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A sparse statistical model has only a small number of nonzero parameters or 
weights; therefore, it is much easier to estimate and interpret than a dense 
model. Statistical Learning with Sparsity: The Lasso and Generaliza-
tions presents methods that exploit sparsity to help recover the underlying 
signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for 
linear regression and a simple coordinate descent algorithm for its com-
putation. They discuss the application of ℓ1 penalties to generalized linear 
models and support vector machines, cover generalized penalties such as 
the elastic net and group lasso, and review numerical methods for optimiza-
tion. They also present statistical inference methods for fitted (lasso) mod-
els, including the bootstrap, Bayesian methods, and recently developed 
approaches. In addition, the book examines matrix decomposition, sparse 
multivariate analysis, graphical models, and compressed sensing. It con-
cludes with a survey of theoretical results for the lasso.

Features
•	 Explores the many advantages of sparsity
•	 Shows how to effectively estimate parameters using the lasso and 

related methods
•	 Covers both supervised and unsupervised learning problems
•	 Presents first-order numerical methods for solving large-scale 

problems 
•	 Illustrates how compressed sensing is a powerful tool for image 

analysis

In this age of big data, the number of features measured on a person or 
object can be large and might be larger than the number of observations. 
This book shows how the sparsity assumption allows us to tackle these 
problems and extract useful and reproducible patterns from big datasets. 
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Preface

In this monograph, we have attempted to summarize the actively developing
field of statistical learning with sparsity. A sparse statistical model is one
having only a small number of nonzero parameters or weights. It represents a
classic case of “less is more”: a sparse model can be much easier to estimate
and interpret than a dense model. In this age of big data, the number of
features measured on a person or object can be large, and might be larger
than the number of observations. The sparsity assumption allows us to tackle
such problems and extract useful and reproducible patterns from big datasets.

The ideas described here represent the work of an entire community of
researchers in statistics and machine learning, and we thank everyone for
their continuing contributions to this exciting area. We particularly thank our
colleagues at Stanford, Berkeley and elsewhere; our collaborators, and our
past and current students working in this area. These include Alekh Agarwal,
Arash Amini, Francis Bach, Jacob Bien, Stephen Boyd, Andreas Buja, Em-
manuel Candes, Alexandra Chouldechova, David Donoho, John Duchi, Brad
Efron, Will Fithian, Jerome Friedman, Max G’Sell, Iain Johnstone, Michael
Jordan, Ping Li, Po-Ling Loh, Michael Lim, Jason Lee, Richard Lockhart,
Rahul Mazumder, Balasubramanian Narashimhan, Sahand Negahban, Guil-
laume Obozinski, Mee-Young Park, Junyang Qian, Garvesh Raskutti, Pradeep
Ravikumar, Saharon Rosset, Prasad Santhanam, Noah Simon, Dennis Sun,
Yukai Sun, Jonathan Taylor, Ryan Tibshirani,1 Stefan Wager, Daniela Wit-
ten, Bin Yu, Yuchen Zhang, Ji Zhou, and Hui Zou. We also thank our editor
John Kimmel for his advice and support.

Stanford University Trevor Hastie
and Robert Tibshirani
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Tibshirani2, R.J., rather than Tibshirani, R.; the former is Ryan Tibshirani, the latter
is Robert (son and father).
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Chapter 1

Introduction

“I never keep a scorecard or the batting averages. I hate statistics. What
I got to know, I keep in my head.”

This is a quote from baseball pitcher Dizzy Dean, who played in the major
leagues from 1930 to 1947.

How the world has changed in the 75 or so years since that time! Now large
quantities of data are collected and mined in nearly every area of science, en-
tertainment, business, and industry. Medical scientists study the genomes of
patients to choose the best treatments, to learn the underlying causes of their
disease. Online movie and book stores study customer ratings to recommend
or sell them new movies or books. Social networks mine information about
members and their friends to try to enhance their online experience. And
yes, most major league baseball teams have statisticians who collect and ana-
lyze detailed information on batters and pitchers to help team managers and
players make better decisions.

Thus the world is awash with data. But as Rutherford D. Roger (and
others) has said:

“We are drowning in information and starving for knowledge.”
There is a crucial need to sort through this mass of information, and pare
it down to its bare essentials. For this process to be successful, we need to
hope that the world is not as complex as it might be. For example, we hope
that not all of the 30, 000 or so genes in the human body are directly involved
in the process that leads to the development of cancer. Or that the ratings
by a customer on perhaps 50 or 100 different movies are enough to give us a
good idea of their tastes. Or that the success of a left-handed pitcher against
left-handed batters will be fairly consistent for different batters.

This points to an underlying assumption of simplicity. One form of sim-
plicity is sparsity, the central theme of this book. Loosely speaking, a sparse
statistical model is one in which only a relatively small number of parameters
(or predictors) play an important role. In this book we study methods that
exploit sparsity to help recover the underlying signal in a set of data.

The leading example is linear regression, in which we observe N obser-
vations of an outcome variable yi and p associated predictor variables (or
features) xi = (xi1, . . . xip)T . The goal is to predict the outcome from the

1
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predictors, both for actual prediction with future data and also to discover
which predictors play an important role. A linear regression model assumes
that

yi = β0 +
p∑
j=1

xijβj + ei, (1.1)

where β0 and β = (β1, β2, . . . βp) are unknown parameters and ei is an error
term. The method of least squares provides estimates of the parameters by
minimization of the least-squares objective function

minimize
β0,β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβij)2. (1.2)

Typically all of the least-squares estimates from (1.2) will be nonzero. This
will make interpretation of the final model challenging if p is large. In fact, if
p > N , the least-squares estimates are not unique. There is an infinite set of
solutions that make the objective function equal to zero, and these solutions
almost surely overfit the data as well.

