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Preface

This is a textbook for a course that does not exist. Like the myths that are
busted in Chapter 3, that statement has some truth to it. As Obi Wan Kenobi
would say, it is true “from a certain point of view.” There are a number of
existing courses with Sports Science and Sports Analytics in the titles, created
by intrepid professors venturing into the unknown. The topics and emphases
of such courses vary dramatically, so that there is no consensus on what a
course in Sports Science and/or Sports Analytics should be.

There are conferences on sports analytics. The MIT/ESPN Sloan Sports
Analytics Conferences are graced with outstanding speakers, and the demand
for tickets grows exponentially. The topics at a conference can range from
Moneyball to marketing strategies, management strategies or technological
breakthroughs. Regional conferences such as the Carolina Sports Analytics
Meeting provide support for the increasingly large number of faculty and
students doing research in sports-related areas.

To use a golfing analogy, writing a book like this is like hitting a drive
at a driving range; there are many directions you can go without going out
of bounds. At the driving range, I pick out a small target to focus on, and
that is what I have done here. I have chosen a sample of topics that I know
something about and that I find very interesting. Ideally, users of this book
will have enough to choose from to suit whichever version of a sports course
is being run.

The course that I have taught at Roanoke College since 1988 is a mix
of physics, physiology, mathematics, and statistics. The order (and level of
emphasis) of the topics has changed over the years; this book reflects the
current status of my course. It is, admittedly, an eclectic mix of topics (at the
driving range, I may aim at one target, but I do tend to spray balls all over the
range). I hope to provide ideas and resources to help students launch projects.
An important part of my course is the term project, and I have almost always
been pleasantly surprised at the quality of work done in a short period of time.

I suspect that the high quality of work is due to the students’ high level
of motivation; not from any talents of mine, but because many students (of
both genders) find it exciting to think about sports and to complete a research
agenda. Sports problems are easy to create and state, even for students who
do not live sports 24/7. Sports are part of their culture and knowledge base,
and the opportunity to be an expert on some area of sports is invigorating.

xiii



xiv Preface

This should be the primary reason for the growth of sports courses: the topic
provides intrinsic motivation for students to do their best work.

This, as I said, is a textbook. That fact alters the literary qualities of
the writing. My intention is for it to be easy and enjoyable to read, but
examples and exercises necessarily interrupt the normal flow of text. As well,
the exercises guide students to some very interesting results, so that some of
the best discoveries about sports may be hiding in the exercises. I encourage
you to look for fun facts in the exercises.

The choice of mathematical level is problematic for a book like this. Some
of my favorite results require calculus or even differential equations for a full
explanation, but I do not want to narrow the audience to the mathematically
advanced. I have split the difference on calculus. I am not assuming that you
know calculus, but I will show you some of the things that calculus can do
for you. Those of you who have taken calculus can read the “calculus box”
sections in the text and work the exercises labeled as calculus exercises. If you
have not taken calculus, simply navigate around those well-marked areas of
the book.

The extent to which a background in probability and statistics is required
is more difficult to say. Sports analytics relies heavily on sound statistical rea-
soning. Statistical “common sense” is assumed throughout, but the details of
tests and calculations are all provided. Similarly, a familiarity with the ideas
of computing is assumed, but no programming is required. The reader’s expe-
rience will be greatly enhanced by frequent use of the internet, spreadsheets,
and calculations.

I should admit that I like to read books; I enjoy holding physical books.
On the other hand, I now buy most of my books and music in digital format.
And I am slowly allowing myself to stream a movie or music online and let
it slip away without claiming possession. The point of this ramble is that
while I recognize that the future of sports research is digital with remote
access, this book has a fairly standard format. There will be a website at
www.roanoke.edu/mcsp/minton/SportsMath.html (I know, I’m showing my
age by posting a url that will change. A search for “Minton Sports Math”
should do it, but you don’t need me to tell you that). I’ll post links, references,
notes, and anything else that comes to mind that could be useful and does
not fit the classic book mold. Ideally, part of the site will even be wiki-like.

