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Preface

We live in a categorical world! From a positive or negative disease diagnosis to choosing
all items that apply in a survey, outcomes are frequently organized into categories so that
people can more easily make sense of them. However, analyzing data from categorical
responses requires specialized techniques beyond those learned in a first or second course in
Statistics. We offer this book to help students and researchers learn how to properly analyze
categorical data. Unlike other texts on similar topics, our book is a modern account using
the vastly popular R software. We use R not only as a data analysis method but also
as a learning tool. For example, we use data simulation to help readers understand the
underlying assumptions of a procedure and then to evaluate that procedure’s performance.
We also provide numerous graphical demonstrations of the features and properties of various
analysis methods.

The focus of this book is on the analysis of data, rather than on the mathematical
development of methods. We offer numerous examples from a wide rage of disciplines—
medicine, psychology, sports, ecology, and others—and provide extensive R code and output
as we work through the examples. We give detailed advice and guidelines regarding which
procedures to use and why to use them. While we treat likelihood methods as a tool,
they are not used blindly. For example, we write out likelihood functions and explain how
they are maximized. We describe where Wald, likelihood ratio, and score procedures come
from. However, except in Appendix B, where we give a general introduction to likelihood
methods, we do not frequently emphasize calculus or carry out mathematical analysis in
the text. The use of calculus is mostly from a conceptual focus, rather than a mathematical
one.

We therefore expect that this book will appeal to all readers with a basic background in
regression analysis. At times, a rudimentary understanding of derivatives, integrals, and
function maximization would be helpful, as would a very basic understanding of matrices,
matrix multiplication, and finding inverses of matrices. However, the important points and
application advice can be easily understood without these tools. We expect that advanced
undergraduates in statistics and related fields will satisfy these prerequisites. Graduate stu-
dents in statistics, biostatistics, and related fields will certainly have sufficient background
for the book. In addition, many students and researchers outside these disciplines who pos-
sess the basic regression background should find this book useful both for its descriptions
and motivations of the analysis methods and for its worked examples with R code.

The book does not require any prior experience with R. We provide an introduction to
the essential features and functions of R in Appendix A. We also provide introductory
details on the use of R in the earlier chapters to help inexperienced R users. Throughout
the book as new R functions are needed, their basic features are discussed in the text and
their implementation shown with corresponding output. We focus on using R packages that
are provided by default with the initial R installation. However, we make frequent use of
other R packages when they are significantly better or contain functionality unavailable in
the standard R packages. The book contains the code and output as it would appear in the
R Console; we make minor modifications at times to the output only to save space within
the book. Code provided in the book for plotting is often meant for color display rather
than the actual black-and-white display shown in the print and some electronic editions.

xi
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The data set files and R programs that are referenced in each example are available from
the book’s website, http://www.chrisbilder.com/categorical. The programs include
code used to create every plot and piece of output that we show. Many of these programs
contain code to demonstrate additional features or to perform more detailed and complete
analyses than what is presented in the book. We strongly recommend that the book and the
website be used in tandem, both for teaching and for individual learning. The website also
contains many “extras” that can help readers learn the material. Most importantly, we post
videos from one of us teaching a course on the subject. These videos include live, in-class
recordings that are synchronized with recordings of a tablet computer screen. Instructors
may find these videos useful (as we have) for a blended or flipped classroom setting. Readers
outside of a classroom setting may also find these videos especially useful as a substitute
for a short-course on the subject.

The first four chapters of the book are organized by type of categorical response variable.
Within each of these chapters, we first introduce the measurement type, followed by the
basic distributional model that is most commonly used for that type of measurement. We
slowly generalize to simple regression structures, followed by multiple regressions including
transformations, interactions, and categorical explanatory variables. We conclude each of
these chapters with some important special cases. Chapter 5 follows with model building
and assessment methods for the response variables in the first four chapters. A final chapter
discusses additional topics presented as extensions to the previous chapters. These topics
include solutions to problems that are frequently mishandled in practice, such as how to
incorporate diagnostic testing error into an analysis, the analysis of data from “choose
all that apply” questions, and methods for analyzing data arising under a complex survey
sampling design. Many of these topics are broad enough that entire books have been written
about them, so our treatment in Chapter 6 is meant to be introductory.

For instructors teaching a one-semester course with the book, we recommend covering
most of Chapters 1–5. The topics in Chapter 6 provide supplemental material for readers
to learn on their own or to provide an instructor a means to go beyond the basics. In
particular, topics from Chapter 6 can make good class projects. This helps students gain
experience in teaching themselves extensions to familiar topics, which they will face later
in industry or in research.

An extensive set of exercises is provided at the end of each chapter (over 65 pages in all!).
The exercises are deliberately variable in scope and subject matter, so that instructors can
choose those that meet the particular needs of their own students. For example, some carry
out an analysis step by step, while others present a problem and leave the reader to choose
and implement a solution. An answer key to the exercises is available for instructors using
the book for a course. Details on how to obtain the answer key are available through the
book’s website.

We could not have written this book without the help and support of many people. First
and foremost, we thank our families, and especially our wives, Kimberly and Marie, who
put in extra effort on our behalf so that we could reserve time to work on the book. We owe
them a huge debt for their support and tolerance, but we are hoping that they will settle for
a nice dinner. We thank Rob Calver and his staff at CRC Press for their continued support
and encouragement during the writing process. We also thank the hundreds of students who
have taken categorical courses from us over the last seventeen years. Their feedback helped
us to hone the course material and its presentation to what they are today. We especially
thank one of our students, Natalie Koziol, who wrote the MRCV package used in Section 6.4
and made the implementation of those methods available to R users. This book was written
in LATEX through LYX, and we are grateful to the many contributors to these open-source
projects. Finally, we need to thank our past and present colleagues and mentors at Iowa
State, Kansas State, Oklahoma State, Nebraska, and Simon Fraser Universities who have
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both supported our development and brought us interesting and challenging problems to
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Christopher R. Bilder and Thomas M. Loughin
Lincoln, NE and Surrey, BC



This page intentionally left blankThis page intentionally left blank



Chapter 1

Analyzing a binary response, part 1:
introduction

Yes or no. Success or failure. Death or survival. For or against. Binary responses may be
the most prevalent type of categorical data. The purpose of this chapter is to show how to
estimate and make inferences about a binary response probability and related quantities.
We begin in Section 1.1 by examining a homogeneous population where there is one overall
probability to be estimated. We generalize this situation in Section 1.2 to the setting where
sampled items come from one of two groups.

Throughout Chapter 1 we emphasize the use of R with detailed code explanations. This
is done on purpose because we expect that some readers have little R experience beyond the
introduction in Appendix A. Future chapters will still emphasize the use of R, but spend
less time explaining code.

1.1 One binary variable

1.1.1 Bernoulli and binomial probability distributions

Almost every statistical analysis begins with some kind of statistical model. A statistical
model generally takes the form of a probability distribution that attempts to quantify the
uncertainty that comes with observing a new response. The model is intended to represent
the unknown phenomenon that governs the observation process. At the same time, the
model needs to be convenient to work with mathematically, so that inference procedures such
as confidence intervals and hypothesis tests can be developed. Selecting a model is typically
a compromise between two competing goals: providing a more detailed approximation to
the process that generates the data and providing inference procedures that are easy to use.

In the case of binary responses, the natural model is the Bernoulli distribution. Let Y
denote a Bernoulli random variable with outcomes of 0 and 1. Typically, we will say Y = 1
is a success and Y = 0 is a failure. For example, a success would be a basketball free throw
attempt that is good or an individual who is cured of a disease by a new drug; a failure
would be a free throw attempt that is missed or an individual who is not cured. We denote
the probability of success as P (Y = 1) = π and the corresponding probability of failure as
P (Y = 0) = 1 − π. The Bernoulli probability mass function (PMF) for Y combines these
two expressions into one formula:

P (Y = y) = πy(1− π)1−y

for y = 0 or 1, where we use the standard convention that a capital letter Y denotes the
random variable and the lowercase letter y denotes a possible value of Y . The expected
value of Y is E(Y ) = π, and the variance of Y is V ar(Y ) = π(1− π).

1
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Often, one observes multiple Bernoulli random variable responses through repeated sam-
pling or trials in identical settings. This leads to defining separate random variables for each
trial, Y1, . . . , Yn, where n is the number of trials. If all trials are identical and independent,
we can treat W =

∑n
i=1 Yi as a binomial random variable with PMF of

P (W = w) =
( n
w

)
πw(1− π)n−w (1.1)

for w = 0, . . . , n. The combination function
(
n
w

)
= n!/[w!(n − w)!] counts the number of

ways w successes and n−w failures can be ordered. The expected value ofW is E(W ) = nπ,
and the variance of W is V ar(W ) = nπ(1− π). Notice that the Bernoulli distribution is a
special case of the binomial distribution when n = 1.

We next show how R can be used to examine properties of the binomial distribution.

Example: Binomial distribution in R (Binomial.R)

The purpose of this example is to calculate simple probabilities using a binomial
distribution and to show how these calculations are performed in R. We will be very
basic with our use of R in this example. If you find its use difficult, we recommend
reading Appendix A before proceeding further.

Consider a binomial random variable counting the number of successes from an
experiment that is repeated n = 5 times, and suppose that there is a probability of
success of π = 0.6. For example, suppose an individual has this success rate in a
particular card game or shooting a basketball into a goal from a specific location. We
can calculate the probability of each number of successes, w = 0, 1, 2, 3, 4, 5, using
Equation 1.1. For example, the probability of 1 success out of 5 trials is

P (W = 1) =

(
5

1

)
0.61(1− 0.6)5−1 =

5!

1!4!
0.610.44 = 0.0768.

This calculation is performed in R using the dbinom() function:

> dbinom(x = 1, size = 5, prob = 0.6)
[1] 0.0768

Within the function, the x argument denotes the observed value of the binomial ran-
dom variable (what we are calling w), the size argument is the number of trials (n),
and the prob argument is π. We could have used dbinom(1, 5, 0.6) to obtain the
same probability as long as the numerical values are in the same order as the argu-
ments within the function (a full list of arguments and their order is available in the
help for dbinom()). Generally, we will always specify the argument names in our code
except with the most basic functions.

We find all of the probabilities for w = 0, . . . , 5 by changing the x argument:

> dbinom(x = 0:5, size = 5, prob = 0.6)
[1] 0.01024 0.07680 0.23040 0.34560 0.25920 0.07776

where 0:5 means the integers 0 to 5 by 1. To display these probabilities in a more
descriptive format, we save them into an object and print from a data frame using the
data.frame() function:
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> pmf <- dbinom(x = 0:5, size = 5, prob = 0.6)
> save <- data.frame(w = 0:5, prob = round(x = pmf , digits = 4))
> save

w prob
1 0 0.0102
2 1 0.0768
3 2 0.2304
4 3 0.3456
5 4 0.2592
6 5 0.0778

Note that we could have used different names than pmf and save for our objects if
desired. The round() function rounds the values in the pmf object to 4 decimal places.

We plot the PMF using the plot() and abline() functions:

> plot(x = save$w , y = save$prob , type = "h", xlab = "w", ylab =
"P(W=w)", main = "Plot of a binomial PMF for n=5, pi=0.6",
panel.first = grid(col = "gray", lty = "dotted "), lwd = 3)

> abline(h = 0)

Figure 1.1 gives the resulting plot. Appendix A.7.2 describes most of the arguments
within plot(), so we provide only brief descriptions here. The x and y arguments
specify the x- and y-axis values where we use the $ symbol to access parts of the save
data frame. The type = "h" argument value specifies that vertical bars are to be
plotted from 0 to the values given in the y argument. The main argument contains
the plot title.1 The abline() function plots a horizontal line at 0 to emphasize the
bottom of each vertical line.

The simpler specification plot(x = save$w, y = save$prob, type = "h") pro-
duces a plot similar to Figure 1.1, but our extra arguments make the plot easier to
interpret.

Assumptions

The binomial distribution is a reasonable model for the distribution of successes in a
given number of trials as long as the process of observing repeated trials satisfies certain
assumptions. Those assumptions are:

1. There are n identical trials. This refers to the process by which the trials are
conducted. The action that results in the trial and the measurement taken must be
the same in each trial. The trials cannot be a mixture of different types of actions or
measurements.

2. There are two possible outcomes for each trial. This is generally just a
matter of knowing what is measured. However, there are cases where a response
measurement has more than two levels, but interest lies only in whether or not one
particular level occurs. In this case, the special level can be considered “success” and
all remaining levels “failure.”