Thus there is a need to constrain, or regularize the estimation process. In
the lasso or `1-regularized regression, we estimate the parameters by solving
the problem

minimize
β0,β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβij)2 subject to ‖β‖1 ≤ t (1.3)

where ‖β‖1 =
∑p
j=1 |βj | is the `1 norm of β, and t is a user-specified parameter.

We can think of t as a budget on the total `1 norm of the parameter vector,
and the lasso finds the best fit within this budget.

Why do we use the `1 norm? Why not use the `2 norm or any `q norm? It
turns out that the `1 norm is special. If the budget t is small enough, the lasso
yields sparse solution vectors, having only some coordinates that are nonzero.
This does not occur for `q norms with q > 1; for q < 1, the solutions are
sparse but the problem is not convex and this makes the minimization very
challenging computationally. The value q = 1 is the smallest value that yields
a convex problem. Convexity greatly simplifies the computation, as does the
sparsity assumption itself. They allow for scalable algorithms that can handle
problems with even millions of parameters.

Thus the advantages of sparsity are interpretation of the fitted model and
computational convenience. But a third advantage has emerged in the last
few years from some deep mathematical analyses of this area. This has been
termed the “bet on sparsity” principle:

Use a procedure that does well in sparse problems, since no procedure
does well in dense problems.
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We can think of this in terms of the amount of information N/p per param-
eter. If p� N and the true model is not sparse, then the number of samples N
is too small to allow for accurate estimation of the parameters. But if the true
model is sparse, so that only k < N parameters are actually nonzero in the
true underlying model, then it turns out that we can estimate the parameters
effectively, using the lasso and related methods that we discuss in this book.
This may come as somewhat of a surprise, because we are able to do this even
though we are not told which k of the p parameters are actually nonzero. Of
course we cannot do as well as we could if we had that information, but it
turns out that we can still do reasonably well.
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Figure 1.1 15-class gene expression cancer data: estimated nonzero feature weights
from a lasso-regularized multinomial classifier. Shown are the 254 genes (out of 4718)
with at least one nonzero weight among the 15 classes. The genes (unlabelled) run
from top to bottom. Line segments pointing to the right indicate positive weights,
and to the left, negative weights. We see that only a handful of genes are needed to
characterize each class.

For all of these reasons, the area of sparse statistical modelling is exciting—
for data analysts, computer scientists, and theorists—and practically useful.
Figure 1.1 shows an example. The data consists of quantitative gene expression
measurements of 4718 genes on samples from 349 cancer patients. The cancers
have been categorized into 15 different types such as “Bladder,” “Breast”,
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“CNS,” etc. The goal is to build a classifier to predict cancer class based on
some or all of the 4718 features. We want the classifier to have a low error rate
on independent samples and would prefer that it depend only on a subset of
the genes, to aid in our understanding of the underlying biology.

For this purpose we applied a lasso-regularized multinomial classifier to
these data, as described in Chapter 3. This produces a set of 4718 weights or
coefficients for each of the 15 classes, for discriminating each class from the
rest. Because of the `1 penalty, only some of these weights may be nonzero
(depending on the choice of the regularization parameter). We used cross-
validation to estimate the optimal choice of regularization parameter, and
display the resulting weights in Figure 1.1. Only 254 genes have at least one
nonzero weight, and these are displayed in the figure. The cross-validated
error rate for this classifier is about 10%, so the procedure correctly predicts
the class of about 90% of the samples. By comparison, a standard support
vector classifier had a slightly higher error rate (13%) using all of the features.
Using sparsity, the lasso procedure has dramatically reduced the number of
features without sacrificing accuracy. Sparsity has also brought computational
efficiency: although there are potentially 4718 × 15 ≈ 70, 000 parameters to
estimate, the entire calculation for Figure 1.1 was done on a standard laptop
computer in less than a minute. For this computation we used the glmnet
procedure described in Chapters 3 and 5.

Figure 1.2 shows another example taken from an article by Candès and
Wakin (2008) in the field of compressed sensing. On the left is a megapixel
image. In order to reduce the amount of space needed to store the image,
we represent it in a wavelet basis, whose coefficients are shown in the middle
panel. The largest 25, 000 coefficients are then retained and the rest zeroed
out, yielding the excellent reconstruction in the right image. This all works
because of sparsity: although the image seems complex, in the wavelet basis it
is simple and hence only a relatively small number of coefficients are nonzero.
The original image can be perfectly recovered from just 96, 000 incoherent
measurements. Compressed sensing is a powerful tool for image analysis, and
is described in Chapter 10.

In this book we have tried to summarize the hot and rapidly evolving field
of sparse statistical modelling. In Chapter 2 we describe and illustrate the
lasso for linear regression, and a simple coordinate descent algorithm for its
computation. Chapter 3 covers the application of `1 penalties to generalized
linear models such as multinomial and survival models, as well as support
vector machines. Generalized penalties such as the elastic net and group lasso
are discussed in Chapter 4. Chapter 5 reviews numerical methods for opti-
mization, with an emphasis on first-order methods that are useful for the
large-scale problems that are discussed in this book. In Chapter 6, we dis-
cuss methods for statistical inference for fitted (lasso) models, including the
bootstrap, Bayesian methods and some more recently developed approaches.
Sparse matrix decomposition is the topic of Chapter 7, and we apply these
methods in the context of sparse multivariate analysis in Chapter 8. Graph-
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theory tells us that, if f(t) actually has very low band-
width, then a small number of (uniform) samples will suf-
fice for recovery. As we will see in the remainder of this
article, signal recovery can actually be made possible for a
much broader class of signal models.

