sufficiency, two additional facts are required: (1) if 
p is majorized by a graphic partition 1r, then p is graphic; and (2) every partition 
satisfying the inequalities in (1.19) is majorized by one which is extreme in the 
sense that equality holds in each of the inequalities. The details are omitted. o 

EXAMPLE 1.41 Consider the partition 1r = [5, 4, 3, 3, 2, 1], whose Ferrers dia
gram, F(1r) appears in Figure 1.9. Because 1r is a partition of 18, the first condition 
of Theorem 1.40 is satisfied: m = 9. In this case, the length of the main diagonal of 
F(1r) is 3 = /(7r). Glancing at Figure 1.9, we can write down 1r* = [6, 5, 4, 2, 1]. 
Observe that 1ri = 1r; + 1, fori = 1, 2, 3. 

F([5, 4, 32, 2, 1]) 

FIGURE 1.9 

Draw six points in the plane and label them 1, 2, ... , 6. Construct (draw) edges 
from vertex 1 to vertices 2, 3, 4, 5, and 6, as shown in Figure l.IO(a). This gives 
a vertex of degree 5 and five vertices of degree 1. Now, draw edges connecting 
vertex 2 to vertices 3, 4, and 5. Finally, drawing an edge from vertex 3 to vertex 4, 
one obtains the graph G, illustrated in Figure l.IO(b), having degree sequence 
d(G) = 1r. o 

1 

6oil\o2 5o o3 
0 

4 

(a) 

FIGURE 1.10 

1 

6o2&r 
5o~to3 

0 

4 

(b) 
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Example 1.41 illustrates the "greedy" algorithm used in the proof of Theo
rem 1.40 to construct a graph whose degree sequence is extreme in the sense that 
equality holds in each of the inequalities in (1.19). We now give a formal name to 
the graphic partitions that are extreme in this sense. 

DEFoonoN 1.42 Let 1r = [1ft, 1r2, ••• , 7rn] be a partition of 2m. Then 1r is a 
maximal(graphic)partitionifrrt = rr;+1, I ::5 i ::5 /(rr).Agraphwhosedegree 
sequence is maximal is a threshold graph. 

1 1 

6o o\'o2 6o?§2 
So »3 sl, 13 

0 0 

4 4 

(a) (b) 

FIGURE 1.11 

EXAMPLE 1.43 Let 1r = [36]. Then rr* = [63] and, while 1r is graphic, it is not 
maximal. Let's see what happens if we try to use the greedy algorithm illustrated 
in Example 1.41 to construct a graph with degree sequence [36]. Begin by drawing 
six points in the plane and labeling them I, 2, ... , 6. Draw edges from vertex I to 
vertices 2, 3, and 4. Now draw edges from vertex 2 to vertices 3 and 4, producing 
two vertices of degree 3, two of degree 2, and two of degree 0. When an edge 
is drawn between vertices 3 and 4, we find ourselves in the position illustrated in 
Figure 1.11(a). Pretty clearly, a graph with degree sequence [36] cannot be obtained 
from this figure by adding more edges. On the other hand, the existence of a graph 
with degree sequence [36] is established by Figure 1.11(b). o 

EXAMPLE 1.44 The connected threshold graphs having 2 ::5 m ::5 6 edges are 
illustrated in Figure 1.12. 

DEFINITION 1.45 Let V beann-elementset. The complete graph Kn =(V, v<2>) 
is the graph in which every pair of vertices is adjacent. 

Strictly speaking, Definition 1.45 defines the complete graph with vertex set V. 
However, because any two complete graphs on n vertices are isomorphic, we will 
abuse the language and speak about the complete graph on n vertices. The complete 
graphs K3 and K4 are illustrated in Figure 1.12(b) and (h), respectively. 
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DEFINITION 1.46 Let G = (V, E) be a graph. The complement of G is the graph 

GC = (V, v<2>\E). 

If G is a graph, then e = {u, v} is an edge of G if and only if e is not an edge 

of Gc. In particular, the complement of K, is the graph consisting of n isolated 

vertices, that is, K~ has no edges at all. 

DEFINmoN 1.47 Let G = (V, E) be a graph. A cycle in G is a sequence of 

distinct vertices Vt, V2 • ••• , v,, n > 2, such that {v;, v;+&} e E, 1 !:: i < n, and 

{vt. v,} e E. A connected graph without cycle is a tree. 

Graphs (a), (b), (e), (h), and (i) in Figure 1.12 are trees. 

0 0 0 

(a) (b) (c) 

! + 
(d) (e) 

<!> ~ + 
(f) (&) (h) 

* 2r 
(i) (j) 

<f> ~ 
(k) (I) 

FIGURE 1.12 The Threshold Graphs with 2 ~ m ~ 6 edges. 