1If it is desired to use a plot title with better notation, we could have used main = expression(paste("Plot
of a binomial PMF for ", italic(n) == 5, " and ", italic(pi) == 0.6)) to obtain “Plot of the bino-
mial PMF for n = 6 and π = 0.6.” In this code, expression() allows us to include mathematical symbols
and paste() combines these symbols with regular text. Please see Appendix A.7.4 for more information.
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Figure 1.1: PMF for W.

3. The trials are independent of each other. In particular, there is nothing in
the conduct of the trials that would cause any subset of trials to behave more similarly
to one another. Counterexamples include (a) measuring trials in “clusters,” where the
units on which success or failure is measured are grouped together somehow before
observation, and (b) trials measured in a time series, where trials measured close
together in time might react more similarly than those measured far apart.

4. The probability of success remains constant for each trial. This means
that all variables that can affect the probability of success need to be held constant
from trial to trial. Because these variables are not always known in advance, this can
be a very difficult condition to confirm. We often can only confirm that the “obvious”
variables are not changing, and then merely assume that others are not as well.

5. The random variable of interest W is the number of successes. Specif-
ically, this implies that we are not interested in the order in which successes and
failures occur, but rather only in their total counts.

The next two examples detail these assumptions with respect to applications, and they
demonstrate how it can be difficult to assure that these assumptions are satisfied.

Example: Field goal kicking

In American and Canadian football, points can be scored by kicking a ball through a
target area (goal) at each end of the field. Suppose an experiment is conducted where
a placekicker successively attempts five field goal kicks during practice. A success
occurs on one trial when the football is kicked over the crossbar and between the two
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uprights of the goal posts. A failure occurs when the football does not achieve this
result (the football is kicked to the left or right of both uprights or falls short of the
crossbar). We want to use these results to estimate the placekicker’s true probability
of success, so we record how many kicks are successful.

In order to use the binomial distribution here, the experiment needs to satisfy the
following conditions:

1. There are n identical trials. In this case, n = 5 field goals are attempted.
The action is always kicking a football in the same way, and the measurement of
success is made the same way each time.

2. There are two possible outcomes for each trial. Each field goal is a
success or failure. Notice that we could further divide failures into other categories:
too short, long enough but to the left of the uprights, long enough but to the right
of the uprights, or some combinations of these. If our interest is only in whether the
kick is successful, then differentiating among the modes of failure is not necessary.

3. The trials are independent of each other. Given that the field goals are
attempted successively, this may be difficult to satisfy. For example, if one field
goal attempt is missed to the left, the kicker may compensate by trying to kick
farther to the right on the next attempt. On the other hand, the independence
assumption may be approximately satisfied by a placekicker who tries to apply the
exact same technique on each trial.

4. The probability of success remains constant for each trial. To make
sure this is true, the field goals need to be attempted from the same distance under
the same surrounding conditions. Weather conditions need to be constant. The
same kicker, ball, and goalposts are used each time. We assume that fatigue does
not affect the kicker for this small number of attempts. If the attempts occur close
together in time, then it may be reasonable to assume that extraneous factors are
reasonably constant as well, at least enough so that they do not have a substantial
effect on the success of the field goals.

5. The random variable of interest W is the number of successes. As we
will see in Section 1.1.2, in order to estimate the probability of success, we need
only to record W (=0, 1, 2, 3, 4, or 5) and not the entire sequence of trial results.

Example: Disease prevalence

The prevalence of a disease is the proportion of a population that is afflicted with
that disease. This is equivalent to the probability that a randomly selected member
of the population has the disease. Many public health studies are performed to un-
derstand disease prevalence, because knowing the prevalence is the first step toward
solving societal problems caused by the disease. For example, suppose there is con-
cern that a new infectious disease may be transmitted to individuals through blood
donations. One way to examine the disease prevalence would be to take a sample a
1,000 blood donations and test each for the disease.

In order to use the binomial distribution here, this setting needs to satisfy the
following conditions:

1. There are n identical trials. In this case, n = 1000 blood donations are
examined. Each blood donation needs to be collected and tested the same way. In
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particular, trials would not be identical if different diagnostic measures were used
on different donations to determine presence of disease.

2. There are two possible outcomes for each trial. Each blood donation is
either positive or negative for the disease. Making this determination is not neces-
sarily as straightforward as it may seem. Often, there is a continuous score reported
from the results of an assay, such as the amount of an antigen in a specimen, and
a threshold or cut-off point is used to make the positive or negative determination.
In some instances, multiple thresholds may be used leading to responses such as
positive, indeterminate, or negative.

3. The trials are independent of each other. This may be difficult to sat-
isfy completely. For example, if married spouses are included in the sample, then
presence of the disease in one spouse’s donation may suggest a greater chance that
the other spouse’s donation will also test positive. Independence can be assured
by random sampling from a large population of donations, but may always be in
question when any non-random sampling method is used.

4. The probability of success remains constant for each trial. Each sam-
pled donation needs to have the same probability of having the disease. This could
be unreasonable if there are factors, such as risky behavior, that make donations
for certain subpopulations more likely to have the disease than others, and if these
subpopulations can be identified in advance. Similarly, if donations are collected
over an extended period of time, prevalence may not be constant during the period.

5. The random variable of interest W is the number of successes. There
are W = 0, . . . , 1000 possible positive blood donations. To estimate prevalence,
we need to know how many positive donations there are, and not which ones are
positive.

The previous examples show that it may be difficult to satisfy all of the assumptions for a
binomial model. However, the binomial model may still be used as an approximation to the
true model in a given problem, in which case the violated assumptions then would need to
be identified in any stated results. Alternatively, if assumptions are not satisfied, there are
other models and procedures that can be used to analyze binary responses. In particular,
if the probability of success does not remain constant for each trial—for example, if disease
probability is related to certain risky behaviors—we may be able to identify and measure
the factors causing the variations and then use a regression model for the probability of
success (to be discussed in Chapter 2).

Simulating a binomial sample

What does a sample from a binomial distribution look like? Of course, the observed
values only can be 0, 1, . . . , n. The proportion of observed values that are 0, 1, . . . , n are
governed by the PMF and the parameter π within it. The mean and variance of these
observed values are also controlled by the PMF and π. These properties are easily derived
mathematically using basic definitions of mean and variance. In more complex problems,
however, properties of statistics are much harder to derive mathematically.

We show in the next example how to simulate a sample using R so that we can check
whether theory matches what actually happens. This example will also introduce Monte
Carlo computer simulation as a valuable tool for evaluating a statistical procedure. All
statistical procedures have assumptions underlying their mathematical framework. Monte
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Carlo simulation is especially useful in assessing how well procedures perform when these
assumptions are violated. For example, we may want to know if a confidence interval that
is designed to work in large samples maintains its stated confidence level when the sample
size is small.

A Monte Carlo simulation works by creating a computer version of the population we
are studying, sampling from this virtual population in a prescribed way, performing the
statistical analysis that we are studying, and measuring how it performs. The details of
each step vary from one problem to the next. In all cases we draw a “large” number of
samples from the virtual population. In so doing, the law of large numbers assures us that
the average performance measured across the samples will be close to the true performance of
the procedure in this context (a more mathematical definition of the law of large numbers is
contained on p. 232 of Casella and Berger, 2002). We follow this prescription in the example
below.

Example: Simulation with the binomial distribution in R (Binomial.R)

Below is the code that simulates 1,000 random observations of W from a binomial
distribution with π = 0.6 and n = 5:

> set.seed (4848)
> bin5 <- rbinom(n = 1000, size = 5, prob = 0.6)
> bin5 [1:10]
[1] 3 2 4 1 3 1 3 3 3 4

The set.seed() function sets a seed number for the simulated observations. Without
going into the details behind random number generation, the seed number specifica-
tion allows us to obtain identical simulated observations each time the same code is
executed.2 The rbinom() function simulates the observations, where the n argument
gives the number of observations (not n as in the number of trials). The bin5 object
contains 1,000 values, where the first 10 of which are printed.

The population mean and variance for W are

E(W ) = nπ = 5× 0.6 = 3

and
V ar(W ) = nπ(1− π) = 5× 0.6× 0.4 = 1.2.

We calculate the sample mean and variance of the simulated observations using the
mean() and var() functions:

> mean(bin5)
[1] 2.991
> var(bin5)
[1] 1.236155

2It is best to not use the same seed number when doing other simulated data examples. A new seed number
can be chosen from a random number table. Alternatively, a new seed number can be found by running
runif(n=1) within R (this simulates one observation from a Uniform(0,1) distribution) and taking the first
few significant digits.
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The sample mean and variance are very similar to E(W ) and V ar(W ), as expected. If
a larger number of observations were simulated, say 10,000, we generally would expect
these sample measures to be even closer to their population quantities due to the law
of large numbers.

To examine how well the observed frequency distribution follows the PMF, we use
table() to find the frequencies of each possible response and then use hist() to plot
a histogram of the relative frequencies:

> table(x = bin5)
x
0 1 2 3 4 5
12 84 215 362 244 83
> hist(x = bin5 , main = "Binomial with n=5, pi=0.6, 1000 bin.

observations", probability = TRUE , breaks = c( -0.5:5.5) , ylab
= "Relative frequency ")

> -0.5:5.5
[1] -0.5 0.5 1.5 2.5 3.5 4.5 5.5

For example, we see that w = 3 is observed with a relative frequency of 362/1000 =
0.362. We had found earlier that P (W = 3) = 0.3456, which is very similar to the
observed proportion. The histogram is in Figure 1.2, and its shape is very similar
to the PMF plot in Figure 1.1. Note that the probability = TRUE argument gives
the relative frequencies (probability = FALSE gives the frequencies, which is the
default), and the breaks argument specifies the classes for the bars to be -0.5 to 5.5
by 1 (the bars will not be drawn correctly here without specifying breaks).

1.1.2 Inference for the probability of success

The purpose of this section is to estimate and make inferences about the probability of
success parameter π from the Bernoulli distribution. We start by estimating the parameter
using its maximum likelihood estimate, because it is relatively easy to compute and has
properties that make it appealing in large samples. Next, confidence intervals for the true
probability of success are presented and compared. Many different confidence intervals
have been proposed in the statistics literature. We will present the simplest—but worst—
procedure first and then offer several better alternatives. We conclude this section with
hypothesis tests for π.

For those readers unfamiliar with estimation and inference procedures associated with
the likelihood function, we encourage you to read Appendix B first for an introduction. We
will reference specific parts of the appendix within this section.

Maximum likelihood estimation and inference

As described in Appendix B, a likelihood function is a function of one or more param-
eters conditional on the observed data. The likelihood function for π when y1, . . . , yn are
observations from a Bernoulli distribution is

L(π|y1, . . . , yn) = P (Y1 = y1)× · · · × P (Yn = yn)

= πw(1− π)n−w. (1.2)

Alternatively, when we only record the number of successes out of a number of trials, the
likelihood function for π is simply L(π|w) = P (W = w) =

(
n
w

)
πw(1− π)n−w. The value of
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Binomial with n=5, pi=0.6, 1000 observations
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Figure 1.2: Histogram for the observed values of w.

π that maximizes the likelihood function is considered to be the most plausible value for the
parameter, and it is called the maximum likelihood estimate (MLE). We show in Appendix
B.3 that the MLE of π is π̂ = w/n, which is simply the observed proportion of successes.
This is true for both L(π|y1, . . . , yn) or L(π|w) because the

(
n
w

)
contains no information

about π.
Because π̂ will vary from sample to sample, it is a statistic and has a corresponding

probability distribution.3 As with all MLEs, π̂ has an approximate normal distribution in
a large sample (see Appendix B.3.3). The mean of the normal distribution is π, and the
variance is found from

V̂ ar(π̂) = −E
{
∂2log [L(π|W )]

∂π2

}−1∣∣∣∣∣
π=π̂

= −E
{
−W
π2

+
n−W

(1− π)2

}−1∣∣∣∣∣
π=π̂

=

[
n

π
− n

1− π

]−1∣∣∣∣∣
π=π̂

=
π̂(1− π̂)

n
. (1.3)

3In order for π̂ to have a probability distribution, it needs to be a random variable. Thus, we are actually
using π̂ = W/n in this case. We could have defined W/n as Π̂ instead, but this level of formality is
unnecessary here. It will be apparent from a statistic’s use whether it is a random or observed quantity.
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where log(·) is the natural log function (see Appendix B.3.4). We can write the distribution
as π̂∼̇N(π, V̂ ar(π̂)) where ∼̇ denotes “approximately distributed as.” The approximation
tends to be better as the sample size grows larger.