INCOHERENCE AND THE SENSING OF SPARSE SIGNALS
This section presents the two fundamental premises underlying
CS: sparsity and incoherence.

SPARSITY
Many natural signals have concise representations when
expressed in a convenient basis. Consider, for example, the
image in Figure 1(a) and its wavelet transform in (b).
Although nearly all the image pixels have nonzero values, the
wavelet coefficients offer a concise summary: most coeffi-
cients are small, and the relatively few large coefficients cap-
ture most of the information.

Mathematically speaking, we have a vector f ∈ Rn (such as
the n-pixel image in Figure 1) which we expand in an orthonor-
mal basis (such as a wavelet basis) � = [ψ1ψ2 · · ·ψn] as follows:

f(t) =
n∑

i=1

xi ψi(t), (2)

where x is the coefficient sequence of f , xi = 〈 f, ψi〉. It will be
convenient to express f as �x (where � is the n × n matrix
with ψ1, . . . , ψn as columns). The implication of sparsity is
now clear: when a signal has a sparse expansion, one can dis-
card the small coefficients without much perceptual loss.
Formally, consider fS(t) obtained by keeping only the terms
corresponding to the S largest values of (xi) in the expansion
(2). By definition, fS := �xS, where here and below, xS is the
vector of coefficients (xi) with all but the largest S set to zero.
This vector is sparse in a strict sense since all but a few of its
entries are zero; we will call S-sparse
such objects with at most S nonzero
entries. Since � is an orthonormal
basis (or “orthobasis”), we have
‖ f − fS‖�2 = ‖x − xS‖�2 , and if x is
sparse or compressible in the sense
that the sorted magnitudes of the (xi)

decay quickly, then x is well approxi-
mated by xS and, therefore, the error
‖ f − fS‖�2 is small. In plain terms,
one can “throw away” a large fraction
of the coefficients without much loss.
Figure 1(c) shows an example where
the perceptual loss is hardly noticeable
from a megapixel image to its approxi-
mation obtained by throwing away
97.5% of the coefficients.

This principle is, of course, what
underlies most modern lossy coders
such as JPEG-2000 [4] and many

others, since a simple method for data compression would be to
compute x from f and then (adaptively) encode the locations
and values of the S significant coefficients. Such a process
requires knowledge of all the n coefficients x, as the locations
of the significant pieces of information may not be known in
advance (they are signal dependent); in our example, they tend
to be clustered around edges in the image. More generally,
sparsity is a fundamental modeling tool which permits efficient
fundamental signal processing; e.g., accurate statistical estima-
tion and classification, efficient data compression, and so on.
This article is about a more surprising and far-reaching impli-
cation, however, which is that sparsity has significant bearings
on the acquisition process itself. Sparsity determines how effi-
ciently one can acquire signals nonadaptively.

INCOHERENT SAMPLING
Suppose we are given a pair (�,�) of orthobases of Rn. The first
basis � is used for sensing the object f as in (1) and the second is
used to represent f . The restriction to pairs of orthobases is not
essential and will merely simplify our treatment.

DEFINITION 1
The coherence between the sensing basis � and the representa-
tion basis � is

μ(�,�) = √
n · max

1≤k, j≤n
|〈ϕk, ψ j〉|. (3)

In plain English, the coherence measures the largest correlation
between any two elements of � and �; see also [5]. If � and �
contain correlated elements, the coherence is large. Otherwise,
it is small. As for how large and how small, it follows from linear
algebra that μ(�,�) ∈ [1,

√
n].

Compressive sampling is mainly concerned with low coher-
ence pairs, and we now give examples of such pairs. In our first
example, � is the canonical or spike basis ϕk(t) = δ(t − k ) and

[FIG1] (a) Original megapixel image with pixel values in the range [0,255] and (b) its
wavelet transform coefficients (arranged in random order for enhanced visibility).
Relatively few wavelet coefficients capture most of the signal energy; many such images
are highly compressible. (c) The reconstruction obtained by zeroing out all the coefficients
in the wavelet expansion but the 25,000 largest (pixel values are thresholded to the range
[0,255]). The difference with the original picture is hardly noticeable. As we describe in
“Undersampling and Sparse Signal Recovery,” this image can be perfectly recovered from
just 96,000 incoherent measurements.

(a) (b)
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Figure 1.2 (a) Original megapixel image with pixel values in the range [0, 255]
and (b) its wavelet transform coefficients (arranged in random order for enhanced
visibility). Relatively few wavelet coefficients capture most of the signal energy; many
such images are highly compressible. (c) The reconstruction obtained by zeroing out
all the coefficients in the wavelet expansion but the 25, 000 largest (pixel values are
thresholded to the range [0, 255]). The differences from the original picture are hardly
noticeable.

ical models and their selection are discussed in Chapter 9 while compressed
sensing is the topic of Chapter 10. Finally, a survey of theoretical results for
the lasso is given in Chapter 11.

We note that both supervised and unsupervised learning problems are dis-
cussed in this book, the former in Chapters 2, 3, 4, and 10, and the latter in
Chapters 7 and 8.

