TEXTBOOKS IN MATHEMATICS

SPORTS MATH

An Introductory Course in the Mathematics of Sports Science and Sports Analytics

Roland B. Minton

CRC Press
Taylor \& Francis Group

SPORTS MATH

An Introductory Course in the Mathematics of Sports Science and Sports Analytics

Series Editors: Al Boggess and Ken Rosen

PUBLISHED TITLES

ABSTRACT ALGEBRA: AN INTERACTIVE APPROACH, SECOND EDITION
William Paulsen
ABSTRACT ALGEBRA: AN INQUIRY-BASED APPROACH
Jonathan K. Hodge, Steven Schlicker, and Ted Sundstrom
ADVANCED LINEAR ALGEBRA
Hugo Woerdeman
APPLIED ABSTRACT ALGEBRA WITH MAPLE ${ }^{\text {TM }}$ AND MATLAB ${ }^{\circledR}$, THIRD EDITION
Richard Klima, Neil Sigmon, and Ernest Stitzinger
APPLIED DIFFERENTIAL EQUATIONS: THE PRIMARY COURSE
Vladimir Dobrushkin
COMPUTATIONAL MATHEMATICS: MODELS, METHODS, AND ANALYSIS WITH MATLAB ${ }^{\circledR}$ AND MPI, SECOND EDITION
Robert E. White
dIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE, SECOND EDITION
Steven G. Krantz
DIFFERENTIAL EQUATIONS: THEORY, TECHNIQUE, AND PRACTICE WITH BOUNDARY VALUE PROBLEMS
Steven G. Krantz
DIFFERENTIAL EQUATIONS WITH MATLAB®. EXPLORATION, APPLICATIONS, AND THEORY
Mark A. Mckibben and Micah D. Webster
ELEMENTARY NUMBER THEORY
James S. Kraft and Lawrence C. Washington
EXPLORING CALCULUS: LABS AND PROJECTS WITH MATHEMATICA ${ }^{\circledR}$
Crista Arangala and Karen A. Yokley
EXPLORING LINEAR ALGEBRA: LABS AND PROJECTS WITH MATHEMATICA ${ }^{\circledR}$
Crista Arangala
GRAPHS \& DIGRAPHS, SIXTH EDITION
Gary Chartrand, Linda Lesniak, and Ping Zhang

PUBLISHED TITLES CONTINUED

INTRODUCTION TO ABSTRACT ALGEBRA, SECOND EDITION
Jonathan D. H. Smith
INTRODUCTION TO MATHEMATICAL PROOFS: A TRANSITION TO ADVANCED MATHEMATICS, SECOND EDITION Charles E. Roberts, Jr.

INTRODUCTION TO NUMBER THEORY, SECOND EDITION
Marty Erickson, Anthony Vazzana, and David Garth
linear algebra, geometry and transformation
Bruce Solomon
MATHEMATICAL MODELLING WITH CASE STUDIES: USING MAPLE ${ }^{\text {TM }}$ AND MATLAB ${ }^{\circledR}$, THIRD EDITION B. Barnes and G. R. Fulford

MATHEMATICS IN GAMES, SPORTS, AND GAMBLING-THE GAMES PEOPLE PLAY, SECOND EDITION Ronald J. Gould
the mathematics of games: an introduction to probabllity
David G. Taylor
A MATLAB ${ }^{\circledR}$ COMPANION TO COMPLEX VARIABLES
A. David Wunsch

MEASURE THEORY AND FINE PROPERTIES OF FUNCTIONS, REVISED EDITION
Lawrence C. Evans and Ronald F. Gariepy
NUMERICAL ANALYSIS FOR ENGINEERS: METHODS AND APPLICATIONS, SECOND EDITION
Bilal Ayyub and Richard H. McCuen
ORDINARY DIFFERENTIAL EQUATIONS: AN INTRODUCTION TO THE FUNDAMENTALS
Kenneth B. Howell
RISk ANALYSIS IN ENGINEERING AND ECONOMICS, SECOND EDITION
Bilal M. Ayyub
SPORTS MATH: AN INTRODUCTORY COURSE IN THE MATHEMATICS OF SPORTS SCIENCE AND
SPORTS ANALYTICS
Roland B. Minton
TRANSFORMATIONAL PLANE GEOMETRY
Ronald N. Umble and Zhigang Han