Wald confidence interval

Using this normal distribution, we can treat (π̂ − π)/V̂ ar(π̂)1/2 as an approximate stan-
dard normal quantity (see Appendix B.5). Thus, for any 0 < α < 1, we have

P

Zα/2 < π̂ − π√
V̂ ar(π̂)

< Z1−α/2

 ≈ 1− α,

where Za is the ath quantile from a standard normal distribution (e.g., Z0.975= 1.96). After
rearranging terms and recognizing that −Zα/2 = Z1−α/2, we obtain

P

(
π̂ − Z1−α/2

√
V̂ ar(π̂) < π < π̂ + Z1−α/2

√
V̂ ar(π̂)

)
≈ 1− α.

Now, we have an approximate probability that has the parameter π centered between two
statistics. When we replace π̂ and V̂ ar(π̂) with observed values from the sample, we obtain
the (1− α)100% confidence interval for π

π̂ − Z1−α/2
√
π̂(1− π̂)/n < π < π̂ + Z1−α/2

√
π̂(1− π̂)/n.

This is the usual interval for a probability of success that is given in most introductory
statistics textbooks. Confidence intervals based on the approximate normality of MLEs are
called “Wald confidence intervals” because Wald (1943) was the first to show this property
of MLEs in large samples.

When w is close to 0 or n, two problems occur with this interval:

1. Calculated limits may be less than 0 or greater than 1, which is outside the boundaries
for a probability.

2. When w = 0 or 1,
√
π̂(1− π̂)/n = 0 for n > 0. This leads to the lower and upper

limits to be exactly the same (0 for w = 0 or 1 for w = 1).

We will discuss additional problems with the Wald interval shortly.

Example: Wald interval (CIpi.R)

Suppose w = 4 successes are observed out of n = 10 trials. The 95%Wald confidence
interval for π is 0.4 ± 1.96

√
0.4(1− 0.4)/10 = (0.0964, 0.7036), where we use the

shorthand notation within parentheses to mean 0.0964 < π < 0.7036. The R code
below shows how these calculations are carried out:

> w <- 4
> n <- 10
> alpha <- 0.05
> pi.hat <- w/n
> var.wald <- pi.hat*(1-pi.hat)/n
> lower <- pi.hat - qnorm(p = 1-alpha /2) * sqrt(var.wald)
> upper <- pi.hat + qnorm(p = 1-alpha /2) * sqrt(var.wald)
> round(data.frame(lower , upper), 4)

lower upper
1 0.0964 0.7036
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In the code, we use the qnorm() function to find the 1−α/2 quantile from a standard
normal distribution. We can calculate the interval quicker by taking advantage of how
R performs vector calculations:

> round(pi.hat + qnorm(p = c(alpha/2, 1-alpha /2)) *
sqrt(var.wald), 4)

[1] 0.0964 0.7036

See Appendix A.4 for a similar example.
The confidence interval is quite wide and may not be meaningful for some applica-

tions. However, it does give information on a range for π that may be useful in hy-
pothesis testing situations. For example, a test of H0 : π = 0.5 vs. Ha : π 6= 0.5 would
not reject H0 because 0.5 is within this range. If the test was instead H0 : π = 0.8
vs. Ha : π 6= 0.8, there is evidence to reject the null hypothesis. Other ways to perform
these tests with a test statistic and a p-value will be discussed shortly.

The inferences for π from the Wald confidence interval rely on the underlying normal
distribution approximation for the maximum likelihood estimator. For this approximation
to work well, we need a large sample, and, unfortunately, the sample size in the last example
was quite small. Furthermore, notice that π̂ can take on only 11 different possible values in
the last example: 0/10, 1/10, ..., 10/10, but a normal distribution is a continuous function.
These problems lead the Wald conference interval to be approximate, in the sense that the
probability that the interval covers the parameter (its coverage or true confidence level) is
not necessarily equal to the stated level 1 − α. The quality of the approximation varies
with n and π, and as we will see later, the Wald interval generally has coverage < 1 − α.
Such an interval is called a liberal interval. On the other hand, an interval with coverage in
excess of the stated level is called conservative. While this latter property may seem to be a
good quality, it can lead to intervals that are quite wide in comparison to others. We want
confidence intervals that place the parameter within as narrow a range as possible, while
maintaining at least the stated confidence level. If we wanted intervals that had greater
coverage, we would have stated a higher confidence level!

There has been a lot of research on finding an interval like this for π, including Agresti
and Caffo (2000), Agresti and Min (2001), Borkowf (2006), Brown et al. (2002), Henderson
and Meyer (2001), Newcombe (2001), Suess et al. (2006), and Vos and Hudson (2005).
Brown et al. (2001) present a thorough review of most competing intervals. We present
their recommendations next along with our own thoughts on the best intervals.

Wilson confidence interval

When n < 40, Brown et al. (2001) recommend the Wilson interval or the Jeffreys interval
because they maintain true confidence levels closer to the stated level than other intervals.
The Wilson interval formula is found by examining the test statistic

Z0 =
π̂ − π0√

π0(1− π0)/n
,

which is a score test statistic often used for a test of H0 : π = π0 vs. Ha : π 6= π0, where
0 < π0 < 1 (see Appendix B.5). The variance in the denominator of Z0 is computed
assuming that the null hypothesis is true, rather than using the unrestricted estimate based
on the data. This leads to the advantage that the denominator is not 0 whenever w = 0 or n.
We can approximate the distribution of Z0 with a standard normal to obtain P (−Z1−α/2 <
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Z0 < Z1−α/2) ≈ 1 − α. Treating the approximation as an equality, the Wilson interval
contains the set of all possible values of π0 that satisfy the equation. Conversely, the set of
all possible values for π0 that lead to a rejection of the null hypothesis are outside of the
confidence interval. The process of forming an interval from a hypothesis test procedure
like this is often referred to as “inverting the test.” See also Appendix B.5.2. Because the
Wilson interval is based on a score test, it is often referred to as a score interval too.

The interval endpoints are found by setting Z0 equal to ±Z1−α/2, and applying the
quadratic formula to solve for π0. Thus, the (1− α)100% Wilson interval is

π̃ ±
Z1−α/2

√
n

n+ Z2
1−α/2

√
π̂(1− π̂) +

Z2
1−α/2

4n
, (1.4)

where

π̃ =
w + Z2

1−α/2/2

n+ Z2
1−α/2

can be thought of as an adjusted estimate of π. This interval is named after Wilson (1927)
who first proposed finding an interval for π in this manner. Note that the Wilson interval
always has limits between 0 and 1.

The Wald and Wilson confidence intervals discussed so far are frequentist inference pro-
cedures. The “confidence” associated with these types of inference procedures comes about
through repeating the process of taking a sample and calculating a confidence interval each
time. This leads to the interpretation of

We would expect (1 − α)100% of all similarly constructed intervals to contain
the parameter π

for a (1− α)100% confidence interval. Alternatively, a commonly used interpretation is

With (1 − α)100% confidence, the parameter π is between <lower limit> and
<upper limit>

where the appropriate lower and upper limits are inserted. Note that a single interval
calculated from a sample either does or does not contain the parameter, so it is inappropriate
to say it has a probability (other than 0 or 1) of containing the parameter. This is a confusing
aspect to confidence intervals, causing them to be misinterpreted frequently in practice.

On the other hand, a Bayesian credible interval does have a (1 − α)100% probability
of containing the parameter, because parameters are random variables in the Bayesian
paradigm. A Jeffreys interval for π, also recommended by Brown et al. (2001), is one such
Bayesian interval. We postpone its discussion until Section 6.6, when we describe Bayesian
inference procedures in detail.

Agresti-Coull confidence interval

The Wilson interval is our preferred choice for a confidence interval for π. However, Brown
et al. (2001) recommend the Agresti-Coull interval (Agresti and Coull 1998) for n ≥ 40,
primarily because it is a little easier to calculate by hand and it more closely resembles the
popular Wald interval. The (1− α)100% Agresti-Coull interval is

π̃ − Z1−α/2

√
π̃(1− π̃)

n+ Z2
1−α/2

< π < π̃ + Z1−α/2

√
π̃(1− π̃)

n+ Z2
1−α/2

.

The interval is essentially the Wald interval where Z2
1−α/2/2 successes and Z2

1−α/2/2 failures
are added to the observed data. Specifically, for α = 0.05, this means that about two
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successes and two failures are added because Z1−0.05/2 = 1.96 ≈ 2. Similar to the Wald
interval, this interval has the undesirable property that it may have limits less than 0 or
greater than 1.

Example: Wilson and Agresti-Coull intervals (CIpi.R)

Suppose again w = 4 successes are observed out of n = 10 trials. For a 95%
confidence interval, the adjusted estimate of π is

π̃ =
w + Z2

1−α/2/2

n+ Z2
1−α/2

=
4 + 1.962/2

10 + 1.962
= 0.4278.

The 95% Wilson interval limits are

π̃ ±
Z1−α/2

√
n

n+ Z2
1−α/2

√
π̂(1− π̂) +

Z2
1−α/2

4n

= 0.4278± 1.96
√

10

10 + 1.962

√
0.4(1− 0.4) +

1.962

4× 10

leading to an interval of 0.1682 < π < 0.6873. The 95% Agresti-Coull interval limits
are

π̃ ± Z1−α/2

√
π̃(1− π̃)

n+ Z2
1−α/2

= 0.4278± 1.96

√
0.4278(1− 0.4278)

10 + 1.962

leading to an interval of 0.1671 < π < 0.6884. Both confidence intervals have limits
that are quite similar in this case, but are rather different from the Wald interval limits
of (0.0964, 0.7036) that we calculated earlier.

Continuing from the last example, below is how the calculations are performed in
R:

> p.tilde <- (w + qnorm(p = 1-alpha /2)^2 / 2) / (n + qnorm(p =
1-alpha /2) ^2)

> p.tilde
[1] 0.4277533

> # Wilson C.I.
> round(p.tilde + qnorm(p = c(alpha/2, 1-alpha /2)) * sqrt(n) / (n

+ qnorm(p = 1-alpha /2) ^2) * sqrt(pi.hat*(1-pi.hat) + qnorm(p =
1-alpha /2) ^2/(4*n)), 4)

[1] 0.1682 0.6873

> # Agresti -Coull C.I.
> var.ac <- p.tilde *(1-p.tilde) / (n + qnorm(p = 1-alpha /2)^2)
> round(p.tilde + qnorm(p = c(alpha/2, 1-alpha /2)) *

sqrt(var.ac), 4)
[1] 0.1671 0.6884

After calculating π̃, we calculate the Wilson and Agresti-Coull intervals through one
line of code for each. Note that executing part of a line of code can help highlight how
it works. For example, one can execute qnorm(p = c(alpha/2, 1-alpha/2)) to see
that it calculates -1.96 and 1.96.
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The binom.confint() function from the binom package can be used to simplify
the calculations. Note that this package is not in the default installation of R, so it
needs to be installed before its use (see Appendix A.5 for more information regarding
package installation). Below is our use of the function:

> library(package = binom)
> binom.confint(x = w, n = n, conf.level = 1-alpha , methods =

"all")
method x n mean lower upper

1 agresti -coull 4 10 0.4000000 0.16711063 0.6883959
2 asymptotic 4 10 0.4000000 0.09636369 0.7036363
3 bayes 4 10 0.4090909 0.15306710 0.6963205
4 cloglog 4 10 0.4000000 0.12269317 0.6702046
5 exact 4 10 0.4000000 0.12155226 0.7376219
6 logit 4 10 0.4000000 0.15834201 0.7025951
7 probit 4 10 0.4000000 0.14933907 0.7028372
8 profile 4 10 0.4000000 0.14570633 0.6999845
9 lrt 4 10 0.4000000 0.14564246 0.7000216
10 prop.test 4 10 0.4000000 0.13693056 0.7263303
11 wilson 4 10 0.4000000 0.16818033 0.6873262

The function calculates 11 different intervals for π when the methods = "all" argu-
ment is used. The first, second, and eleventh intervals are the Agresti-Coull, Wald,
and Wilson intervals, respectively. Please see the help for the function for more infor-
mation on the other intervals. The end-of-chapter exercises discuss some of these in
more detail.

Clopper-Pearson confidence interval

The Clopper-Pearson interval (Clopper and Pearson, 1934) is the last confidence interval
for π that we will discuss in this section. While Brown et al. (2001) remark that the interval
is “wastefully conservative and it is not a good choice for practical use,” this interval does
have a unique property that the other intervals do not: the true confidence level is always
equal to or greater than the stated level. In order to achieve this true confidence level, the
interval is usually wider than most other intervals for π.