Notation

We have adopted a notation to reduce mathematical clutter. Vectors are col-
umn vectors by default; hence β ∈ Rp is a column vector, and its transpose
βT is a row vector. All vectors are lower case and non-bold, except N -vectors
which are bold, where N is the sample size. For example xj might be the
N -vector of observed values for the jth variable, and y the response N -vector.
All matrices are bold; hence X might represent the N × p matrix of observed
predictors, and Θ a p × p precision matrix. This allows us to use xi ∈ Rp to
represent the vector of p features for observation i (i.e., xTi is the ith row of
X), while xk is the kth column of X, without ambiguity.





Chapter 2

The Lasso for Linear Models

In this chapter, we introduce the lasso estimator for linear regression. We
describe the basic lasso method, and outline a simple approach for its im-
plementation. We relate the lasso to ridge regression, and also view it as a
Bayesian estimator.

2.1 Introduction

In the linear regression setting, we are given N samples {(xi, yi)}Ni=1, where
each xi = (xi1, . . . , xip) is a p-dimensional vector of features or predictors, and
each yi ∈ R is the associated response variable. Our goal is to approximate
the response variable yi using a linear combination of the predictors

η(xi) = β0 +
p∑
j=1

xijβj . (2.1)

The model is parametrized by the vector of regression weights β =
(β1, . . . , βp) ∈ Rp and an intercept (or “bias”) term β0 ∈ R.

The usual “least-squares” estimator for the pair (β0, β) is based on mini-
mizing squared-error loss:

minimize
β0,β

 1
2N

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2 . (2.2)

There are two reasons why we might consider an alternative to the least-
squares estimate. The first reason is prediction accuracy: the least-squares
estimate often has low bias but large variance, and prediction accuracy can
sometimes be improved by shrinking the values of the regression coefficients,
or setting some coefficients to zero. By doing so, we introduce some bias but
reduce the variance of the predicted values, and hence may improve the overall
prediction accuracy (as measured in terms of the mean-squared error). The
second reason is for the purposes of interpretation. With a large number of
predictors, we often would like to identify a smaller subset of these predictors
that exhibit the strongest effects.

7
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This chapter is devoted to discussion of the lasso, a method that combines
the least-squares loss (2.2) with an `1-constraint, or bound on the sum of the
absolute values of the coefficients. Relative to the least-squares solution, this
constraint has the effect of shrinking the coefficients, and even setting some
to zero.1 In this way it provides an automatic way for doing model selection
in linear regression. Moreover, unlike some other criteria for model selection,
the resulting optimization problem is convex, and can be solved efficiently for
large problems.

2.2 The Lasso Estimator

Given a collection of N predictor-response pairs {(xi, yi)}Ni=1, the lasso finds
the solution (β̂0, β̂) to the optimization problem

minimize
β0,β

 1
2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2


subject to

p∑
j=1
|βj | ≤ t.

(2.3)

The constraint
∑p
j=1 |βj | ≤ t can be written more compactly as the `1-norm

constraint ‖β‖1 ≤ t. Furthermore, (2.3) is often represented using matrix-
vector notation. Let y = (y1, . . . , yN ) denote the N -vector of responses, and
X be an N × p matrix with xi ∈ Rp in its ith row, then the optimization
problem (2.3) can be re-expressed as

minimize
β0,β

{
1

2N ‖y− β01−Xβ‖22
}

subject to ‖β‖1 ≤ t,
(2.4)

where 1 is the vector of N ones, and ‖ · ‖2 denotes the usual Euclidean norm
on vectors. The bound t is a kind of “budget”: it limits the sum of the abso-
lute values of the parameter estimates. Since a shrunken parameter estimate
corresponds to a more heavily-constrained model, this budget limits how well
we can fit the data. It must be specified by an external procedure such as
cross-validation, which we discuss later in the chapter.

Typically, we first standardize the predictors X so that each column is
centered ( 1

N

∑N
i=1 xij = 0) and has unit variance ( 1

N

∑N
i=1 x

2
ij = 1). Without

1A lasso is a long rope with a noose at one end, used to catch horses and cattle. In
a figurative sense, the method “lassos” the coefficients of the model. In the original lasso
paper (Tibshirani 1996), the name “lasso” was also introduced as an acronym for “Least
Absolute Selection and Shrinkage Operator.”
Pronunciation: in the US “lasso” tends to be pronounced “lass-oh” (oh as in goat), while in
the UK “lass-oo.” In the OED (2nd edition, 1965): “lasso is pronounced lăsoo by those who
use it, and by most English people too.”
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standardization, the lasso solutions would depend on the units (e.g., feet ver-
sus meters) used to measure the predictors. On the other hand, we typically
would not standardize if the features were measured in the same units. For
convenience, we also assume that the outcome values yi have been centered,
meaning that 1

N

∑N
i=1 yi = 0. These centering conditions are convenient, since

they mean that we can omit the intercept term β0 in the lasso optimization.
Given an optimal lasso solution β̂ on the centered data, we can recover the
optimal solutions for the uncentered data: β̂ is the same, and the intercept β̂0
is given by

β̂0 = ȳ −
p∑
j=1

x̄j β̂j ,

where ȳ and {x̄j}p1 are the original means.2 For this reason, we omit the
intercept β0 from the lasso for the remainder of this chapter.

It is often convenient to rewrite the lasso problem in the so-called La-
grangian form

minimize
β∈Rp

{
1

2N ‖y−Xβ‖22 + λ‖β‖1
}
, (2.5)

for some λ ≥ 0. By Lagrangian duality, there is a one-to-one correspondence
between the constrained problem (2.3) and the Lagrangian form (2.5): for
each value of t in the range where the constraint ‖β‖1 ≤ t is active, there is
a corresponding value of λ that yields the same solution from the Lagrangian
form (2.5). Conversely, the solution β̂λ to problem (2.5) solves the bound
problem with t = ‖β̂λ‖1.