SPORTS MATH

An Introductory Course in the Mathematics of Sports Science and Sports Analytics

Roland B. Minton

Roanoke College
Salem, Virginia, USA

CRC Press
Taylor \& Francis Group
Boca Raton London New York

CRC Press

Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2017 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
Version Date: 20160816
International Standard Book Number-13: 978-1-4987-0626-1 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface xiii
List of Figures xvii
List of Tables xxi
1 Projectile Motion 1
Introduction 1
Figuring with Newton 1
Hangin' with MJ: 1-D Motion 3
Raining 3's with Steph: 2-D Motion 4
K's with Kershaw: Terminal Velocity and Drag Forces 6
Calculus Box: Solving for Velocity 7
Bending with Bubba: Magnus Force 8
Smiling with Dimples 11
Calculus Box: A General Model of a Ball in Flight 12
The Effects of Drag and Lift 13
Knuckling Down 15
Calculus Box: Lateral Position of a Knuckleball 17
Exercises 18
Further Reading 23
2 Rotational Motion 25
Introduction 25
Going in Circles 26
Torquing Off Newton 28
All About MOI 29
Size Is Important 30
Calculus Box: Calculating MOI 30
Equipment Design 31
Supercats and Tamedogs 32
Keeping the Momentum 33
Exercises 34
Further Reading 38
3 Sports Illusions 39
Introduction 39
You Can't Keep Your Eye on the Ball 39
You Can't Touch This 41
You Can't Teach Size 42
You Can't Afford the Yardage 43
You Can't Bend That Way 45
You Can't Make That Call! 46
You Can't Clear That Bar 49
Exercises 50
Further Reading 54
4 Collisions 55
Introduction 55
Linear Momentum 56
Impulse and Force 57
Calculus Box: Integration 59
Giving to Receive 60
Tendons and Tennis 61
Coefficient of Restitution 62
Incoming and Outgoing 63
Derivative Works 65
The Way the Ball Bounces 66
Freeze Frame 67
Exercises 68
Further Reading 71
5 Ratings Systems 73
Introduction 73
Right versus Best 74
Ratings versus Rankings 74
The Massey System 75
Connected Schedules 77
Massey Win Ratings 78
Offense and Defense 79
Least Squares Equivalence 79
Wins versus Points 80
The Colley System 81
A Flaky Scaling Problem 82
The Elo System 83
Strength of Schedule 85
Computing Probabilities 85
Weighty Issues 86
Calculus Box: A Recipe for Reduction of Matrices 87
Exercises 90
Further Reading 94
6 Voting Systems 95
Introduction 95
How They Vote 96
Condorcet's Intransitive Attitude 97
Preference Lists, Voting Systems, and Chaos 99
Fairness and the Arrow of Impossibility 101
Positional Voting Systems 102
A Return to Sports Voting 103
Simulations 104
Range Voting 106
PageRank and MVPassing 108
Seeding of Tournaments 110
Probability Box: Put Some Error Bars on Those Things 112
Exercises 113
Further Reading 119
7 Saber- and Other Metrics 121
Introduction 121
The Pythagorean Cult 122
When Good Statistics Go Bad 125
Rates versus Numbers 127
Persistence and Reliability 128
On the Defensive 130
Plus and Minus 131
Park Factors 132
Four Factors, Fenwick, and Football 134
Evaluation and Prediction 137
Regression to the Mean 138
Linear Weights: A Prelude to WAR 139
Calculus Box: Linear Regression 141
Roger Maris and the Hall of Fame 141
Now Trending 142
Exercises 144
Further Reading 150
8 Randomness in Sports 151
Introduction 151
Summing Up the Basics 152
Prediction is Difficult 154
A Slump or a Disaster 155
Calculus Box: Probability 156
May the Best Team Win 157
Measuring Parity: Gini in a Bottle 158
Measuring Parity: Luck versus Skill 161
The Paradox of Skill 162
Measuring Parity: Entropy 163
Declaration of Independence 164
Conditional Probability 165
The Hot Hands 166
Not So Fast, My Friend 167
Runs Tests 168
Joltin Joe and The Streak 169
Not Following the Rules 170
BABIP and DIPS 171
Random Thoughts 172
Exercises 173
Further Reading 178
9 Sports Strategies 179
Introduction 179
Don't Punt, John! 180
Bill Belichick's Gambles 181
The Value of a Play 183
Markov Chain Models 184
The Expected Runs Matrix 187
Win Probability and Leverage 187
Game Control and the Story Stat 188
Game Theory 189
Upsetting the Game Theory 193
Getting and Giving Two 194
The Physical Challenge 195
Personnel Decisions: Aging 196
Personnel Decisions: Transfer Fees and Stars 197
Exercises 199
Further Reading 202
10 Big Data and Beyond 203
Introduction 203
Big Data Is Watching You 204
A Theory of Everything 205
Catch Me If You Can 207
Getting Framed 208
Anonymous Field Goal Kicking 209
On the Rebound 211
Breaching the Convex Hull 213
Calculus Box: A Goal-Scoring Model 215
Showing Hot and Cold 217
RIP to the RPI 218
Blackbox Analytics 220
PeeWee Analytics 222
Wearable Tech 223
Exercises 223
Further Reading 226
Answers and Selected Solutions 227
Index 253