In the last thirty years, data collection has progressed from repeated view-
ings of grainy videos to nearly continuous data streaming from sensors at-
tached to every part of an athlete, from Bill James painstakingly copying box
score numbers from The Sporting News to a one-minute online search that
lists the top fifty hitting streaks in MLB history. My hope is that this book
opens up some of the astounding possibilities of sports research, while helping
you learn more about the games you enjoy.

This book would not exist without the encouragement of my editor, Bob
Ross, who over the years has furthered my career in multiple ways. Thanks,
Bob! My Roanoke College family has provided support in several ways. Dave

http://www.roanoke.edu/mcsp/minton/SportsMath.html


Preface xv

Taylor has listened to countless musings and rants on all aspects of the book,
and provided good counsel at all times. His assistance with the joys of TeX
is invaluable. Adam Childers provided much-needed statistical backing, plus
hours of enjoyable sports talk. Thanks to Karin Saoub and Chris Lee for their
assistance. The athletic department, especially Ryan Pflugrad, Matt McGuire,
Page Moir, Scott Allison, and Chris Kilcoyne are great to work with. An
important chunk of the time to do this enjoyable work was provided by the
M. Paul Capp and Constance Whitehead Endowed Chair, for which I am very
grateful. Paul is a great supporter of education, especially in mathematics and
physics. Thanks to Dean Richard Smith for his support; it is very cool to get to
cite my Dean’s publication in this book! Finally, to my wife Jan and children
Kelly and Greg, who deal with me in writing mode, which is even grumpier
than usual: thanks for being who you are, and for your love.

Dr. Roland Minton
MCSP Department
Roanoke College
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Chapter 1

Projectile Motion

Introduction

Basketball star Stephen Curry launches a
3-point shot. As the ball traces its high arc
toward the basket, fans rise to their feet in
anticipation. Will it go in? Is it a little short?
Similar tension accompanies a Jordan Spieth
tee shot, an Andy Murray passing shot, a
long football pass by Peyton Manning or Li-
onel Messi, or a long fly ball by Mike Trout.
We will analyze the flights of balls in this
chapter as we explore the area of physics
known as mechanics.

Along the way, we will answer such ques-
tions as: How does Blake Griffin hang in the
air when dunking? What is the optimal angle
to shoot a free throw? Why do golf balls have
dimples? Does a knuckleball really dance?
The answers are to be found in the funda-
mentals of physics.

Figuring with Newton

Sir Isaac Newton (1643-1727) constructed a framework for the analysis of
objects in motion. The second of his three Laws of Motion is the launching
point for most of our investigations in this chapter. The shorthand version of
Newton’s Second Law is

F = ma

where F is the sum of all forces acting on an object, m is the object’s mass,
and a is the acceleration of the object. One of the most remarkable aspects of
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Newton’s Second Law is that it can also be written as F = ma, where F and
a appear in bold to indicate that they are multidimensional vector quantities.
We will return to this form of the equation when we look at motion in two
and three dimensions. The mass m is a scalar (real number) that is related
to weight: for earthbound sports, weight is approximately equal to mass times
the gravitational constant g.

To keep it simple, let’s start with one-dimensional motion; vertical motion,
to be precise. In this case, the object’s position can be tracked by its height h
above some reference point (e.g., the ground). We define velocity as the rate
of change of position with respect to time. At a constant speed, this means

that velocity equals change in height divided by change in time: v =
∆h

∆t
. This

gets complicated when velocity is not constant. In general,

Average velocity =
∆h

∆t

and, for small time intervals, (instantaneous) velocity is approximately equal

to average velocity: v ≈ ∆h

∆t
. With calculus, we can simply say that velocity

is the derivative of height. Either way, note that v can be negative (if height
is decreasing) or positive (if height is increasing). The acceleration a of the

object is, in turn, the rate of change of velocity. Then a ≈ ∆v

∆t
and acceleration

is the derivative of velocity.