The interval uses the relationship between the binomial distribution and the beta distri-
bution to achieve its conservative confidence level (see #2.40 on p. 82 of Casella and Berger,
2002 for this distributional relationship). In fact, because the actual or exact distribution
for W is used, the interval is called an exact inference procedure. There are many other
exact inference procedures available for statistical problems, and some of these are discussed
in Section 6.2.

To review the beta distribution, let V be a beta random variable. The probability density
function (PDF) for V is

f(v; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
va−1(1− v)b−1, 0 < v < 1 (1.5)

where a > 0 and b > 0 are parameters and Γ(·) is the gamma function, Γ(c) =
´∞
0
xc−1e−xdx

for c > 0. Note that Γ(c) = (c − 1)! for an integer c. The a and b parameters control the
shape of the distribution. The distribution is right-skewed for a > b, and the distribution
is left-skewed for a < b. When a = b, the distribution is symmetric about v = 0.5. Our
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program Beta.R gives a few example plots of the distribution. The α quantile of a beta
distribution, denoted by vα or beta(α; a, b), is found by solving

α =

vαˆ

0

Γ(a+ b)

Γ(a)Γ(b)
va−1(1− v)b−1dv

for vα.
The (1−α)100% Clopper-Pearson interval is simply quantiles from two beta distributions:

beta (α/2; w, n− w + 1) < π < beta (1− α/2; w + 1, n− w) .

Due to the restriction a > 0, the lower endpoint cannot be computed if w = 0. In that
case, the lower limit is taken to be 0. Similarly, the upper limit is taken to be 1 whenever
w = n due to b > 0. Because the remaining beta quantiles lie strictly between 0 and 1, the
Clopper-Pearson interval respects the natural boundaries for probabilities.

Often, the Clopper-Pearson interval is given in terms of quantiles from an F -distribution
rather than a beta distribution. This comes about through a relationship between the two
distributions; see #9.21 on p. 454 of Casella and Berger (2002) for this relationship. Both
formulas produce the same limits and beta quantiles are easy to compute, so we omit the
F -based formula here.

There are a few variations on the Clopper-Pearson interval. The Blaker interval proposed
in Blaker (2000, 2001) also guarantees the true confidence level is always equal to or greater
than the stated level. An added benefit is that the interval is no wider than the Clopper-
Pearson interval and is often narrower. A disadvantage is that the interval is more difficult
to calculate and requires an iterative numerical procedure to find its limits. The CIpi.R
program shows how to calculate the interval using the binom.blaker.limits() function
of the BlakerCI package. Another variation on the Clopper-Pearson interval is the mid-p
interval. This interval no longer guarantees the true confidence level to be greater than
the stated level, but it will be shorter than the Clopper-Pearson interval while performing
relatively well with respect to the stated confidence level (Brown et al., 2001). The CIpi.R
program shows how to calculate this interval using the midPci() function of the PropCIs
package.

Example: Clopper-Pearson interval (CIpi.R)

Suppose w = 4 successes are observed out of n = 10 trials again. The 95% Clopper-
Pearson interval is beta (0.025; 4, 7) < π < beta (0.975; 5, 6) . The qbeta() function
in R calculates these quantiles resulting in an interval 0.1216 < π < 0.7376. Notice
that this is the widest of the intervals calculated so far.

Below is the R code used to calculate the interval:

> round(qbeta(p = c(alpha/2, 1-alpha /2), shape1 = c(w, w+1),
shape2 = c(n-w+1, n-w)) ,4)

[1] 0.1216 0.7376

> binom.confint(x = w, n = n, conf.level = 1-alpha , methods =
"exact")

method x n mean lower upper
1 exact 4 10 0.4 0.1215523 0.7376219

Within the qbeta() function call, the shape1 argument is a and the shape2 argument
is b. We use vectors within qbeta() to find the quantiles. R matches each vector
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Table 1.1: Confidence intervals for the hepatitis C prevalence.
Method Interval Length
Wald (0.0157, 0.0291) 0.0134

Agresti-Coull (0.0165, 0.0302) 0.0137
Wilson (0.0166, 0.0301) 0.0135

Clopper-Pearson (0.0162, 0.0302) 0.0140

value to produce the equivalent of separate qbeta() function runs for the lower and
upper limits. The binom.confint() function is used as an alternative way to find
the interval where method = "exact" gives the Clopper-Pearson interval. Note that
this interval was also given earlier when we used method = "all".

Example: Hepatitis C prevalence among blood donors (HepCPrev.R)

Blood donations are screened for diseases to prevent transmission from donor to
recipient. To examine how prevalent hepatitis C is among blood donors, Liu et al.
(1997) focused on 1,875 blood donations in Xuzhou City, China.4 They observed that
42 donations tested positive for the antigen produced by the body when infected with
the virus. The 95% Wilson interval is 0.0166 < π < 0.0301, where we used the same
type of R code as in the previous examples. Thus, with 95% confidence, the hepatitis
C antigen prevalence in the Xuzhou City blood donor population is between 0.0166
and 0.0301.

In practice, we would only calculate one of the intervals discussed in this section. For
demonstration purposes, Table 1.1 displays additional 95% confidence intervals. Due
to the large sample size, we see that the intervals are similar with the Wald interval
being the most different from the others. The lengths of the intervals are similar as
well with the Clopper-Pearson interval being a little longer than the others.

Tests

When only one simple parameter is of interest, such as π here, we generally prefer confi-
dence intervals over hypothesis tests, because the interval gives a range of possible parameter
values. We can typically infer that a hypothesized value for a parameter can be rejected if it
does not lie within the confidence interval for the parameter. However, there are situations
where a fixed known value of π, say π0, is of special interest, leading to a formal hypothesis
test of H0 : π = π0 vs. Ha : π 6= π0.

With regard to the Wilson interval, it was noted that the score test statistic

Z0 =
π̂ − π0√

π0(1− π0)/n
,

is often used in these situations. When the null hypothesis is true, Z0 should have approx-
imately a standard normal distribution, where the approximation is generally better for
larger samples. The null hypothesis is rejected when an unusual value of Z0 is observed

4The study’s main purpose was to examine how well “group testing” would work to estimate overall disease
prevalence. See Bilder (2009) for an introduction to group testing.
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relative to this distribution, namely something less than −Z1−α/2 or greater than Z1−α/2.
The p-value is a measure of how extreme the test statistic value is relative to what is ex-
pected when H0 is true. This p-value is calculated as 2P (Z > |Z0|) where Z has a standard
normal distribution. Note that this test is equivalent to rejecting the null hypothesis when
π0 is outside of the Wilson interval. If desired, the prop.test() function can be used to
calculate Z0 (Z2

0 is actually given) and a corresponding p-value; this is demonstrated in the
CIpi.R program. This function also calculates the Wilson interval.

We recommend using the score test when performing a test for π. However, there are
alternative testing procedures. In particular, the likelihood ratio test (LRT) is a general
way to perform hypothesis tests, and it can be used here to test π (see Appendix B.5 for
an introduction). Informally, the LRT statistic is

Λ =
Maximum of likelihood function under H0

Maximum of likelihood function under H0 or Ha
.

For the specific test of H0 : π = π0 vs. Ha : π 6= π0, the denominator is π̂w(1 − π̂)n−w

(using Equation 1.2), because the maximum possible value of the likelihood function occurs
when it is evaluated at the MLE. The numerator is πw0 (1 − π0)n−w because there is only
one possible value of the likelihood function if the null hypothesis is true. The transformed
statistic −2 log(Λ) turns out to have an approximate χ2

1 distribution in large samples if the
null hypothesis is true. For this test, the transformed statistic can be re-expressed as

−2 log(Λ) = −2

{
wlog

(π0
π̂

)
+ (n− w)log

(
1− π0
1− π̂

)}
.

We reject the null hypothesis if −2 log(Λ) > χ2
1,1−α/2, where χ

2
1,1−α/2 is the 1−α/2 quantile

from a chi-square distribution with 1 degree of freedom (for example, χ2
1,0.95 = 3.84 when

α = 0.05). The p-value is P (A > −2 log(Λ)) where A has a χ2
1 distribution.

An alternative way to calculate a confidence interval for π is to invert the LRT in a similar
manner as was done for the Wilson interval (see Exercise 13). This likelihood ratio (LR)
interval is automatically calculated by the binom.confint() function of the binom package,
where the methods = "lrt" argument value is used. We provide additional code in CIpi.R
that shows how to find the interval without this function. The interval is generally harder
to compute than the intervals that we recommend in this section and has no advantages
over them. LR confidence intervals often are used in some more complicated contexts where
better intervals are not available (this will be the case in Chapters 2 to 4). The interval is
better than the Wald interval in most problems.

1.1.3 True confidence levels for confidence intervals

As discussed on p. 11, a confidence interval method may not actually achieve its stated
confidence level. The reasons for this are explained shortly. Figure 1.3 provides a comparison
of the true confidence levels for the Wald, Wilson, Agresti-Coull, and Clopper-Pearson
intervals. For each plot, n is 40 and the stated confidence level is 0.95 (α = 0.05). The
true confidence level (coverage) for each interval method is plotted as a function of π.
For example, the true confidence level at π = 0.157 is 0.8760 for the Wald, 0.9507 for
the Wilson, 0.9507 for the Agresti-Coull, and 0.9740 for the Clopper-Pearson intervals,
respectively. Obviously, none of these intervals achieve exactly the stated confidence level
on a consistent basis. Below are some general conclusions from examining this plot:

• The Wald interval tends to be the farthest from 0.95 the most often. In fact, the true
confidence level is often too low for it to be on the plot at extreme values of π.



18 Analysis of Categorical Data with R

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Wald

π

T
ru

e
 c

o
n

fi
d

e
n

c
e

 l
e
v
e

l

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Agresti−Coull

π

T
ru

e
 c

o
n

fi
d

e
n

c
e

 l
e
v
e

l

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Wilson

π

T
ru

e
 c

o
n

fi
d

e
n

c
e

 l
e
v
e

l

0.0 0.2 0.4 0.6 0.8 1.0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

Clopper−Pearson

π

T
ru

e
 c

o
n

fi
d

e
n

c
e

 l
e
v
e

l

Figure 1.3: True confidence levels with n = 40 and α = 0.05.

• The Agresti-Coull interval does a much better job than the Wald with its true confi-
dence level usually between 0.93 and 0.98. For values of π close to 0 or 1, the interval
can be very conservative.

• The Wilson interval performs a little better than the Agresti-Coull interval with its
true confidence level generally between 0.93 and 0.97; however, for very extreme π,
it can be very liberal. Note that this performance for extreme π can be improved
by changing the lower interval limit to −log(1 − α)/n when w = 1 and the upper
interval limit to 1 + log(1 − α)/n when w = n − 1; see p. 112 of Brown et al. (2001)
for justification. This small modification was used by the binom.confint() function
in the past (version 1.0-5 of the package), but it is now no longer implemented as of
version 1.1-1 of the package.

• The Clopper-Pearson interval has a true confidence level at or above the stated level,
where it is generally oscillating between 0.95 and 0.98. For values of π close to 0 or
1, the interval can be very conservative.

Similar findings can be shown for other values of n and α. The R code used to construct
Figure 1.3 is available in the ConfLevel4Intervals.R program, and it will be discussed shortly.

Why do these plots in Figure 1.3 have such strange patterns? It is all because of the
discreteness of a binomial random variable. For a given n, there are only n + 1 possible
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intervals that can be formed, one for each value of w = 0, 1, . . . , n. For a specific value of
π, some of these intervals contain π and some do not. Thus, the true confidence level at π,
say C(π), is the sum of the binomial probabilities for all intervals that do contain π:

C(π) =

n∑
w=0

I(w)
( n
w

)
πw(1− π)n−w, (1.6)

where I(w) = 1 if the interval formed with w contains π, and I(w) = 0 if not. Each of these
binomial probabilities in Equation 1.6 changes slowly as π changes. As long as we do not
move π past any interval limits, the true confidence level changes slowly too. However, as
soon as π crosses over an interval limit, a mass of probability is suddenly either added to or
subtracted from the true confidence level, resulting in the spikes that appear in all parts of
Figure 1.3. We illustrate how to find the true confidence level and when these spikes occur
in the next example.