Preface

This is a textbook for a course that does not exist. Like the myths that are busted in Chapter 3, that statement has some truth to it. As Obi Wan Kenobi would say, it is true "from a certain point of view." There are a number of existing courses with Sports Science and Sports Analytics in the titles, created by intrepid professors venturing into the unknown. The topics and emphases of such courses vary dramatically, so that there is no consensus on what a course in Sports Science and/or Sports Analytics should be.

There are conferences on sports analytics. The MIT/ESPN Sloan Sports Analytics Conferences are graced with outstanding speakers, and the demand for tickets grows exponentially. The topics at a conference can range from Moneyball to marketing strategies, management strategies or technological breakthroughs. Regional conferences such as the Carolina Sports Analytics Meeting provide support for the increasingly large number of faculty and students doing research in sports-related areas.

To use a golfing analogy, writing a book like this is like hitting a drive at a driving range; there are many directions you can go without going out of bounds. At the driving range, I pick out a small target to focus on, and that is what I have done here. I have chosen a sample of topics that I know something about and that I find very interesting. Ideally, users of this book will have enough to choose from to suit whichever version of a sports course is being run.

The course that I have taught at Roanoke College since 1988 is a mix of physics, physiology, mathematics, and statistics. The order (and level of emphasis) of the topics has changed over the years; this book reflects the current status of my course. It is, admittedly, an eclectic mix of topics (at the driving range, I may aim at one target, but I do tend to spray balls all over the range). I hope to provide ideas and resources to help students launch projects. An important part of my course is the term project, and I have almost always been pleasantly surprised at the quality of work done in a short period of time.

I suspect that the high quality of work is due to the students' high level of motivation; not from any talents of mine, but because many students (of both genders) find it exciting to think about sports and to complete a research agenda. Sports problems are easy to create and state, even for students who do not live sports $24 / 7$. Sports are part of their culture and knowledge base, and the opportunity to be an expert on some area of sports is invigorating.

This should be the primary reason for the growth of sports courses: the topic provides intrinsic motivation for students to do their best work.

This, as I said, is a textbook. That fact alters the literary qualities of the writing. My intention is for it to be easy and enjoyable to read, but examples and exercises necessarily interrupt the normal flow of text. As well, the exercises guide students to some very interesting results, so that some of the best discoveries about sports may be hiding in the exercises. I encourage you to look for fun facts in the exercises.