We note that in many descriptions of the lasso, the factor 1/2N appearing
in (2.3) and (2.5) is replaced by 1/2 or simply 1. Although this makes no
difference in (2.3), and corresponds to a simple reparametrization of λ in
(2.5), this kind of standardization makes λ values comparable for different
sample sizes (useful for cross-validation).

The theory of convex analysis tells us that necessary and sufficient condi-
tions for a solution to problem (2.5) take the form

− 1
N
〈xj ,y−Xβ〉+ λsj = 0, j = 1, . . . , p. (2.6)

Here each sj is an unknown quantity equal to sign(βj) if βj 6= 0 and some
value lying in [−1, 1] otherwise—that is, it is a subgradient for the absolute
value function (see Chapter 5 for details). In other words, the solutions β̂
to problem (2.5) are the same as solutions (β̂, ŝ) to (2.6). This system is a
form of the so-called Karush–Kuhn–Tucker (KKT) conditions for problem
(2.5). Expressing a problem in subgradient form can be useful for designing

2This is typically only true for linear regression with squared-error loss; it’s not true, for
example, for lasso logistic regression.
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algorithms for finding its solutions. More details are given in Exercises (2.3)
and (2.4).

As an example of the lasso, let us consider the data given in Table 2.1, taken
from Thomas (1990). The outcome is the total overall reported crime rate per

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city funding hs not-hs college college4 crime rate
1 40 74 11 31 20 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
5 67 72 9 29 24 773
...

...
...

...
...

50 66 67 26 18 16 940

one million residents in 50 U.S cities. There are five predictors: annual police
funding in dollars per resident, percent of people 25 years and older with four
years of high school, percent of 16- to 19-year olds not in high school and not
high school graduates, percent of 18- to 24-year olds in college, and percent
of people 25 years and older with at least four years of college. This small
example is for illustration only, but helps to demonstrate the nature of the
lasso solutions. Typically the lasso is most useful for much larger problems,
including “wide” data for which p� N .

The left panel of Figure 2.1 shows the result of applying the lasso with
the bound t varying from zero on the left, all the way to a large value on
the right, where it has no effect. The horizontal axis has been scaled so that
the maximal bound, corresponding to the least-squares estimates β̃, is one.
We see that for much of the range of the bound, many of the estimates are
exactly zero and hence the corresponding predictor(s) would be excluded from
the model. Why does the lasso have this model selection property? It is due
to the geometry that underlies the `1 constraint ‖β‖1 ≤ t. To understand this
better, the right panel shows the estimates from ridge regression, a technique
that predates the lasso. It solves a criterion very similar to (2.3):

minimize
β0,β

 1
2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2


subject to

p∑
j=1

β2
j ≤ t2.

(2.7)

The ridge profiles in the right panel have roughly the same shape as the lasso
profiles, but are not equal to zero except at the left end. Figure 2.2 contrasts
the two constraints used in the lasso and ridge regression. The residual sum
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Figure 2.1 Left: Coefficient path for the lasso, plotted versus the `1 norm of the
coefficient vector, relative to the norm of the unrestricted least-squares estimate β̃.
Right: Same for ridge regression, plotted against the relative `2 norm.

β
^

β
^2

. .β

1

β 2

β
1

β

Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions |β1|+|β2| ≤ t and β2

1 +β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the residual-sum-of-squares function. The
point β̂ depicts the usual (unconstrained) least-squares estimate.
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Table 2.2 Results from analysis of the crime data. Left panel shows the least-squares
estimates, standard errors, and their ratio (Z-score). Middle and right panels show
the corresponding results for the lasso, and the least-squares estimates applied to the
subset of predictors chosen by the lasso.

LS coef SE Z Lasso SE Z LS SE Z
funding 10.98 3.08 3.6 8.84 3.55 2.5 11.29 2.90 3.9
hs -6.09 6.54 -0.9 -1.41 3.73 -0.4 -4.76 4.53 -1.1
not-hs 5.48 10.05 0.5 3.12 5.05 0.6 3.44 7.83 0.4
college 0.38 4.42 0.1 0.0 - - 0.0 - -
college4 5.50 13.75 0.4 0.0 - - 0.0 - -

of squares has elliptical contours, centered at the full least-squares estimates.
The constraint region for ridge regression is the disk β2

1 + β2
2 ≤ t2, while that

for lasso is the diamond |β1|+|β2| ≤ t. Both methods find the first point where
the elliptical contours hit the constraint region. Unlike the disk, the diamond
has corners; if the solution occurs at a corner, then it has one parameter
βj equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges, and faces; there are many more opportunities for
the estimated parameters to be zero (see Figure 4.2 on page 58.)

We use the term sparse for a model with few nonzero coefficients. Hence a
key property of the `1-constraint is its ability to yield sparse solutions. This
idea can be applied in many different statistical models, and is the central
theme of this book.

Table 2.2 shows the results of applying three fitting procedures to the
crime data. The lasso bound t was chosen by cross-validation, as described
in Section 2.3. The left panel corresponds to the full least-squares fit, while
the middle panel shows the lasso fit. On the right, we have applied least-
squares estimation to the subset of three predictors with nonzero coefficients
in the lasso. The standard errors for the least-squares estimates come from the
usual formulas. No such simple formula exists for the lasso, so we have used
the bootstrap to obtain the estimate of standard errors in the middle panel
(see Exercise 2.6; Chapter 6 discusses some promising new approaches for
post-selection inference). Overall it appears that funding has a large effect,
probably indicating that police resources have been focused on higher crime
areas. The other predictors have small to moderate effects.