Example: True confidence level for the Wald interval (ConfLevel.R)

We show in this example how to calculate a true confidence level for the Wald
interval with n = 40, π = 0.157, and α = 0.05. Below is a description of the process:

1. Find the probability of obtaining each possible value of w using the dbinom()
function with n = 40 and π = 0.157,

2. Calculate the 95% Wald confidence interval for each possible value of w, and

3. Sum up the probabilities corresponding to those intervals that contain π = 0.157;
this is the true confidence level.

Below is the R code:

> pi <- 0.157
> alpha <- 0.05
> n <- 40
> w <- 0:n
> pi.hat <- w/n
> pmf <- dbinom(x = w, size = n, prob = pi)
> var.wald <- pi.hat*(1-pi.hat)/n
> lower <- pi.hat - qnorm(p = 1-alpha /2) * sqrt(var.wald)
> upper <- pi.hat + qnorm(p = 1-alpha /2) * sqrt(var.wald)
> save <- ifelse(test = pi >lower , yes = ifelse(test = pi <upper ,

yes = 1, no = 0), no = 0)
> data.frame(w, pi.hat , round(data.frame(pmf , lower , upper) ,4),

save)[1:13 ,]
w pi.hat pmf lower upper save

1 0 0.000 0.0011 0.0000 0.0000 0
2 1 0.025 0.0080 -0.0234 0.0734 0
3 2 0.050 0.0292 -0.0175 0.1175 0
4 3 0.075 0.0689 -0.0066 0.1566 0
5 4 0.100 0.1187 0.0070 0.1930 1
6 5 0.125 0.1591 0.0225 0.2275 1
7 6 0.150 0.1729 0.0393 0.2607 1
8 7 0.175 0.1564 0.0572 0.2928 1
9 8 0.200 0.1201 0.0760 0.3240 1
10 9 0.225 0.0795 0.0956 0.3544 1



20 Analysis of Categorical Data with R

11 10 0.250 0.0459 0.1158 0.3842 1
12 11 0.275 0.0233 0.1366 0.4134 1
13 12 0.300 0.0105 0.1580 0.4420 0

> sum(save*pmf)
[1] 0.875905
> sum(dbinom(x = 4:11, size = n, prob = pi))
[1] 0.875905

The code contains many of the same components that we have seen before. The main
difference now is that we are calculating an interval for each possible value of w rather
an interval for only one. One new part within the code is the ifelse() function. This
function does a logical check for whether or not π is within each of the 41 intervals. For
example, the second interval is (−0.0234, 0.0734), which does not contain π = 0.157
so the save object has a value of 0 for its second element.

The data frame created at the end puts all of the calculated components together
into a table. For example, we see that if w = 3, the corresponding interval does not
contain π, but at w = 4 the corresponding interval does. By examining other parts
of the data frame, we see that the intervals for w = 4 to 11 all contain π = 0.157.
The probability that a binomial random variable is between 4 and 11 with n = 40 and
π = 0.157 is 0.8759, which is the true confidence level. Obviously, the Wald confidence
interval does not achieve its stated level of 95%.

Notice that the upper interval limit at w = 3 barely does not contain π = 0.157
and P (W = 3) = 0.0689. By using the same code with the change of pi <- 0.156,
the upper limit at w = 3 now does contain π = 0.156, so that P (W = 3) = 0.0706 is
included when summing probabilities for the true confidence level. Overall, w = 3 to
11 now have confidence intervals that contain π = 0.156 leading to a true confidence
level of 0.9442! This demonstrates what we alluded to earlier as the cause for the
spikes in Figure 1.3.

In simple problems like the present one, we can exactly determine the probabilities of each
interval that contains a given π, so that the plots like in Figure 1.3 can be made exactly.
In other cases, we may have to rely on Monte Carlo simulation. We explore the simulation
approach next to enable us to compare an exact true confidence level to one estimated by
simulation. This will be helpful later in the text when the simulation method is the only
available method of assessment.

Example: Estimated true confidence level for the Wald interval (ConfLevel.R)

Suppose again that n = 40, π = 0.157, and α = 0.05. Below is a description of the
process to estimate the true confidence level through simulation:

1. Simulate 1,000 samples using the rbinom() function with n = 40 and π = 0.157,

2. Calculate the 95% Wald confidence interval for each sample, and

3. Calculate the proportion of intervals that contain π = 0.157; this is the estimated
true confidence level.

Below is the R code:



Analyzing a binary response, part 1: introduction 21

> numb.bin.samples <- 1000 # Binomial samples of size n

> set.seed (4516)
> w <- rbinom(n = numb.bin.samples , size = n, prob = pi)
> pi.hat <- w/n
> var.wald <- pi.hat*(1-pi.hat)/n
> lower <- pi.hat - qnorm(p = 1-alpha /2) * sqrt(var.wald)
> upper <- pi.hat + qnorm(p = 1-alpha /2) * sqrt(var.wald)
> data.frame(lower , upper)[1:10 ,]

w pi.hat lower upper
1 6 0.150 0.039344453 0.2606555
2 6 0.150 0.039344453 0.2606555
3 7 0.175 0.057249138 0.2927509
4 8 0.200 0.076040994 0.3239590
5 8 0.200 0.076040994 0.3239590
6 6 0.150 0.039344453 0.2606555
7 8 0.200 0.076040994 0.3239590
8 3 0.075 -0.006624323 0.1566243
9 5 0.125 0.022511030 0.2274890
10 4 0.100 0.007030745 0.1929693

> save <- ifelse(test = pi >lower , yes = ifelse(test = pi <upper ,
yes = 1, no = 0), no = 0)

> save [1:10]
[1] 1 1 1 1 1 1 1 0 1 1
> mean(save)
[1] 0.878

Again, we are using much of the same code as in the past. The ifelse() function is
used to check whether π = 0.157 is within each of the intervals. For example, we see
that sample #8 results in π̂ = 0.075 and an interval of (-0.0066, 0.1566), which does
not contain 0.157, so the corresponding value of save is 0. The mean of all the 0’s and
1’s in save is 0.878. This is our estimated true confidence level for the Wald interval
at n = 40 and π = 0.157.

In this relatively simple simulation problem, we already know that the intervals for
w = 4, . . . , 11 contain π = 0.157 while the others do not. To see that the simulation
is, indeed, estimating P (4 ≤ W ≤ 11), the table() function is used to calculate the
number of times each w occurs:

> counts <- table(w)
> counts
w
1 2 3 4 5 6 7 8 9 10 11
8 35 64 123 147 165 172 123 76 46 26

12 13
11 4
> sum(counts [4:11])/numb.bin.samples
[1] 0.878

For example, there were 64 out of the 1,000 observations that resulted in a w = 3.
This is very similar to the P (W = 3) = 0.0689 that we obtained for the past example.
Summing up the counts for w = 4, . . . , 11 and dividing by 1000, we obtain the same
estimate of 0.878 for the true confidence level.
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The estimate of the true confidence level here is almost the same as the actual
true confidence level found in the previous example. Due to using a large number of
samples, the law of large numbers ensures that this will happen. We could even go as
far as finding a confidence interval for the true confidence level! For this case, we have
878 “successes” out of 1,000 “trials.” A 95%Wilson interval for the true confidence level
itself is (0.8563, 0.8969), which happens to contain 0.8759, the known true confidence
level.

Figure 1.3 provides the true confidence levels for π = 0.001, ..., 0.999 by 0.0005, where we
use straight lines to fill in the missing confidence levels between plotting points at levels of
π not used. In order to calculate all of these 1,997 different confidence levels for a particular
interval, we repeat the same code as before, but now for each π by using a “for loop” within
R. The next example illustrates this process.

Example: True confidence level plot (ConfLevel4Intervals.R, ConfLevelWald-
Only.R)

With n = 40 and α = 0.05, we calculate the true confidence levels for the Wald
interval using the following code:

> alpha <- 0.05
> n <- 40
> w <- 0:n
> pi.hat <- w/n
> pi.seq <- seq(from = 0.001, to = 0.999, by = 0.0005)

> # Wald
> var.wald <- pi.hat*(1-pi.hat)/n
> lower.wald <- pi.hat - qnorm(p = 1-alpha /2) * sqrt(var.wald)
> upper.wald <- pi.hat + qnorm(p = 1-alpha /2) * sqrt(var.wald)

> # Save true confidence levels in a matrix
> save.true.conf <- matrix(data = NA, nrow = length(pi.seq), ncol

= 2)

> # Create counter for the loop
> counter <- 1

> # Loop over each pi
> for(pi in pi.seq) {

pmf <- dbinom(x = w, size = n, prob = pi)
save.wald <- ifelse(test = pi >lower.wald , yes = ifelse(test =

pi <upper.wald , yes = 1, no = 0), no = 0)
wald <- sum(save.wald*pmf)
save.true.conf[counter ,] <- c(pi , wald)
# print(save.true.conf[counter ,])
counter <- counter +1

}

> plot(x = save.true.conf[,1], y = save.true.conf[,2], main =
"Wald", xlab = expression(pi), ylab = "True confidence level",
type = "l", ylim = c(0.85 ,1))

> abline(h = 1-alpha , lty = "dotted ")
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We create a vector pi.seq which is a sequence of numbers from 0.001 to 0.999 by
0.0005. The for(pi in pi.seq) function code (often referred to as a “for loop”)
instructs R to take one π value out of pi.seq at a time. The code enclosed by braces
then finds the true confidence level for this π. The save.true.conf object is a matrix
that is created to have 1,997 rows and 2 columns. At first, all of its values are initialized
to be "NA" within R. Its values are updated then one row at a time by inserting the
value of π and the true confidence level. Finally, the counter object allows us to
change the row number of save.true.conf within the loop.5

After the for loop, we use use the plot() function to plot the value of π on the
x-axis and the true confidence level on the y-axis using the appropriate columns of
save.true.conf. The type = "l" argument instructs R to construct a line plot where
each π and true confidence level pair is connected by a line. The abline() function
draws a horizontal dotted line at 0.95, which is the stated confidence level. Please see
the upper left plot in Figure 1.3 for the final result. In order to construct all four plots
in Figure 1.3, we insert the code for the other three intervals into the braces of the
loop. We also add three columns to the save.true.conf matrix and use additional
calls to the plot() function. Please see ConfLevel4Intervals.R for the code.

The binom package in R also can be used to calculate the true confidence levels. The
binom.coverage() function calculates the true confidence level for one π at a time,
and the binom.plot() function plots the true confidence levels over a set of different
values of π. Examples of using these functions are in the programs for this example.
Note that we purposely demonstrated the calculations without binom.coverage()
first, because convenient functions like it are not available for other situations examined
elsewhere in the textbook.

1.2 Two binary variables

We consider now the situation when the same Bernoulli trial is measured on units that
can be classified into groups. The simplest such case is when a population consists of two
groups, such as females and males, fresh- and salt-water fish, or American and foreign
companies. Below are two examples with a binary response on trials that form two groups.

Example: Larry Bird’s free throw shooting

A free throw is a shot in basketball where the shooter can shoot freely (unopposed
by another player) from a specific location on the court. The shot is either made (a
success) or missed (a failure). Most often during a National Basketball Association
(NBA) game, free throws are shot in pairs. This means a free throw shooter has one
attempt and then subsequently has a second attempt no matter what happens on the
first.

The former NBA player Larry Bird was one of the most successful at making free
throws during his career with a success rate of 88.6%. By comparison, the NBA

5If desired, the call to the print() function can be uncommented to see the progress during the loop. If
this is done, it is best to turn off the “buffered output” in R: select Misc > Buffered output from the R main
menu.
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Table 1.2: Larry Bird’s free throw outcomes; data source is Wardrop (1995).
Second

Made Missed Total

First Made 251 34 285
Missed 48 5 53
Total 299 39 338

Table 1.3: Salk vaccine clinical trial results; data source is Francis et al. (1955, p. 25).
Polio Polio free Total

Vaccine 57 200,688 200,745
Placebo 142 201,087 201,229
Total 199 401,775 401,974

average during this time was about 75% (http://www.basketball-reference.com).
Bird’s outstanding success rate is among his many achievements, for which he has
been recognized as one of the 50 greatest players in the history of the NBA (http://
www.nba.com/history/players/50greatest.html). During the 1980-81 and 1981-
82 NBA seasons, the outcomes from Bird’s free throw attempts shot in pairs were
recorded, and a summary is shown in Table 1.2. For example, Bird made both his
first and second attempts 251 times. Also, Bird made the first attempt, but then
subsequently missed the second attempt 34 times. Overall, he made the first attempt
285 times without regard to what happened on the second attempt. In total, Bird
shot 338 pairs of free throw pairs during the season.