The choice of mathematical level is problematic for a book like this. Some of my favorite results require calculus or even differential equations for a full explanation, but I do not want to narrow the audience to the mathematically advanced. I have split the difference on calculus. I am not assuming that you know calculus, but I will show you some of the things that calculus can do for you. Those of you who have taken calculus can read the "calculus box" sections in the text and work the exercises labeled as calculus exercises. If you have not taken calculus, simply navigate around those well-marked areas of the book.

The extent to which a background in probability and statistics is required is more difficult to say. Sports analytics relies heavily on sound statistical reasoning. Statistical "common sense" is assumed throughout, but the details of tests and calculations are all provided. Similarly, a familiarity with the ideas of computing is assumed, but no programming is required. The reader's experience will be greatly enhanced by frequent use of the internet, spreadsheets, and calculations.

I should admit that I like to read books; I enjoy holding physical books. On the other hand, I now buy most of my books and music in digital format. And I am slowly allowing myself to stream a movie or music online and let it slip away without claiming possession. The point of this ramble is that while I recognize that the future of sports research is digital with remote access, this book has a fairly standard format. There will be a website at www.roanoke.edu/mcsp/minton/SportsMath.html (I know, I'm showing my age by posting a url that will change. A search for "Minton Sports Math" should do it, but you don't need me to tell you that). I'll post links, references, notes, and anything else that comes to mind that could be useful and does not fit the classic book mold. Ideally, part of the site will even be wiki-like.

In the last thirty years, data collection has progressed from repeated viewings of grainy videos to nearly continuous data streaming from sensors attached to every part of an athlete, from Bill James painstakingly copying box score numbers from The Sporting News to a one-minute online search that lists the top fifty hitting streaks in MLB history. My hope is that this book opens up some of the astounding possibilities of sports research, while helping you learn more about the games you enjoy.

This book would not exist without the encouragement of my editor, Bob Ross, who over the years has furthered my career in multiple ways. Thanks, Bob! My Roanoke College family has provided support in several ways. Dave

Taylor has listened to countless musings and rants on all aspects of the book, and provided good counsel at all times. His assistance with the joys of TeX is invaluable. Adam Childers provided much-needed statistical backing, plus hours of enjoyable sports talk. Thanks to Karin Saoub and Chris Lee for their assistance. The athletic department, especially Ryan Pflugrad, Matt McGuire, Page Moir, Scott Allison, and Chris Kilcoyne are great to work with. An important chunk of the time to do this enjoyable work was provided by the M. Paul Capp and Constance Whitehead Endowed Chair, for which I am very grateful. Paul is a great supporter of education, especially in mathematics and physics. Thanks to Dean Richard Smith for his support; it is very cool to get to cite my Dean's publication in this book! Finally, to my wife Jan and children Kelly and Greg, who deal with me in writing mode, which is even grumpier than usual: thanks for being who you are, and for your love.

Dr. Roland Minton
MCSP Department
Roanoke College
Salem, VA 24153
minton@roanoke.edu