Note that the lasso sets two of the five coefficients to zero, and tends to
shrink the coefficients of the others toward zero relative to the full least-squares
estimate. In turn, the least-squares fit on the subset of the three predictors
tends to expand the lasso estimates away from zero. The nonzero estimates
from the lasso tend to be biased toward zero, so the debiasing in the right
panel can often improve the prediction error of the model. This two-stage
process is also known as the relaxed lasso (Meinshausen 2007).
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2.3 Cross-Validation and Inference

The bound t in the lasso criterion (2.3) controls the complexity of the model;
larger values of t free up more parameters and allow the model to adapt
more closely to the training data. Conversely, smaller values of t restrict the
parameters more, leading to sparser, more interpretable models that fit the
data less closely. Forgetting about interpretability, we can ask for the value
of t that gives the most accurate model for predicting independent test data
from the same population. Such accuracy is called the generalization ability of
the model. A value of t that is too small can prevent the lasso from capturing
the main signal in the data, while too large a value can lead to overfitting.
In this latter case, the model adapts to the noise as well as the signal that is
present in the training data. In both cases, the prediction error on a test set
will be inflated. There is usually an intermediate value of t that strikes a good
balance between these two extremes, and in the process, produces a model
with some coefficients equal to zero.

In order to estimate this best value for t, we can create artificial training
and test sets by splitting up the given dataset at random, and estimating
performance on the test data, using a procedure known as cross-validation.
In more detail, we first randomly divide the full dataset into some number of
groups K > 1. Typical choices of K might be 5 or 10, and sometimes N . We
fix one group as the test set, and designate the remaining K − 1 groups as
the training set. We then apply the lasso to the training data for a range of
different t values, and we use each fitted model to predict the responses in the
test set, recording the mean-squared prediction errors for each value of t. This
process is repeated a total of K times, with each of the K groups getting the
chance to play the role of the test data, with the remaining K−1 groups used
as training data. In this way, we obtain K different estimates of the prediction
error over a range of values of t. These K estimates of prediction error are
averaged for each value of t, thereby producing a cross-validation error curve.

Figure 2.3 shows the cross-validation error curve for the crime-data ex-
ample, obtained using K = 10 splits. We plot the estimated mean-squared
prediction error versus the relative bound t̃ = ‖β̂(t)‖1/‖β̃‖1, where the esti-
mate β̂(t) correspond to the lasso solution for bound t and β̃ is the ordinary
least-squares solution. The error bars in Figure 2.3 indicate plus and minus
one standard error in the cross-validated estimates of the prediction error. A
vertical dashed line is drawn at the position of the minimum (t̃ = 0.56) while
a dotted line is drawn at the “one-standard-error rule” choice (t̃ = 0.03). This
is the smallest value of t yielding a CV error no more than one standard error
above its minimum value. The number of nonzero coefficients in each model is
shown along the top. Hence the model that minimizes the CV error has three
predictors, while the one-standard-error-rule model has just one.

We note that the cross-validation process above focused on the bound
parameter t. One can just as well carry out cross-validation in the Lagrangian
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Figure 2.3 Cross-validated estimate of mean-squared prediction error, as a function
of the relative `1 bound t̃ = ‖β̂(t)‖1/‖β̃‖1. Here β̂(t) is the lasso estimate correspond-
ing to the `1 bound t and β̃ is the ordinary least-squares solution. Included are the
location of the minimum, pointwise standard-error bands, and the “one-standard-
error” location. The standard errors are large since the sample size N is only 50.

form (2.5), focusing on the parameter λ. The two methods will give similar but
not identical results, since the mapping between t and λ is data-dependent.

2.4 Computation of the Lasso Solution

The lasso problem is a convex program, specifically a quadratic program (QP)
with a convex constraint. As such, there are many sophisticated QP meth-
ods for solving the lasso. However there is a particularly simple and effective
computational algorithm, that gives insight into how the lasso works. For
convenience, we rewrite the criterion in Lagrangian form:

minimize
β∈Rp

 1
2N

N∑
i=1

(yi −
p∑
j=1

xijβj)2 + λ

p∑
j=1
|βj |

 . (2.8)

As before, we will assume that both yi and the features xij have been stan-
dardized so that 1

N

∑
i yi = 0, 1

N

∑
i xij = 0, and 1

N

∑
i x

2
ij = 1. In this

case, the intercept term β0 can be omitted. The Lagrangian form is especially
convenient for numerical computation of the solution by a simple procedure
known as coordinate descent.
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λSλ(x)

x(0, 0)

Figure 2.4 Soft thresholding function Sλ(x) = sign(x) (|x| − λ)+ is shown in blue
(broken lines), along with the 45◦ line in black.