Example 1.1 Suppose a ball falls from a height of 50 meters. If gravity is
the only force on the ball, find the velocity of the ball after t = 1 second and
t = 1.5 seconds.
Solution. For most sports situations, we can assume that the acceleration due
to gravity is a constant −g with g ≈ 9.8 m/s2 or g ≈ 32 ft/s2. An acceleration
of 9.8 m/s2 in the negative direction means that in every second the velocity
decreases by 9.8 m/s. Assuming that the ball starts with velocity 0, then at
t = 1 second the velocity has decreased to −9.8 m/s. In the next half-second,
the velocity decreases by 0.5(9.8) m/s = 4.9 m/s. At time t = 1.5 s the velocity
has decreased to (−9.8 − 4.9) m/s = −14.7 m/s. The ideas from this basic
example will be used again for the more complicated situation of Figure 1.9.

Speed is defined as the absolute value of velocity. In Example 1.1 above, at
time t = 1 the ball’s velocity is −9.8 m/s but its speed is 9.8 m/s (downward).

Notice that Example 1.1 did not ask for heights. Because the ball’s velocity
is changing, the calculation of position from velocity requires more than mul-
tiplying velocity by time. Fortunately, calculus gives us some simple formulas
to use, shown below in Table 1.1.

In Example 1.1, we have c = −g, v0 = 0, and p0 = 50, so the height at
time t is −4.9t2 + 50 m. At t = 1, the ball is at height −4.9 + 50 m = 45.1 m,
while at t = 1.5 the ball is at height −4.9(1.5)2 + 50 m = 38.975 m.
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TABLE 1.1: Formulas for Constant Acceleration

acceleration a = c
velocity v = ct+ v0
position p = 1

2ct
2 + v0t+ p0

Hangin’ with MJ: 1-D Motion

Using the equations in Table 1.1, we can discover an interesting fact about
vertical motion. We start with a straightforward calculation.

Example 1.2 A man jumps from the ground with an initial velocity of 16
ft/s, under the force of gravity. (a) How long does he stay in the air? (b) How
high does he go?
Solution. We use Table 1.1 with c = −32, v0 = 16, and p0 = 0. (Note
that gravity pulls in the negative direction, while the jump is in the positive
direction.) Then velocity is v = −32t+16 ft/s and position is h = −16t2 +16t
ft. Now, let’s decipher the questions being asked. (a) What does “in the air”
mean? He is in the air from launch time (height 0) to landing time (height
0). Both times occur at height 0, when h = −16t2 + 16t = 0. So, solve this
equation! If −16t(t − 1) = 0, then t = 0 or t = 1. He launches at t = 0 and
lands at t = 1, hence is in the air for 1 second. (b) At the top of a jump,
velocity is 0: no longer going up, not yet coming down. This occurs when
v = −32t + 16 = 0 or t = 1

2 . Now that we know when he reaches his peak,
we can determine his height using the position function. The height at time

t = 1
2 is h = −16

(
1
2

)2
+ 16

(
1
2

)
= −4 + 8 = 4 feet.

The solution of Example 1.2 follows a pattern that you should use in most
such problems. First, get the equations of motion by filling in the constants in
Table 1.1. Then, solve one of the equations for time t based on the situation
(e.g., how long the object is in the air, or when it reaches its peak). Finally,
substitute this time value into another equation to find the quantity of interest.

FIGURE 1.1: Jump

The 48-inch jump of Example 1.2 is in leg-
endary leaper status, up there with Michael
Jordan and Blake Griffin. But, why do these
prodigious leapers seem to hang in the air?
One reason is that all objects hang in the air.
The graph of height versus time in Figure 1.1
and Table 1.2 below show the height for the
jumper in Example 1.2 at equal quarter marks
in time.

Notice that from time t = 1/4 to t = 3/4 (which is half of the time of the
jump) the height is 3 feet or above (with a peak height of 4 feet). That is,
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TABLE 1.2: Heights and Times for Jump

Time (s) Height (ft)
0 0

1/4 3
1/2 4
3/4 3
1 0

half the time is spent in the top one-quarter of the jump! The speed
is smallest at the top of the flight, so the object “hangs” at the top.

A second reason that great athletes can appear to defy gravity has to do
with center of mass. The center of mass is where the sums of mass-times-
distance quantities balance. For a standing human being, it is not far from the
geometric center of the body. Newton’s equations track the center of mass of
the object in flight. Figure 1.1 does not show a body in flight, but the path of
a single point. That point is the center of mass of the person. (Which means
that a “height” of 0 does not actually mark the location of the ground; it
marks the location of the center of mass of the object at launch time.) While
the dunker’s center of mass is tracking the nice parabola shown, he is free to
pull up his legs, bob his head, and extend an arm in entertaining ways that
may cause an individual body part such as the head to remain at the same
height for a noticeable amount of time.