Partitions 21 

Exercises 

1. Denote by Pm (n) the number of partitions of n having m parts. Show that 

a. Pn-2(n) = 2, n ::: 4. 

b. Pn-3(11) = 3, n ::: 6. 

c. P2(n) = [n/2], the greatest integer not exceeding n/2. 

d. Pm(n) = Pm-I(n- 1) + Pm(n- m), 1 <m< n. 

e. Construct a table exhibiting Pm(n), 1 =:;m =:; n, 1 =:; n =:; 7. 

f. The number of partitions of n is the partition number 

n 

p(n) = L Pm(n). 
m= I 

Compute p(n), 1 =:; n =:; 7. 

2. Explicitly write down 

a. all 11 partitions of 6. 

b. all 8 partitions of 7 having 3 or fewer parts. 

c. all 8 partitions of 7 whose largest part is at most 3. 

3. Let 1r = [6, 4, 23]. Find 1r* 

a. using Ferrers diagrams. 

b. using Equation (1.1). 

4. Which of the following is a self conjugate partition? 

a. [5,4,3,2,1] 

b. [5,32,12] 

c. [4,32,1] 

d. [5,32,2,12] 

e. [5,42,3,12] 

f. [6,4,3,12] 

5. Find 1r* and use it confirm Lemma 1.6 when 1r = 
a. [5,4,3,2,1] 

b. [5,32,12] 

c. [4,32,1) 

d. [5,32,2,12] 

e. [5,42 ,3,12) 

f. [6,4,3,12] 

6. Find the smallest integer n having three different self conjugate partitions. 
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7. Suppose 1r ~ n. Show that trh1 = trj - o({i: 1r; = j}). 

8. Let 1r = [1r1 I 1r21 ••• 1 1r,.] and p = lP1 1 P21 ••• I Pt] be partitions of n. Show 
that 1r > p only if m ~ A:. 

9. Find all the partitions of 7 that 

a. majorize [5,2]. 

b. are majorized by [22,13]. 

10. Prove that 1r > p if and only if p* > 1r*. 

11. Show that the doubly stochastic matrix S given in Example 1.11 is not unique 
by finding another one that satisfies (3,3,1,1) = (5,2,1,0)5. 

12. Show that there are C(A: + n - 1, n) nonnegative integer solutions to the 

equation rt + r2 + · · · + '" = n. 
13. When (a+ b + c + d)10 is expressed as a linear combination of monomial 

symmetric functions, compute the coefficient of 

a. M1u21(a, b, c, d). 

b. M[7,2,1J(a, b, c, d). 

c. M[42,2J(a, b, c, d). 

d M[32,2,PJ(a, b, c, d). 

14. Write out in full 

a. M[4,tJ(x, y, z). 

b. M[3,2J(x, y, z). 

c. Mu21(x, y, z). 

15. Confirm Equation (1.10) for a = 1, b = 2, c = 3, and d = 4 by 

a. using Example 1.19 to compute E11 (1, 2, 3, 4), 1 ~ n ~ 4. 

b. computing the product (x - 1)(x - 2)(x - 3)(x - 4). 

16. Denote the roots of p(x) = x4 - x2 + 2x + 2 by a, b, c, and d. Compute the 
elementary symmetric functions Er(a, b, c, d), 1 ~ r ~ 4, 

a. from the coefficients of p(x). (Hint: Equation (1.10).) 

b. from the definition of Er . (Hint: (x + 1)2 divides p(x).) 

17. Suppose k is a fixed but arbitrary positive integer. Let P11 = P11 (Xt, x2, .•. , Xk) 
and E11 = E11 (Xt,X2, . •• ,x~c), n ;::: 1, be the n-th power sum and the n-th 
elementary symmetric function, respectively. It was shown by Isaac Newton 
(1642-1727) that, for any n ;::: 1, 

Thus, Pt- Et= 0,1'2- PtEt + 2E2 = 0, P3- P2E1 + P1E2- 3E3 = 0, 
and so on. 
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a. Use Newton's identities to prove that 

b. Use Newton's identities to prove that 

c. Show that the general fonnula for Er as a polynomial in the power sums 
is r!Er = det(Lr). where 

(

PI 
Pz P1 

Lr = 1'3 Pz 

Pr Pr-1 

1 0 0 
2 0 

P1 3 

Pr-2 Pr-3 

(Hint: Use Cramer's rule on the following matrix version of Newton's 
identities: 

0 
0 
3 

P1 

0 ... ) ( E1] ( P1] 0 . . . Ez P:2 
0 .. . E3 = P3 .) 
-4 ... E4 P4 . . . . . . 

d. Prove that any polynomial, symmetric in .K1, .Kz, •.. , .Kt, is a polynomial 
in the power sum functions P,.(.KJ. .Kz, ... , .Kt). 1 ::; n ::; k. 