List of Figures

1.1 Height vs Time Graph for Jump 3
1.2 Components of Initial Velocity 4
1.3 Force on Spinning Ball 9
1.4 Spin Vector 9
1.5 RightHand Rule 9
1.6 Magnus Force Up 10
1.7 Magnus Force Up and Back 10
1.8 Magnus Force Up and Forward 10
1.9 Effect of Drag and Magnus Forces 14
1.10 Effect of Spin on Pitches 15
1.11 Knuckleball with No Spin 16
1.12 Knuckleball with $1 / 4$ Rotation 16
1.13 Knuckleball with 1 Rotation 16
2.1 Polar Coordinates 26
3.1 Keep Your Eye on the Ball 40
3.2 Field Goal Angles 43
3.3 Golf Club Bend 45
3.4 The Offside Call 46
3.5 Optical Errors on Offside Call 47
3.6 Close Play at First Base 48
$3.7 \quad$ Olympic Winning Heights 50
3.8 Clearing the Bar 50
4.1 Area for Nonconstant Force 58
4.2 Area for Nonlinear Force 58
4.3 Force versus Displacement 61
4.4 Force versus Displacement 61
4.5 Speeds Before and After 63
5.1 Elo Performace Graph 84
5.2 Histogram of Predicted Minus Actual Scores, 2014 86
6.1 The Author with Condorcet Statue in Paris 98
6.2 Borda Count, Approval, Plurality Simulation 105
6.3 Two Controversial Candidates Simulation 106
6.4 Range vs Borda 107
6.5 First Round Wins by Seed 111
6.6 Predicted Wins by Seed, Rounds 1-4 111
6.7 Percentage in Final Four by Seed 112
7.1 Bill James 121
7.2 The Best Exponent, MLB 2014 123
7.3 BA vs OBP, 2004 125
7.4 Runs vs OPS, 2014 126
7.5 BA vs OBP, 2014 127
7.6 Average Score versus Length of Hole 139
7.7 MLB Strikeouts, 2000-2014 142
7.8 NFL Passing Yards, 2000-2014 143
7.9 NBA Three-Point Attempts, 2000-2014 143
7.10 EPL Goals, 2000-2014 144
8.1 A Behind the Back Shot 151
8.2 Points Scored by LA Clippers, 2014-15 153
8.3 Points Scored by LA Clippers, 2014-15 and Normal Curve 153
8.4 Points per Game by Players, 2014-15 153
8.5 Lorenz Curve for Perfect Parity 159
8.6 Lorenz Curve for Unequal League 159
8.7 Lorenz Curve for Two Leagues 159
8.8 Area Defining the Gini Index 160
8.9 Lorenz Curve for Example 8.4 160
8.10 Skill Curve and Maximum 162
8.11 Skill Curve Approaching Maximum 162
9.1 Kevin Kelley 179
9.2 Win Probabilities for Two Baseball Games 189
9.3 Home Runs by Age, 2014 AL 196
9.4 Home Run Rate by Age, 2014 AL 196
9.5 Best 3 WARs versus Wins 198
9.6 Worst 3 WARs versus Wins 198
10.1 Jump Throw to First 203
10.2 Rebounders in Position 211
10.3 Rebounders with Dividing Lines 212
10.4 Voronoi Diagram for Rebounders 212
10.5 Two Defensive Alignments 214
10.6 Convex Hulls of Two Defensive Alignments 214
10.7 Goals in 2014-15 EPL Games 216
10.8 Home/Away Goals in 2014-15 EPL Games 216
10.9 Heat Maps for Batting Averages 217
10.10 Locations of Pitches: Bad Graphic 218
10.11 Locations of Pitches: Good Graphic 218
10.12 Basic Neural Network Diagram 220
10.13 Golf Drive Data . 222

List of Tables

1.1 Formulas for Constant Acceleration 3
1.2 Heights and Times for Jump 4
2.1 Formulas for Constant Acceleration 26
2.2 Translational to Rotational 26
5.1 Four-Team League Results 76
5.2 Four-Team League Schedule 76
5.3 Top 5 NCAA Points 78
5.4 Top 5 NCAA Wins 78
5.5 Top 5 NCAA Offense 79
5.6 Top 5 NCAA Defense 79
5.7 Colley Ratings 82
5.8 Colley Double Ratings 82
8.1 Gini Indices for Leagues 161
8.2 Entropy Values for Leagues 164
8.3 Simulated and Actual Hitting Streaks 170
10.1 Large vs Small Conference RPI 219

Chapter 1

Projectile Motion

Introduction

Basketball star Stephen Curry launches a 3-point shot. As the ball traces its high arc toward the basket, fans rise to their feet in anticipation. Will it go in? Is it a little short? Similar tension accompanies a Jordan Spieth tee shot, an Andy Murray passing shot, a long football pass by Peyton Manning or Lionel Messi, or a long fly ball by Mike Trout. We will analyze the flights of balls in this chapter as we explore the area of physics known as mechanics.