2.4.1 Single Predictor: Soft Thresholding

Let’s first consider a single predictor setting, based on samples {(zi, yi)}Ni=1
(for convenience we have renamed zi to be one the xij). The problem then is
to solve

minimize
β

{
1

2N

N∑
i=1

(yi − ziβ)2 + λ|β|
}
. (2.9)

The standard approach to this univariate minimization problem would be to
take the gradient (first derivative) with respect to β, and set it to zero. There
is a complication, however, because the absolute value function |β| does not
have a derivative at β = 0. However we can proceed by direct inspection of
the function (2.9), and find that

β̂ =


1
N 〈z,y〉 − λ if 1

N 〈z,y〉 > λ,

0 if 1
N |〈z,y〉| ≤ λ,

1
N 〈z,y〉+ λ if 1

N 〈z,y〉 < −λ.
(2.10)

(Exercise 2.2), which we can write succinctly as

β̂ = Sλ
( 1
N 〈z,y〉

)
. (2.11)

Here the soft-thresholding operator

Sλ(x) = sign(x)
(
|x| − λ

)
+ (2.12)

translates its argument x toward zero by the amount λ, and sets it to zero
if |x| ≤ λ.3 See Figure 2.4 for an illustration. Notice that for standardized
data with 1

N

∑
i z

2
i = 1, (2.11) is just a soft-thresholded version of the usual

least-squares estimate β̃ = 1
N 〈z,y〉. One can also derive these results using

the notion of subgradients (Exercise 2.3).
3t+ denotes the positive part of t ∈ R, equal to t if t > 0 and 0 otherwise.
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2.4.2 Multiple Predictors: Cyclic Coordinate Descent

Using this intuition from the univariate case, we can now develop a simple
coordinatewise scheme for solving the full lasso problem (2.5). More precisely,
we repeatedly cycle through the predictors in some fixed (but arbitrary) order
(say j = 1, 2, . . . , p), where at the jth step, we update the coefficient βj by
minimizing the objective function in this coordinate while holding fixed all
other coefficients {β̂k, k 6= j} at their current values.

Writing the objective in (2.5) as

1
2N

N∑
i=1

(yi −
∑
k 6=j

xikβk − xijβj)2 + λ
∑
k 6=j
|βk|+ λ|βj |, (2.13)

we see that solution for each βj can be expressed succinctly in terms of the
partial residual r(j)

i = yi −
∑
k 6=j xikβ̂k, which removes from the outcome the

current fit from all but the jth predictor. In terms of this partial residual, the
jth coefficient is updated as

β̂j = Sλ
(

1
N 〈xj , r(j)〉

)
. (2.14)

Equivalently, the update can be written as

β̂j ← Sλ
(
β̂j + 1

N 〈xj , r〉
)
, (2.15)

where ri = yi −
∑p
j=1 xij β̂j are the full residuals (Exercise 2.4). The overall

algorithm operates by applying this soft-thresholding update (2.14) repeatedly
in a cyclical manner, updating the coordinates of β̂ (and hence the residual
vectors) along the way.

Why does this algorithm work? The criterion (2.5) is a convex function of
β and so has no local minima. The algorithm just described corresponds to
the method of cyclical coordinate descent, which minimizes this convex objec-
tive along each coordinate at a time. Under relatively mild conditions (which
apply here), such coordinate-wise minimization schemes applied to a convex
function converge to a global optimum. It is important to note that some
conditions are required, because there are instances, involving nonseparable
penalty functions, in which coordinate descent schemes can become “jammed.”
Further details are in given in Chapter 5.

Note that the choice λ = 0 in (2.5) delivers the solution to the ordinary
least-squares problem. From the update (2.14), we see that the algorithm
does a univariate regression of the partial residual onto each predictor, cycling
through the predictors until convergence. When the data matrix X is of full
rank, this point of convergence is the least-squares solution. However, it is not
a particularly efficient method for computing it.

In practice, one is often interested in finding the lasso solution not just for
a single fixed value of λ, but rather the entire path of solutions over a range
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of possible λ values (as in Figure 2.1). A reasonable method for doing so is to
begin with a value of λ just large enough so that the only optimal solution is
the all-zeroes vector. As shown in Exercise 2.1, this value is equal to λmax =
maxj | 1

N 〈xj ,y〉|. Then we decrease λ by a small amount and run coordinate
descent until convergence. Decreasing λ again and using the previous solution
as a “warm start,” we then run coordinate descent until convergence. In this
way we can efficiently compute the solutions over a grid of λ values. We refer
to this method as pathwise coordinate descent.

Coordinate descent is especially fast for the lasso because the coordinate-
wise minimizers are explicitly available (Equation (2.14)), and thus an iter-
ative search along each coordinate is not needed. Secondly, it exploits the
sparsity of the problem: for large enough values of λ most coefficients will be
zero and will not be moved from zero. In Section 5.4, we discuss computational
hedges for guessing the active set, which speed up the algorithm dramatically.

Homotopy methods are another class of techniques for solving the lasso.
They produce the entire path of solutions in a sequential fashion, starting at
zero. This path is actually piecewise linear, as can be seen in Figure 2.1 (as a
function of t or λ). The least angle regression (LARS) algorithm is a homotopy
method that efficiently constructs the piecewise linear path, and is described
in Chapter 5.

2.4.3 Soft-Thresholding and Orthogonal Bases

The soft-thresholding operator plays a central role in the lasso and also in
signal denoising. To see this, notice that the coordinate minimization scheme
above takes an especially simple form if the predictors are orthogonal, mean-
ing that 1

N 〈xj ,xk〉 = 0 for each j 6= k. In this case, the update (2.14) sim-
plifies dramatically, since 1

N 〈xj , r(j)〉 = 1
N 〈xj ,y〉 so that β̂j is simply the

soft-thresholded version of the univariate least-squares estimate of y regressed
against xj . Thus, in the special case of an orthogonal design, the lasso has an
explicit closed-form solution, and no iterations are required.

Wavelets are a popular form of orthogonal bases, used for smoothing and
compression of signals and images. In wavelet smoothing one represents the
data in a wavelet basis, and then denoises by soft-thresholding the wavelet
coefficients. We discuss this further in Section 2.10 and in Chapter 10.