Basketball fans and commentators often speculate that the results of a second free
throw might depend on the results of the first. For example, if a shooter misses the
first attempt, will disappointment or determination lead to altering his/her approach
for the second attempt? If so, then we should see that the probability of success on the
second attempt is different depending on whether the first attempt was made or missed.
Thus, the two groups in this problem are formed by the results of the first attempt,
and the Bernoulli trials that we observe are the results of the second attempt. Given
the data in Table 1.2, we will investigate if the second attempt outcome is dependent
on what happens for the first attempt.

Example: Salk vaccine clinical trial

Clinical trials are performed to determine the safety and efficacy of new drugs.
Frequently, the safety and efficacy responses are categorical in nature; for example,
the efficacy response may be simply whether a drug cures or does not cure a patient
of a disease. In order to ensure that a new drug is indeed better than doing nothing
(patients sometimes get better without intervention), it is essential to have a control
group in the trial. This is achieved in clinical trials by randomizing patients into
two groups: new drug or control. The control group is often a placebo, which is
administered just like the new drug but contains no medication.

One of the most famous and largest clinical trials ever performed was in 1954. Over
1.8 million children participated in the clinical trial to determine the effectiveness of the
polio vaccine developed by Jonas Salk (Francis et al., 1955). While the actual design
of the trial sparked debate (Brownlee, 1955; Dawson, 2004), we forgo this discussion
and focus on the data obtained from the randomized, placebo-controlled portion of
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Table 1.4: Probability and observed count structures for two independent binomial
random variables.

Response Response
1 2 1 2

Group 1 π1 1− π1 1 Group 1 w1 n1 − w1 n1
2 π2 1− π2 1 2 w2 n2 − w2 n2

w+ n+ − w+ n+

the trial. The data, given in Table 1.3, show that 57 out of the 200,745 children in the
vaccine group developed polio during the study period, as opposed to 142 out of the
201,229 children in the placebo group. The question of interest for the clinical trial
was “Does the vaccine help to prevent polio?” We will develop comparison measures
in this section to answer this question.

1.2.1 Notation and model

The model and notation follow those used for a single binomial random variable in Section
1.1. We start by considering two separate Bernoulli random variables, Y1 and Y2, one for
each group. The probabilities of success for the two groups are denoted by π1 and π2,
respectively. We observe nj trials of Yj leading to wj observed successes, j = 1, 2.6 We
replace a subscript with “+” to denote a sum across that subscript. Thus, n+ = n1 + n2
is the total number of trials, and w+ = w1 + w2 is the total number of observed successes.
This notation is depicted in Table 1.4. The table on the right side of Table 1.4 is called a
two-way contingency table, because it gives a listing of all possible cross-tabulations of two
categorical variables. We cover more general forms of contingency tables in Chapters 3 and
4.

We denote the random variable representing the number of successes in group j by Wj

and write its PMF as

P (Wj = wj) =

(
nj
wj

)
π
wj
j (1− πj)nj−wj , wj = 0, 1, . . . , nj , j = 1, 2.

We assume that the two random variables Y1 and Y2 are independent, so that the outcome
of one cannot affect the outcome of the other. In the Salk vaccine clinical trial, for example,
this means that children assigned to receive vaccine cannot pass on immunity or disease to
children in the placebo group and vice versa. This assumption is critical in what follows,
and so this model is referred to as the independent binomial model. When independence is
not satisfied, then other models need to be used that account for dependence between the
random variables (e.g., see Section 1.2.6 for handling paired data).

When we want to simulate data from this model, we will use R code like what is shown
below. This sampling procedure will be important shortly when we use these simulated
counts to evaluate statistical inference procedures, like confidence intervals, to determine if
they work as expected.

6More formally, we could define yij as the observed value for the ith independent trial in the jth group.
This leads to wj =

∑nj
i=1 yij .
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Example: Simulate counts in a contingency table (SimContingencyTable.R)

Consider the case of π1 = 0.2, π2 = 0.4, n1 = 10, and n2 = 10. The R code below
shows how to simulate one set of counts for a contingency table.

> pi1 <- 0.2
> pi2 <- 0.4
> n1 <- 10
> n2 <- 10

> set.seed (8191)
> w1 <- rbinom(n = 1, size = n1, prob = pi1)
> w2 <- rbinom(n = 1, size = n2, prob = pi2)

> c.table <- array(data = c(w1 , w2, n1-w1 , n2 -w2), dim = c(2,2),
dimnames = list(Group = c(1,2), Response = c(1, 2)))

> c.table
Response

Group 1 2
1 1 9
2 3 7

> c.table1 [1,1] # w1
[1] 1
> c.table1 [1,2] # n1-w1
[1] 9
> c.table1 [1,] # w1 and n1 -w1
1 2
1 9
> sum(c.table1 [1,]) # n1
[1] 10

Similar to Section 1.1, we use the rbinom() function to simulate values for w1 and w2.
To form the contingency table (what we name c.table), we use the array() function.
Its data argument contains the counts within the contingency table. These counts
are concatenated together using the c() function. Notice that the data are entered
by columns (w1, w2, n1 − w1, n2 − w2). The dim argument specifies the contingency
table’s dimensions as (number of rows, number of columns), where the c() function
is used again. Finally, the dimnames argument gives names for the row and column
measurements. The names are given in a list format, which allows for a number of
objects to be linked together (please see Appendix A.7.3 for more on lists if needed).
In this case, the objects are Group and Response that contain the levels of the rows
and columns, respectively.

For this particular sample, w1 = 1, n1−w1 = 9, w2 = 3, and n2−w2 = 7. We access
these values from within the contingency table by specifying a row and column number
with c.table. For example, c.table[1,2] is equal to n1 − w1. We omit a column
or row number within [ ] to have a whole row or column, respectively, displayed.
Summed counts are found by using the sum() function with the appropriate counts.

If we wanted to repeat this process, say, 1,000 times, the n argument of the rbinom()
functions would be changed to 1,000. Each contingency table would need to be formed
separately using the array() function. The corresponding program for this example
provides the code.
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Likelihood and estimates

The main interests in this problem are estimating the probabilities of success, π1 and
π2, for each group and comparing these probabilities. Maximum likelihood estimation
again provides a convenient and powerful solution. Because Y1 and Y2 are independent, so
too are W1 and W2. The likelihood function formed by independent random variables is
just the product of their respective likelihood functions. Hence, the likelihood function is
L(π1, π2|w1, w2) = L(π1|w1)× L(π2|w2). Maximizing this likelihood over π1 and π2 results
in the “obvious” estimates π̂1 = w1/n1 and π̂2 = w2/n2, the sample proportions in the two
groups. In other words, when the random variables are independent, each probability is
estimated using only the data from its own group.

Example: Larry Bird’s free throw shooting (Bird.R)

The purpose of this example is to estimate the probability of successes using a
contingency table structure in R. If the Bernoulli trial results are already summarized
into counts as in Table 1.2, then a contingency table is created in R using the array()
function:

> c.table <- array(data = c(251, 48, 34, 5), dim = c(2,2),
dimnames = list(First = c("made", "missed "), Second =
c("made", "missed ")))

> c.table
Second

First made missed
made 251 34
missed 48 5

> list(First = c("made", "missed "), Second = c("made", "missed "))
$First
[1] "made" "missed"
$Second
[1] "made" "missed"

Because the levels of row and column variables have names, we use these names within
the dimnames argument.

The estimates of the probability of successes (or sample proportions) are found by
taking advantage of how R performs calculations:

> rowSums(c.table) # n1 and n2
made missed

285 53

> pi.hat.table <- c.table/rowSums(c.table)
> pi.hat.table

Second
First made missed

made 0.8807018 0.11929825
missed 0.9056604 0.09433962

The rowSums() function find the sum of counts in each row to obtain n1 and n2. By
taking the contingency table of counts divided by these row sums, we obtain π̂1 and
π̂2 in the first column and 1− π̂1 and 1− π̂2 in the second column. Notice that R does
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this division correctly taking the counts in the first (second) row of c.table divided
by the first (second) element of rowSums(c.table).

Data are often available as measurements on each trial, rather than as summarized
counts. For example, the Larry Bird data would originally have consisted of 338
unaggregated pairs of first and second free throw results. Thus, the data might have
appeared first as7

> head(all.data2)
first second

1 made made
2 missed made
3 made missed
4 missed missed
5 made made
6 missed made

In this example, first represents the group and second is the trial response. All 338
observations are stored in a data frame named all.data2 within the corresponding
program for this example, and we print the first 6 observations using the head()
function. We call this data format the raw data because it represents how the data
looked before being processed into counts.

To form a contingency table from the raw data, we can use the table() or xtabs()
functions:

> bird.table1 <- table(all.data2$first , all.data2$second)
> bird.table1

made missed
made 251 34
missed 48 5
> bird.table1 [1,1] # w1
[1] 251

> bird.table2 <- xtabs(formula = ~ first + second , data =
all.data2)

> bird.table2
second

first made missed
made 251 34
missed 48 5

> bird.table2 [1,1] # w1
[1] 251

In both cases, the functions produce a contingency table that is saved into an object
to allow parts of it to be accessed as before. Note that the “xtabs” name comes
about through an abbreviation of crosstabulations, which is a frequently used term to
describe the joint summarization of multiple variables.

The estimated probability that Larry Bird makes his second free throw attempt is
π̂1 = 0.8807 given that he makes the first and π̂2 = 0.9057 given he misses the first.
In this sample, the probability of success on the second attempt is larger when the

7The actual order of Larry Bird’s free throw results are not available. We present this as a hypothetical
ordering to emulate what may have occurred.
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first attempt is missed rather than made. This is somewhat counterintuitive to many
basketball fans’ perceptions that a missed first free throw should lower the probability
of success on the second free throw. However, this is only for one sample. We would
like to generalize to the population of all free throw attempts by Larry Bird. In order
to make this generalization, we need to use statistical inference procedures. We discuss
these next.

1.2.2 Confidence intervals for the difference of two probabilities

A relatively easy approach to comparing π1 and π2 can be developed by taking their
difference π1−π2. The corresponding estimate of π1−π2 is π̂1−π̂2. Each success probability
estimate has a probability distribution that is approximated by a normal distribution in
large samples: π̂j∼̇N(πj , V̂ ar(π̂j)), where V̂ ar(π̂j) = π̂j(1 − π̂j)/nj , j = 1, 2. Because
linear combinations of normal random variables are themselves normal random variables
(Casella and Berger, 2002, p. 156), the probability distribution for π̂1− π̂2 is approximated
by N(π1 − π2, V̂ ar(π̂1 − π̂2)), where V̂ ar(π̂1 − π̂2) = π̂1(1− π̂1)/n1 + π̂2(1− π̂2)/n2.8 This
distribution forms the basis for a range of inference procedures.

The easiest confidence interval to form for π1 − π2 uses the normal approximation for
π̂1 − π̂2 directly to create a Wald interval:

π̂1 − π̂2 ± Z1−α/2

√
π̂1(1− π̂1)

n1
+
π̂2(1− π̂2)

n2
.

Unfortunately, the Wald interval for π1−π2 has similar problems with achieving the stated
level of confidence as the Wald interval for π. We will investigate this shortly.

Due to these problems, a number of other confidence intervals for π1 − π2 have been
proposed. Inspired by the good general performance of the Agresti-Coull interval for a
single probability, Agresti and Caffo (2000) investigated various intervals constructed as
Wald-type intervals on data with different numbers of added successes and failures. They
found that adding one success and one failure for each group results in an interval that does
a good job of achieving the stated confidence level. Specifically, let

π̃1 =
w1 + 1

n1 + 2
and π̃1 =

w2 + 1

n2 + 2

be the amended estimates of π1 and π2. Notice that unlike π̃ for the Agresti-Coull interval,
the π̃1 and π̃2 estimates do not change when the confidence level changes. The (1−α)100%
Agresti-Caffo confidence interval for π1 − π2 is

π̃1 − π̃2 ± Z1−α/2

√
π̃1(1− π̃1)

n1 + 2
+
π̃2(1− π̃2)

n2 + 2
.