Along the way, we will answer such questions as: How does Blake Griffin hang in the air when dunking? What is the optimal angle to shoot a free throw? Why do golf balls have dimples? Does a knuckleball really dance? The answers are to be found in the funda-
 mentals of physics.

Figuring with Newton

Sir Isaac Newton (1643-1727) constructed a framework for the analysis of objects in motion. The second of his three Laws of Motion is the launching point for most of our investigations in this chapter. The shorthand version of Newton's Second Law is

$$
F=m a
$$

where F is the sum of all forces acting on an object, m is the object's mass, and a is the acceleration of the object. One of the most remarkable aspects of

Newton's Second Law is that it can also be written as $\mathbf{F}=m \mathbf{a}$, where \mathbf{F} and a appear in bold to indicate that they are multidimensional vector quantities. We will return to this form of the equation when we look at motion in two and three dimensions. The mass m is a scalar (real number) that is related to weight: for earthbound sports, weight is approximately equal to mass times the gravitational constant g.

To keep it simple, let's start with one-dimensional motion; vertical motion, to be precise. In this case, the object's position can be tracked by its height h above some reference point (e.g., the ground). We define velocity as the rate of change of position with respect to time. At a constant speed, this means that velocity equals change in height divided by change in time: $v=\frac{\Delta h}{\Delta t}$. This gets complicated when velocity is not constant. In general,

$$
\text { Average velocity }=\frac{\Delta h}{\Delta t}
$$

and, for small time intervals, (instantaneous) velocity is approximately equal to average velocity: $v \approx \frac{\Delta h}{\Delta t}$. With calculus, we can simply say that velocity is the derivative of height. Either way, note that v can be negative (if height is decreasing) or positive (if height is increasing). The acceleration a of the object is, in turn, the rate of change of velocity. Then $a \approx \frac{\Delta v}{\Delta t}$ and acceleration is the derivative of velocity.

Example 1.1 Suppose a ball falls from a height of 50 meters. If gravity is the only force on the ball, find the velocity of the ball after $t=1$ second and $t=1.5$ seconds.
Solution. For most sports situations, we can assume that the acceleration due to gravity is a constant $-g$ with $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$ or $g \approx 32 \mathrm{ft} / \mathrm{s}^{2}$. An acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ in the negative direction means that in every second the velocity decreases by $9.8 \mathrm{~m} / \mathrm{s}$. Assuming that the ball starts with velocity 0, then at $t=1$ second the velocity has decreased to $-9.8 \mathrm{~m} / \mathrm{s}$. In the next half-second, the velocity decreases by $0.5(9.8) \mathrm{m} / \mathrm{s}=4.9 \mathrm{~m} / \mathrm{s}$. At time $t=1.5 \mathrm{~s}$ the velocity has decreased to $(-9.8-4.9) \mathrm{m} / \mathrm{s}=-14.7 \mathrm{~m} / \mathrm{s}$. The ideas from this basic example will be used again for the more complicated situation of Figure 1.9.

Speed is defined as the absolute value of velocity. In Example 1.1 above, at time $t=1$ the ball's velocity is $-9.8 \mathrm{~m} / \mathrm{s}$ but its speed is $9.8 \mathrm{~m} / \mathrm{s}$ (downward).

Notice that Example 1.1 did not ask for heights. Because the ball's velocity is changing, the calculation of position from velocity requires more than multiplying velocity by time. Fortunately, calculus gives us some simple formulas to use, shown below in Table 1.1.

In Example 1.1, we have $c=-g, v_{0}=0$, and $p_{0}=50$, so the height at time t is $-4.9 t^{2}+50 \mathrm{~m}$. At $t=1$, the ball is at height $-4.9+50 \mathrm{~m}=45.1 \mathrm{~m}$, while at $t=1.5$ the ball is at height $-4.9(1.5)^{2}+50 \mathrm{~m}=38.975 \mathrm{~m}$.