2.5 Degrees of Freedom

Suppose we have p predictors, and fit a linear regression model using only a
subset of k of these predictors. Then if these k predictors were chosen without
regard to the response variable, the fitting procedure “spends” k degrees of
freedom. This is a loose way of saying that the standard test statistic for testing
the hypothesis that all k coefficients are zero has a Chi-squared distribution
with k degrees of freedom (with the error variance σ2 assumed to be known)
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However if the k predictors were chosen using knowledge of the response
variable, for example to yield the smallest training error among all subsets of
size k, then we would expect that the fitting procedure spends more than k
degrees of freedom. We call such a fitting procedure adaptive, and clearly the
lasso is an example of one.

Similarly, a forward-stepwise procedure in which we sequentially add the
predictor that most decreases the training error is adaptive, and we would
expect that the resulting model uses more than k degrees of freedom after k
steps. For these reasons and in general, one cannot simply count as degrees
of freedom the number of nonzero coefficients in the fitted model. However, it
turns out that for the lasso, one can count degrees of freedom by the number
of nonzero coefficients, as we now describe.

First we need to define precisely what we mean by the degrees of freedom
of an adaptively fitted model. Suppose we have an additive-error model, with

yi = f(xi) + εi, i = 1, . . . , N, (2.16)

for some unknown f and with the errors εi iid (0, σ2). If the N sample pre-
dictions are denoted by ŷ, then we define

df(ŷ) : = 1
σ2

N∑
i=1

Cov
(
ŷi, yi

)
. (2.17)

The covariance here is taken over the randomness in the response vari-
ables {yi}Ni=1 with the predictors held fixed. Thus, the degrees of freedom
corresponds to the total amount of self-influence that each response measure-
ment has on its prediction. The more the model fits—that is, adapts—to the
data, the larger the degrees of freedom. In the case of a fixed linear model,
using k predictors chosen independently of the response variable, it is easy
to show that df(ŷ) = k (Exercise 2.7). However, under adaptive fitting, it is
typically the case that the degrees of freedom is larger than k.

Somewhat miraculously, one can show that for the lasso, with a fixed
penalty parameter λ, the number of nonzero coefficients kλ is an unbiased esti-
mate of the degrees of freedom4 (Zou, Hastie and Tibshirani 2007, Tibshirani2
and Taylor 2012). As discussed earlier, a variable-selection method like
forward-stepwise regression uses more than k degrees of freedom after k steps.
Given the apparent similarity between forward-stepwise regression and the
lasso, how can the lasso have this simple degrees of freedom property? The
reason is that the lasso not only selects predictors (which inflates the degrees
of freedom), but also shrinks their coefficients toward zero, relative to the
usual least-squares estimates. This shrinkage turns out to be just the right

4An even stronger statement holds for the LAR path, where the degrees of freedom after
k steps is exactly k, under some conditions on X. The LAR path relates closely to the lasso,
and is described in Section 5.6.
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amount to bring the degrees of freedom down to k. This result is useful be-
cause it gives us a qualitative measure of the amount of fitting that we have
done at any point along the lasso path.

In the general setting, a proof of this result is quite difficult. In the special
case of an orthogonal design, it is relatively easy to prove, using the fact
that the lasso estimates are simply soft-thresholded versions of the univariate
regression coefficients for the orthogonal design. We explore the details of this
argument in Exercise 2.8. This idea is taken one step further in Section 6.3.1
where we describe the covariance test for testing the significance of predictors
in the context of the lasso.

2.6 Uniqueness of the Lasso Solutions

We first note that the theory of convex duality can be used to show that when
the columns of X are in general position, then for λ > 0 the solution to the
lasso problem (2.5) is unique. This holds even when p ≥ N , although then the
number of nonzero coefficients in any lasso solution is at most N (Rosset, Zhu
and Hastie 2004, Tibshirani2 2013). Now when the predictor matrix X is not of
full column rank, the least squares fitted values are unique, but the parameter
estimates themselves are not. The non-full-rank case can occur when p ≤ N
due to collinearity, and always occurs when p > N . In the latter scenario,
there are an infinite number of solutions β̂ that yield a perfect fit with zero
training error. Now consider the lasso problem in Lagrange form (2.5) for
λ > 0. As shown in Exercise 2.5, the fitted values Xβ̂ are unique. But it
turns out that the solution β̂ may not be unique. Consider a simple example
with two predictors x1 and x2 and response y, and suppose the lasso solution
coefficients β̂ at λ are (β̂1, β̂2). If we now include a third predictor x3 = x2
into the mix, an identical copy of the second, then for any α ∈ [0, 1], the vector
β̃(α) = (β̂1, α · β̂2, (1 − α) · β̂2) produces an identical fit, and has `1 norm
‖β̃(α)‖1 = ‖β̂‖1. Consequently, for this model (in which we might have either
p ≤ N or p > N), there is an infinite family of solutions.

In general, when λ > 0, one can show that if the columns of the model
matrix X are in general position, then the lasso solutions are unique. To be
precise, we say the columns {xj}pj=1 are in general position if any affine sub-
space L ⊂ RN of dimension k < N contains at most k + 1 elements of the
set {±x1,±x2, . . . ± xp}, excluding antipodal pairs of points (that is, points
differing only by a sign flip). We note that the data in the example in the
previous paragraph are not in general position. If the X data are drawn from
a continuous probability distribution, then with probability one the data are
in general position and hence the lasso solutions will be unique. As a re-
sult, non-uniqueness of the lasso solutions can only occur with discrete-valued
data, such as those arising from dummy-value coding of categorical predic-
tors. These results have appeared in various forms in the literature, with a
summary given by Tibshirani2 (2013).

We note that numerical algorithms for computing solutions to the lasso will