18. If 2 ::; r ::; k, prove that Er(.KJ,.K2, ... , .Kt) = Er(.KJ,.Kz, .•. ,.Kt-1) + 
.Kt Er-! (.KJ, .Kz, . · ·, .Kt-J). 

19. Use Equation (1.16) to confirm that Equation (1.17) yields Equation (1.15) 
when n = k = 3, .KJ =a, .Kz = b, and .KJ =c. 

20. If r :::: 2, prove that Hr(.KJ, .Kz, •.. , .Kt) = Hr(.KJ, .Kz, ... , .Kt-I) + 
.KtHr-l (.KJ, .Kz, .•• , .Kt). 

21. Use Exercise 18 and mathematical induction to prove that 

11 11 n(.K -a;)= L:<-1)rEr(aJ,az, .•. ,a,.).K"-r. 
i=l r=O 

22. Suppose a e r m, 11 • Prove that a e Gm.11 if and only if au > a for all 
pennutations a e Sm. 
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23. Denote by m;(n) the multiplicity of i in the partition 11", that is, the number 
of times i occurs as a part of 1r. Prove that m; (n) = nj - ni-+1. 

24. Suppose n, p 1- n. Let 1r + p be the partition of2n, the i-th part of which is 
n; + p; (with the convention that n; = 0 if i > L(n)). Denote by 1r Up the 
partition of 2n the parts of which are the parts of 1r together with the parts of 
p. 
a. Prove that (n U p )* = n* + p*. 

b. Is (n + p )* = n* U p*? 

25. Suppose 1r 1- n. Let IJ-i = 11"; - i and v; = nj- i, 1 ~ i ~ /(n). Frobenius 
used {11-lv) to denote the partition 1r. Show that the Frobenius notation for n* 
is (vi~J-). 

26. Among the many results known about elementary symmetric functions is that 
they are Schur concave, that is, E,(a) ~ E,(b) whenever (a) majorizes (b). 

a Show that majorization imposes a linear order on the five partitions of 8 
having 3 parts. 

b. Confirm the Schur concavity of E, by computing E,(n), 1 ~ r ~ 3, for 
each three-part partition of 8. 

27. Among the many results known about homogeneous symmetric functions is 
that they are Schur convex, that is, H,(a) ~ H,(b) whenever (a) majorizes 
(b). 

a Confirm the Schur convexity of H, by computing H,(n), 1 ~ r ~ 3, for 
each three-part partition of 8. 

b. If you were to compute H4(1r) for each partition 1r of 24 having 3 parts, 
which partition would produce the maximum? Which would produce the 

. . ? mmunum. 
28. Let E, = E,(aJ, a2, ..• , a,.), 1 ~ r ~ n. Show that (1 - a1x)(l -

a2x) •.. (1- a,.x) = 1- E1x + E2x2 - • · · + (-1)11 E,.x11
• 

29. Show that the dimension of SC7[x, y, z] is 8. (Hint: Exercise 2b.) 

30. Compute 

a. dim(SC7[X1, x2, ••• , X7 ]). (Hint: Exercise If.) 

b. dim(SC7[X1, X2, ••• , Xg]). 

31. If A is an m-by-n matrix, denote its i-th row and j-th column sums, 
respectively, by r;(A) and Cj(A). Suppose 

R = (rJ, r2, ... , r,.) and C = (cJ, c2, .. . , c,.) 

are integer vectors satisfying r1 ~ r2 ~ · · · ~ r,. ~ 0 and c1 ~ c2 ~ · · · ~ 
c11 ~ 0. Then ([Gale (1957)] and [Ryser (1957)]) there exists an m-by-n, 
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(0,1)-matrixAsuchthatr;(A)=r;, I :;:i :;:m,andcJ(A)=cj. I :;:j :;:n, 
if and only if R* >- S. 

a. Use the Gale-Ryser theorem to prove the existence of a 5-by-4, (0,1)
matrix A having row sum vector R = (3,2,1,1,1) and column sum vector 
(3,3,1,1). 

b. Write down such a matrix. 

Application Exercises 

32. Draw pictures of the 11 nonisomorphic graphs on four vertices. 

33. Prove Theorem 1.34. 

34. Draw Ferrers diagrams for all the maximal graphic partitions of 6. (Hint: 
Figure 1.3.) 

35. Let 1f = [4, 23 ' 1]. 

a Show that 1f satisfies Criteria (1.19). 

b. Explain why 1f is not graphic. 

36. Prove that 

L(1f) 1fa 

L i1f; = L C(1fi + I, 2). 
i=l i=l 

(Hint: Figure 1.8(a)). 

37. Confirm that the graphs in Figure 1.12 are threshold graphs. 

38. Prove that K" is a threshold graph, n :::: 2. 

39. Prove that, apart from isolated vertices, the complement of a threshold graph 
is a threshold graph. 

40. If T = (V, E) is a tree, prove that it has one fewer edges than vertices. 