TABLE 1.1: Formulas for Constant Acceleration

acceleration	$a=c$
velocity	$v=c t+v_{0}$
position	$p=\frac{1}{2} c t^{2}+v_{0} t+p_{0}$

Hangin' with MJ: 1-D Motion

Using the equations in Table 1.1, we can discover an interesting fact about vertical motion. We start with a straightforward calculation.

Example 1.2 A man jumps from the ground with an initial velocity of 16 ft / s, under the force of gravity. (a) How long does he stay in the air? (b) How high does he go?
Solution. We use Table 1.1 with $c=-32, v_{0}=16$, and $p_{0}=0$. (Note that gravity pulls in the negative direction, while the jump is in the positive direction.) Then velocity is $v=-32 t+16 \mathrm{ft} / \mathrm{s}$ and position is $h=-16 t^{2}+16 t$ ft. Now, let's decipher the questions being asked. (a) What does "in the air" mean? He is in the air from launch time (height 0) to landing time (height $0)$. Both times occur at height 0 , when $h=-16 t^{2}+16 t=0$. So, solve this equation! If $-16 t(t-1)=0$, then $t=0$ or $t=1$. He launches at $t=0$ and lands at $t=1$, hence is in the air for 1 second. (b) At the top of a jump, velocity is 0 : no longer going up, not yet coming down. This occurs when $v=-32 t+16=0$ or $t=\frac{1}{2}$. Now that we know when he reaches his peak, we can determine his height using the position function. The height at time $t=\frac{1}{2}$ is $h=-16\left(\frac{1}{2}\right)^{2}+16\left(\frac{1}{2}\right)=-4+8=4$ feet.

The solution of Example 1.2 follows a pattern that you should use in most such problems. First, get the equations of motion by filling in the constants in Table 1.1. Then, solve one of the equations for time t based on the situation (e.g., how long the object is in the air, or when it reaches its peak). Finally, substitute this time value into another equation to find the quantity of interest.

The 48 -inch jump of Example 1.2 is in legendary leaper status, up there with Michael Jordan and Blake Griffin. But, why do these prodigious leapers seem to hang in the air? One reason is that all objects hang in the air. The graph of height versus time in Figure 1.1 and Table 1.2 below show the height for the jumper in Example 1.2 at equal quarter marks in time.

FIGURE 1.1: Jump

Notice that from time $t=1 / 4$ to $t=3 / 4$ (which is half of the time of the jump) the height is 3 feet or above (with a peak height of 4 feet). That is,

TABLE 1.2: Heights and Times for Jump

Time (s)	Height (ft)
0	0
$1 / 4$	3
$1 / 2$	4
$3 / 4$	3
1	0

half the time is spent in the top one-quarter of the jump! The speed is smallest at the top of the flight, so the object "hangs" at the top.

A second reason that great athletes can appear to defy gravity has to do with center of mass. The center of mass is where the sums of mass-timesdistance quantities balance. For a standing human being, it is not far from the geometric center of the body. Newton's equations track the center of mass of the object in flight. Figure 1.1 does not show a body in flight, but the path of a single point. That point is the center of mass of the person. (Which means that a "height" of 0 does not actually mark the location of the ground; it marks the location of the center of mass of the object at launch time.) While the dunker's center of mass is tracking the nice parabola shown, he is free to pull up his legs, bob his head, and extend an arm in entertaining ways that may cause an individual body part such as the head to remain at the same height for a noticeable amount of time.

Raining 3's with Steph: 2-D Motion

Let's return to Stephen Curry's 3-point shot. We can analyze its flight with Newton's Second Law, but the fact that the ball now moves both horizontally and vertically complicates the calculations.