Overall, we recommend the Agresti-Caffo method for general use.
Other confidence interval methods though have been developed analogous to the single-

parameter case discussed in Section 1.1.2. There is a score interval based on inverting
the test statistic for a score test of H0 : π1 − π2 = d (i.e., determining for what values d

8This is an application of the following result: V ar(aU + bV ) = a2V ar(U) + b2V ar(V ) + 2abCov(U, V ),
where U and V are random variables and a and b are constants. If U and V are independent random
variables, then Cov(U, V ) = 0. See p. 171 of Casella and Berger (2002).
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of π1 − π2 that the null hypothesis is not rejected). This turns out to be a considerably
more difficult computational problem than in the single-parameter case, because H0 does
not actually specify the values of π1 and π2. Exercise 24 discusses how this interval is
calculated. Similarly, there is a two-group Bayesian credible interval similar to Jeffreys
method, but this involves distributions that are not as simple to compute as the standard
normal. Details of this interval are available in Agresti and Min (2005a).

Example: Larry Bird’s free throw shooting (Bird.R)

The purpose of this example is to calculate a confidence interval for the difference
in the second free throw success probabilities given the first attempt outcomes. Con-
tinuing the code from earlier, we obtain the following:

> alpha <- 0.05
> pi.hat1 <- pi.hat.table [1,1]
> pi.hat2 <- pi.hat.table [2,1]

> # Wald
> var.wald <- pi.hat1*(1-pi.hat1) / sum(c.table [1,]) +

pi.hat2*(1-pi.hat2) / sum(c.table [2,])
> pi.hat1 - pi.hat2 + qnorm(p = c(alpha/2, 1-alpha /2)) *

sqrt(var.wald)
[1] -0.11218742 0.06227017

> # Agresti -Caffo
> pi.tilde1 <- (c.table [1,1] + 1) / (sum(c.table [1,]) + 2)
> pi.tilde2 <- (c.table [2,1] + 1) / (sum(c.table [2,]) + 2)
> var.AC <- pi.tilde1 *(1-pi.tilde1) / (sum(c.table [1,]) + 2) +

pi.tilde2 *(1-pi.tilde2) / (sum(c.table [2,]) + 2)
> pi.tilde1 - pi.tilde2 + qnorm(p = c(alpha/2, 1-alpha /2)) *

sqrt(var.AC)
[1] -0.10353254 0.07781192

The 95% Wald interval is −0.1122 < π1 − π2 < 0.0623, and the 95% Agresti-Caffo
interval is −0.1035 < π1 − π2 < 0.0778. The intervals are somewhat similar with the
Wald interval being shifted to the left of the Agresti-Caffo interval. Using the Agresti-
Caffo interval, with 95% confidence, the difference in the second free throw success
probabilities given the outcome of the first is between −0.1035 and 0.0778. Because
this interval contains 0, we cannot detect a change in Bird’s probability of a successful
second free throw following made and missed first attempts. This means that either
there is no difference, or there is a difference, but it was not detected in this sample.
The latter situation could be caused by either bad luck (an unusual sample) or too
small of a sample size.

The same confidence intervals can be obtained in other ways. First, we can use the
following code when the data are not already within R via the array() function:

> w1 <- 251
> n1 <- 285
> w2 <- 48
> n2 <- 53
> alpha <- 0.05
> pi.hat1 <- w1/n1
> pi.hat2 <- w2/n2
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> var.wald <- pi.hat1*(1-pi.hat1) / n1 + pi.hat2*(1-pi.hat2) / n2
> pi.hat1 - pi.hat2 + qnorm(p = c(alpha/2, 1-alpha /2)) *

sqrt(var.wald)
[1] -0.11218742 0.06227017

Second, the prop.test() function shown later gives the Wald confidence interval as
part of its output (also used in Section 1.1.2). Finally, the wald2ci() function in
the PropCIs package also calculates the Wald and Agresti-Caffo confidence intervals.
Please see the corresponding program for example code.

To find a true confidence level for one of these confidence intervals, the joint probability
distribution for all possible combinations of (W1,W2) is needed. This distribution is just
the product of two binomial probabilities because these random variables are independent.
For a given n1 and n2, there are (n1+1)(n2+1) possible observed combinations of (w1, w2),
and a confidence interval can be computed for each of these combinations. For set values
of π1 and π2, some of these intervals contain π1 − π2 and some do not. Thus, the true
confidence level at π1 and π2, C(π1, π2), is the sum of the joint probabilities for all intervals
that do contain π1 − π2:

C(π1, π2) =

n2∑
w2=0

n1∑
w1=0

I(w1, w2)

(
n1
w1

)
πn1
1 (1− π1)n1−w1

(
n2
w2

)
πw2
2 (1− π2)n2−w2

where the indicator function I(w1, w2) is 1 if the corresponding interval contains π1 − π2
and I(w1, w2) is 0 otherwise. Calculation details are given in the next example.

Example: True confidence levels for the Wald and Agresti-Caffo intervals (Conf-
LevelTwoProb.R)

The true confidence level for the Wald interval can be found in a similar manner as
discussed in Section 1.1.3. Consider the case of α = 0.05, π1 = 0.2, π2 = 0.4, n1 = 10,
and n2 = 10. To find all possible combinations of (w1, w2), we use the expand.grid()
function, which finds all possible combinations of the arguments (separated by com-
mas) within its parentheses. We repeat this same process to find all possible values of
(π̂1, π̂2) and P (W1 = w1, W2 = w2). Below is the R code:

> alpha <- 0.05
> pi1 <- 0.2
> pi2 <- 0.4
> n1 <- 10
> n2 <- 10

> # All possible combinations of w1 and w2
> w.all <- expand.grid(w1 = 0:n1, w2 = 0:n2)

> # All possible combinations of pi^_1 and pi^_2
> pi.hat1 <- (0:n1)/n1
> pi.hat2 <- (0:n2)/n2
> pi.hat.all <- expand.grid(pi.hat1 = pi.hat1 , pi.hat2 = pi.hat2)

> # Find joint probability for w1 and w2
> prob.w1 <- dbinom(x = 0:n1 , size = n1 , prob = pi1)
> prob.w2 <- dbinom(x = 0:n2 , size = n2 , prob = pi2)



32 Analysis of Categorical Data with R

> prob.all <- expand.grid(prob.w1 = prob.w1 , prob.w2 = prob.w2)
> pmf <- prob.all$prob.w1*prob.all$prob.w2

> # P(W1 = w1, W2 = w2)
> head(data.frame(w.all , pmf = round(pmf ,4)))

w1 w2 pmf
1 0 0 0.0006
2 1 0 0.0016
3 2 0 0.0018
4 3 0 0.0012
5 4 0 0.0005
6 5 0 0.0002

For example, the probability of observing P (W1 = 1, W2 = 0) = 0.0016. Using these
probabilities, we calculate the true confidence level for the interval:

> var.wald <- pi.hat.all[,1] * (1-pi.hat.all[,1]) / n1 +
pi.hat.all[,2] * (1-pi.hat.all[,2]) / n2

> lower <- pi.hat.all[,1] - pi.hat.all[,2] - qnorm(p = 1-alpha /2)
* sqrt(var.wald)

> upper <- pi.hat.all[,1] - pi.hat.all[,2] + qnorm(p = 1-alpha /2)
* sqrt(var.wald)

> save <- ifelse(test = pi1 -pi2 > lower , yes = ifelse(test =
pi1 -pi2 < upper , yes = 1, no = 0), no = 0)

> sum(save*pmf)
[1] 0.9281274
> data.frame(w.all , round(data.frame(pmf , lower , upper) ,4),

save)[1:15 ,]
w1 w2 pmf lower upper save

1 0 0 0.0006 0.0000 0.0000 0
2 1 0 0.0016 -0.0859 0.2859 0
3 2 0 0.0018 -0.0479 0.4479 0
4 3 0 0.0012 0.0160 0.5840 0
5 4 0 0.0005 0.0964 0.7036 0
6 5 0 0.0002 0.1901 0.8099 0
7 6 0 0.0000 0.2964 0.9036 0
8 7 0 0.0000 0.4160 0.9840 0
9 8 0 0.0000 0.5521 1.0479 0
10 9 0 0.0000 0.7141 1.0859 0
11 10 0 0.0000 1.0000 1.0000 0
12 0 1 0.0043 -0.2859 0.0859 1
13 1 1 0.0108 -0.2630 0.2630 1
14 2 1 0.0122 -0.2099 0.4099 1
15 3 1 0.0081 -0.1395 0.5395 0

All possible Wald intervals are calculated, and the ifelse() function is used to check
if π1 − π2 = 0.2 − 0.4 = −0.2 is within each interval. The last data frame shows the
first 15 intervals with the results from this check. The probabilities corresponding to
the intervals that contain −0.2 are summed to produce the true confidence level of
0.9281, which is less than the stated level of 0.95.

We can also calculate the true confidence level while holding one of the probabilities
constant and allowing the other to vary. Figure 1.4 gives a plot where π2 = 0.4 and
π1 varies from 0.001 to 0.999 by 0.0005. We exclude the R code here because it is
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Figure 1.4: True confidence levels with n1 = 10, n2 = 10, π2 = 0.4, and α = 0.05.

quite similar to what was used in Section 1.1.3, where now we use the for() function
to loop over the different values of π1. Both the Agresti-Caffo and Wald lines are
drawn on the plot simultaneously by using the plot() function first for the Wald
true confidence levels and then using the lines() function for the Agresti-Caffo true
confidence levels. The legend() function places the legend on the plot. Please see the
program corresponding to this example for the code.

Figure 1.4 shows that the Wald interval never achieves the true confidence level!
The Agresti-Caffo interval has a true confidence level between 0.93 and 0.97. We
encourage readers to change the pre-set value for π2 in the program to examine what
happens in other situations. For example, the Wald interval is extremely liberal and
the Agresti-Caffo interval is extremely conservative for small π1 when π2 = 0.1 with
n1 = 10, n2 = 10, and α = 0.05.

We can also allow π2 to vary by the same increments as π1 in order to produce a
three-dimensional plot with the true confidence level on the third axis. The R code
is in the corresponding program to this example. Two for() function calls—one loop
for π2 and one loop for π1—are used within the code. Once all true confidence levels
are found, the persp3d() function from the rgl package of R produces an interactive
three-dimensional plot. Using the left and right mouse buttons inside the plot window,
the plot can be rotated and zoomed in, respectively. Figure 1.5 gives separate plots for
the Wald (left) and Agresti-Caffo (right) intervals. For both plots, a plane is drawn
at the 0.95 stated confidence level. We can see that the Wald interval never achieves
the stated confidence level, but the Agresti-Caffo interval does a much better job.
We encourage the reader to construct these plots in order to see the surfaces better
through rotating them.
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Figure 1.5: True confidence levels with n1 = 10, n2 = 10, and α = 0.05. The left-side
plot is for the Wald interval, and the right-side plot is for the Agresti-Caffo interval. Note
that true confidence levels less than 0.85 are excluded from the Wald interval plot.

These true confidence level calculations can also be made through Monte Carlo
simulation. We provide an example showing how this is done in our corresponding
program.

1.2.3 Test for the difference of two probabilities

A formal test of the hypotheses H0 : π1 − π2 = 0 vs. Ha : π1 − π2 6= 0 can be conducted,
again in several ways. A Wald test uses a test statistic

ZW =
π̂1 − π̂2√

π̂1(1−π̂1)
n1

+ π̂2(1−π̂2)
n2

,

and compares this statistic against the standard normal distribution. Note that the denom-
inator contains the estimated variance of π̂1 − π̂2 without regard to the null hypothesis.

Probability distributions for test statistics are generally computed assuming that null
hypothesis is true. In the present context, that means that the two group probabilities are
equal, and so a better estimated variance than what is in ZW can be computed by assuming
that π1 = π2. Notice that this condition implies that Y1 and Y2 have the same distribution.
Thus, W1 and W2 are both counts of successes from the same Bernoulli random variable,
and therefore w1 and w2 can be combined to represent w+ successes in n+ trials. Let
π̄ = w+/n+ be the estimated probability of success when the null hypothesis is true. Then
it can be shown that V̂ ar(π̂1 − π̂2) = π̄(1− π̄)(1/n1 + 1/n2). This leads to a test based on
comparing the statistic

Z0 =
π̂1 − π̂2√

π̄(1− π̄)(1/n1 + 1/n2)

to a standard normal distribution. This is the score test.
A more general procedure that is used for comparing observed counts to estimated

expected counts from any hypothesized model is the Pearson chi-square test. This
particular test is often used to perform hypothesis tests in a contingency table set-
ting, and we will spend much more time discussing it in Section 3.2. The model
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that is implied by our null hypothesis is a single binomial with n+ trials and prob-
ability of success π̄. The test statistic is formed by computing (observed count −
estimated expected count)2/(estimated expected count) over all observed counts, meaning
here both successes and failures in the two groups. The estimated expected number of
successes in group j under the null hypothesis model is nj π̄, and similarly the expected
number of failures is nj(1− π̄). Thus, the Pearson chi-square test statistic is

X2 =

2∑
j=1

(
(wj − nj π̄)2

nj π̄
+

(nj − wj − nj(1− π̄))2

nj(1− π̄)

)
. (1.7)

This can be simplified to

X2 =

2∑
j=1

(wj − nj π̄)2

nj π̄(1− π̄)
.