Raining 3’s with Steph: 2-D Motion

Let’s return to Stephen Curry’s 3-point shot. We can analyze its flight with
Newton’s Second Law, but the fact that the ball now moves both horizontally
and vertically complicates the calculations.

From nba.com/Stats, we can get an idea of the location of Curry’s shot. In
2014-15, only 79 of Curry’s 618 3-pointers were from the corners. (Remarkably,
he made well over 40% of his shots from every 3-point zone and 62% from the
left corner, plus an outrageous 91% from the left corner during the playoffs.)
Most of his shots were from beyond the arc that is 23.75 feet from the basket.
Let’s say his shot is from 25 feet away. Align the x-axis horizontally from
Curry to the basket, and the y-axis vertically.

FIGURE 1.2: Velocity

We will assume that Curry’s impeccable form
keeps the ball from curving left or right. Newton’s
Second Law is the vector equation F = ma where
the vectors F and a have two components. That is,
the acceleration has a horizontal component ax and
a vertical component ay. Assuming that gravity

http://www.nba.com/Stats
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is the only force, then ay = −g as before, and ax = 0 (no forces acting
horizontally). This allows us to separate the x- and y-equations. To use Table
1.1, we need the initial velocities and initial positions. We assume that p0x = 0
ft for convenience and p0y = 7 ft (assuming the ball is released from a height
of 7 feet). If the ball is launched with speed 30 ft/s at an angle of 50 degrees,
then v0x and v0y are obtained from the triangle in Figure 1.2.

Using basic trigonometry, we get initial velocities v0x = 30 cos(50◦) ft/s
and v0y = 30 sin(50◦) ft/s, or v0x ≈ 19.28 ft/s and v0y ≈ 22.98 ft/s. Pulling
this all together, we have x ≈ 19.28t and y ≈ −16t2 + 22.98t+ 7.

Example 1.3 Is this shot good or not?
Solution. In this case, a perfect shot would pass through x = 25 and y = 10
(the height of the basket). We will solve for t in one equation and plug into
the other equation, but that can be done in two ways. For reasons you will
see, it is more convenient to start with the y-equation. We want y = 10 and so
solve −16t2 + 22.98t+ 7 = 10 for t. There are two solutions, one representing
the ball rising up through the height y = 10 and the other representing the
ball dropping through the height y = 10; the second solution is clearly the
one of interest. We get t ≈ 1.29 s. If the shot is perfect, then at this t-value
we get x = 25 (be sure this makes sense to you!). Instead, our equation gives
x ≈ 24.90 feet. Not perfect, but is this close enough? The center of the basket
is at x = 25, so x = 24.90 represents 0.1 foot or 1.2 inches from the center.
The basket has diameter 18 inches and the ball has diameter 9.5 inches, so
the ball can move a little over 4 inches from the center and still be inside the
basket. (This assumes that the shot is exactly on line.) Count the three!

The work in Example 1.3 does not fully prove that the shot is good. Can
you think of what is missing?

Even if the center of the ball (theoretically) passes inside the basket, in
real life if the trajectory of the ball is too flat some portion of the ball will
hit the rim. You will show in exercise 1.41 that the ball in Example 1.3 enters
the basket at an angle of about 43 degrees, more than steep enough to safely
pass through the basket.

We can now develop a method to determine the best angle at which to
shoot a free throw. An important part of our interpretation of the numbers
in Example 1.3 is the margin of error inherent in playing with a ball that
is smaller than the basket. You could imagine decreasing the initial speed
from 30 ft/s until the shot is no longer good; call this speed s1. Then find the
maximum speed s2 for which the shot is good. For the angle 50 degrees, s2−s1
is the margin of error in speed. The bigger the margin of error, the better,
since the shooter does not have to be as precise with the launch speed. Peter
Brancazio has done this study and found that a free throw angle of about 49
degrees gives the largest margin of error. We will explore an interesting aspect
of this angle in exercise 1.9.