From nba.com/Stats, we can get an idea of the location of Curry's shot. In 2014-15, only 79 of Curry's 6183 -pointers were from the corners. (Remarkably, he made well over 40% of his shots from every 3 -point zone and 62% from the left corner, plus an outrageous 91% from the left corner during the playoffs.) Most of his shots were from beyond the arc that is 23.75 feet from the basket. Let's say his shot is from 25 feet away. Align the x-axis horizontally from Curry to the basket, and the y-axis vertically.

We will assume that Curry's impeccable form keeps the ball from curving left or right. Newton's Second Law is the vector equation $\mathbf{F}=m \mathbf{a}$ where the vectors \mathbf{F} and a have two components. That is, the acceleration has a horizontal component a_{x} and a vertical component a_{y}. Assuming that gravity

FIGURE 1.2: Velocity
is the only force, then $a_{y}=-g$ as before, and $a_{x}=0$ (no forces acting horizontally). This allows us to separate the x - and y-equations. To use Table 1.1, we need the initial velocities and initial positions. We assume that $p_{0 x}=0$ ft for convenience and $p_{0 y}=7 \mathrm{ft}$ (assuming the ball is released from a height of 7 feet). If the ball is launched with speed $30 \mathrm{ft} / \mathrm{s}$ at an angle of 50 degrees, then $v_{0 x}$ and $v_{0 y}$ are obtained from the triangle in Figure 1.2.

Using basic trigonometry, we get initial velocities $v_{0 x}=30 \cos \left(50^{\circ}\right) \mathrm{ft} / \mathrm{s}$ and $v_{0 y}=30 \sin \left(50^{\circ}\right) \mathrm{ft} / \mathrm{s}$, or $v_{0 x} \approx 19.28 \mathrm{ft} / \mathrm{s}$ and $v_{0 y} \approx 22.98 \mathrm{ft} / \mathrm{s}$. Pulling this all together, we have $x \approx 19.28 t$ and $y \approx-16 t^{2}+22.98 t+7$.

Example 1.3 Is this shot good or not?
Solution. In this case, a perfect shot would pass through $x=25$ and $y=10$ (the height of the basket). We will solve for t in one equation and plug into the other equation, but that can be done in two ways. For reasons you will see, it is more convenient to start with the y-equation. We want $y=10$ and so solve $-16 t^{2}+22.98 t+7=10$ for t. There are two solutions, one representing the ball rising up through the height $y=10$ and the other representing the ball dropping through the height $y=10$; the second solution is clearly the one of interest. We get $t \approx 1.29 \mathrm{~s}$. If the shot is perfect, then at this t-value we get $x=25$ (be sure this makes sense to you!). Instead, our equation gives $x \approx 24.90$ feet. Not perfect, but is this close enough? The center of the basket is at $x=25$, so $x=24.90$ represents 0.1 foot or 1.2 inches from the center. The basket has diameter 18 inches and the ball has diameter 9.5 inches, so the ball can move a little over 4 inches from the center and still be inside the basket. (This assumes that the shot is exactly on line.) Count the three!

The work in Example 1.3 does not fully prove that the shot is good. Can you think of what is missing?

Even if the center of the ball (theoretically) passes inside the basket, in real life if the trajectory of the ball is too flat some portion of the ball will hit the rim. You will show in exercise 1.41 that the ball in Example 1.3 enters the basket at an angle of about 43 degrees, more than steep enough to safely pass through the basket.

We can now develop a method to determine the best angle at which to shoot a free throw. An important part of our interpretation of the numbers in Example 1.3 is the margin of error inherent in playing with a ball that is smaller than the basket. You could imagine decreasing the initial speed from $30 \mathrm{ft} / \mathrm{s}$ until the shot is no longer good; call this speed s_{1}. Then find the maximum speed s_{2} for which the shot is good. For the angle 50 degrees, $s_{2}-s_{1}$ is the margin of error in speed. The bigger the margin of error, the better, since the shooter does not have to be as precise with the launch speed. Peter Brancazio has done this study and found that a free throw angle of about 49 degrees gives the largest margin of error. We will explore an interesting aspect of this angle in exercise 1.9.