The X2 statistic has a distribution that is approximately χ2
1 when n1 and n2 are large and

when the null hypothesis is true. If the null hypothesis is false, the observed counts tend
not to be close to what is expected when the null hypothesis is true; thus, large values
of X2 relative to the χ2

1 distribution lead to a rejection of the null hypothesis. It can
be shown that the Pearson chi-square and score test results are identical for this setting,
because X2 = Z2

0 (see Exercise 25) and the χ2
1 distribution is equivalent to the distribution

of a squared standard normal random variable (e.g., Z2
0.975 = χ2

1,0.95 = 3.84). For those
readers unfamiliar with the latter result, please see p. 53 of Casella and Berger (2002) for
a derivation if desired.

A LRT can also be conducted. The test statistic can be shown to be

−2 log(Λ) = −2

[
w1log

(
π̄

π̂1

)
+ (n1 − w1)log

(
1− π̄
1− π̂1

)
+ w2log

(
π̄

π̂2

)
+(n2 − w2)log

(
1− π̄
1− π̂2

)]
(1.8)

where we take 0× log(∞) = 0 by convention. The null hypothesis is rejected if −2 log(Λ) >
χ2
1,1−α.
For all of these tests, the use of the standard normal or chi-squared distribution is based

on large-sample approximations. The tests are asymptotically equivalent, meaning that
they will give essentially the same results in very large samples. In small samples, however,
the three test statistics can have distributions under the null hypothesis that are quite
different from their approximations. Larntz (1978) compared the score, the LRT, and three
other tests in various small-sample settings and found that the score test clearly maintains
its size better than the others.9 Thus, the score test is recommended here, as it was for
testing the probability from a single group.

Example: Larry Bird’s free throw shooting (Bird.R)

The purpose of this example is to show how to perform the score test, Pearson
chi-square test, and LRT in R. We can use the prop.test() function to perform the
score and Pearson chi-square tests:

9The size of a testing procedure is the probability that it rejects the null hypothesis when the null hypothesis
is true. A test that holds the correct size is one that rejects at a rate equal to the type I error level of α.
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> prop.test(x = c.table , conf.level = 0.95, correct = FALSE)

2-sample test for equality of proportions without continuity
correction

data: c.table
X-squared = 0.2727 , df = 1, p-value = 0.6015
alternative hypothesis: two.sided
95 percent confidence interval:
-0.11218742 0.06227017
sample estimates:

prop 1 prop 2
0.8807018 0.9056604

The argument value for x is the contingency table. Alternatively, we could have
assigned x a vector with w1 and w2 within it and used a new argument n with a
vector value of n1 and n2 (see corresponding program for an example). The correct
= FALSE argument value guarantees that the test statistic is calculated as shown by
Z0; otherwise, a continuity correction is applied to help ensure that the test maintains
its size at or below α.10

The output gives the test statistic value as Z2
0 = 0.2727 and a p-value of P (A >

0.2727) = 0.6015, where A has a χ2
1 distribution. The decision is to not reject the

null hypothesis. The conclusion is that there is not a significant change in Bird’s
second free throw success percentage over the possible outcomes of the first attempt.
Note that the chisq.test() function and the summary.table() method function also
provide ways to perform the Pearson chi-square test. We will discuss these functions
in Section 3.2.

The code for the LRT is shown below:

> pi.bar <- colSums(c.table)[1]/ sum(c.table)
> log.Lambda <- c.table [1,1] * log(pi.bar / pi.hat.table [1,1]) +

c.table [1,2] * log((1-pi.bar) / (1-pi.hat.table [1 ,1])) +
c.table [2,1] * log(pi.bar / pi.hat.table [2,1]) + c.table [2,2]
* log((1-pi.bar) /(1-pi.hat.table [2 ,1]))

> test.stat <- -2*log.Lambda
> crit.val <- qchisq(p = 0.95, df = 1)
> p.val <- 1-pchisq(q = test.stat , df = 1)
> round(data.frame(pi.bar , test.stat , crit.val , p.val , row.names

= NULL), 4)
pi.bar test.stat crit.val p.val

1 0.8846 0.2858 3.8415 0.593

Under the null hypothesis, the estimate of the probability of success parameter is found
using the sum of the counts in the first column of c.table divided by the total sample
size, and the result is put into pi.bar. The code for the log.Lambda object shows
how to convert most of Equation 1.8 into the correct R syntax. The transformed test

10Note that the test statistic Z0 is a discrete random variable. Modifications to Z0 (or any other test
statistic that is a discrete random variable) called continuity corrections are sometimes made, and they can
be helpful when using a continuous distribution to approximate a discrete distribution. These corrections
often lead to very conservative tests (i.e., reject the null hypothesis at a rate less than α when the null
hypothesis is true), so they are not often used. Alternative procedures are discussed in Section 6.2.
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statistic is −2log(Λ) = 0.2858, and the p-value is P (A > 0.2858) = 0.5930. These
are nicely printed using the data.frame() function, where the row.names = NULL
argument value prevents the printing of an errant row name. The overall conclusion is
the same as for the score test. Note that the test statistic and p-value could have been
calculated a little more easily using the assocstats() function of the vcd package,
and this function also gives the Pearson chi-square test statistic as well. We show how
to use this function in the corresponding program to this example.

We conclude this example with a few additional notes:

• Notice that the success probability conditioning on the first free throw being missed
was subtracted from the success probability conditioning on the first free throw
being made. This is especially important to know if a one-side hypothesis test was
performed or if 0 was outside of a confidence interval. For example, many basketball
fans think that a missed first free throw has a negative impact on the second free
throw outcome. If the lower limit of the interval had been positive (i.e., the whole
interval is above 0), it would have confirmed this line of thinking with respect to
Larry Bird.

• As with other applications of statistics, care needs to be taken when interpreting the
results with respect to the population. For example, suppose we wanted to make
some claims regarding all of Larry Bird’s past, present, and future free throw pairs
when the data was collected. Strictly speaking, a random sample would need to be
taken from this entire population to formally make statistical inferences. Random
samples are often not possible in a sports setting, as in our example where we have
data from the 1980-1 and 1981-2 NBA seasons. Inference on a broader population
of free throws may or may not be appropriate. For example, Larry Bird’s free throw
shooting success rate may have changed from year to year due to practice or injuries.

• In addition to the sampling problem, Larry Bird’s career concluded in 1992. There-
fore, the population data may be obtainable, and we could actually calculate pop-
ulation parameters such as π1 and π2. Statistical inference would not be necessary
then.

1.2.4 Relative risks

The problem with basing inference on π1−π2 is that it measures a quantity whose meaning
changes depending on the sizes of π1 and π2. For example, consider two hypothetical
scenarios where the probability of disease is listed for two groups of people, say for smokers
(π1) and for nonsmokers (π2):

1. π1 = 0.51 and π2 = 0.50

2. π1 = 0.011 and π2 = 0.001.

In both cases π1−π2 = 0.01. But in the first scenario, an increase of 0.01 due to smoking is
rather small relative to the already sizable risk of disease in the nonsmoking population. On
the other hand, scenario 2 has smokers with 11 times the chance of disease than nonsmokers.
We need to be able to convey the relative magnitudes of these changes better than differences
allow.

In this instance, a preferred way to compare two probabilities is through the relative risk,
RR = π1/π2 (assuming π2 6= 0). For the example above, RR = 0.011/0.001 = 11.0 for
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the second scenario meaning that smokers are 11 times as likely to have the disease than
nonsmokers. Alternatively, we could say that smokers are 10 times more likely to have the
disease than nonsmokers. On the other hand, for the first scenario, RR = .51/.50 = 1.02,
indicating that smokers are just 2% more likely (or 1.02 times as likely) to have the disease.
Notice that when π1 = π2, RR = 1.

These numerical values are based on population probabilities. To obtain an MLE for RR,
we can make use of the invariance property of MLEs described in Appendix B.4 that allows
us to substitute the observed proportions for the probabilities, R̂R = π̂1/π̂2, assuming
π̂2 6= 0. It is this estimate that is often given in news reports that state risks associated
with certain factors such as smoking or obesity.

Because R̂R is an MLE, inference can be carried out using the usual procedures. It
turns out, however, that the normal approximation is rather poor for MLEs that are ratios,
especially when the estimate in the denominator may have non-negligible variability as
is the case here. Therefore, inference based on a normal approximation for R̂R is not
recommended. However, the normal approximation holds somewhat better for log(R̂R) =
log(π̂1) − log(π̂2)—the MLE for log(RR)— so inference is generally carried out on the log
scale. The variance estimate for log(R̂R) can be derived by the delta method (Appendix
B.4.2) as

V̂ ar(log(R̂R)) =
1− π̂1

n1π̂1
+

1− π̂2

n2π̂2
=

1

w1
− 1

n1
+

1

w2
− 1

n2
.

A (1 − α)100% Wald confidence interval for the population relative risk is found by first
computing the confidence interval for log(π1/π2),

log
(
π̂1
π̂2

)
± Z1−α/2

√
1

w1
− 1

n1
+

1

w2
− 1

n2
.

The exponential transformation is then used to find the Wald interval for the relative risk
itself:

exp
[
log
(
π̂1
π̂2

)
± Z1−α/2

√
1

w1
− 1

n1
+

1

w2
− 1

n2

]
,

where exp(·) is the inverse of the natural log function (b = exp(a) is equivalent to a = log(b)).
When w1 and/or w2 are equal to 0, the confidence interval cannot be calculated. One ad-hoc
adjustment is to add a small constant, such as 0.5, to the 0 cell count and the corresponding
row total. For example, if w1 = 0, replace w1 with 0.5 and n1 with n1 + 0.5. Exercise 32
will investigate how well the interval achieves its stated confidence level.

Example: Salk vaccine clinical trial (Salk.R)

The purpose of this example is to calculate the estimated relative risk and the con-
fidence interval for the population relative risk in order to determine the effectiveness
of the Salk vaccine in preventing polio. Below is the R code used to enter the data
into an array and to perform the necessary calculations:

> c.table <- array(data = c(57, 142, 200688 , 201087) , dim =
c(2,2), dimnames = list(Treatment = c(" vaccine", "placebo "),
Result = c(" polio", "polio free")))

> c.table
Result

Treatment polio polio free
vaccine 57 200688
placebo 142 201087
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> pi.hat.table <- c.table/rowSums(c.table)
> pi.hat.table

Result
Treatment polio polio free

vaccine 0.0002839423 0.9997161
placebo 0.0007056637 0.9992943

> pi.hat1 <- pi.hat.table [1,1]
> pi.hat2 <- pi.hat.table [2,1]

> round(pi.hat1/pi.hat2 , 4)
[1] 0.4024
> round (1/(pi.hat1/pi.hat2), 4) # inverted
[1] 2.4852

> alpha <- 0.05
> n1 <- sum(c.table [1,])
> n2 <- sum(c.table [2,])

> # Wald confidence interval
> var.log.rr <- (1-pi.hat1)/(n1*pi.hat1) +

(1-pi.hat2)/(n2*pi.hat2)
> ci <- exp(log(pi.hat1/pi.hat2) + qnorm(p = c(alpha/2,

1-alpha /2)) * sqrt(var.log.rr))
> round(ci , 4)
[1] 0.2959 0.5471
> rev(round (1/ci , 4)) # inverted
[1] 1.8278 3.3792

Defining index 1 to represent the vaccine group and 2 the placebo group, we find
R̂R = 0.40. The estimated probability of contracting polio is only 0.4 times (or
40%) as large for the vaccine group than for placebo. Notice that we used the word
estimated with this interpretation because we are using parameter estimates. The
confidence interval is 0.30 < RR < 0.55. Therefore, with 95% confidence, we can
say that the vaccine reduces the population risk of polio by 45-70%. Also, notice the
exponential function is calculated using exp() in R (for example, exp(1) is 2.718).

The ratio for the relative risk is often arranged so that R̂R ≥ 1. This allows for an
appealing interpretation that the group represented in the numerator has a risk that is,
for example, “11 times as large” as the denominator group. This can be easier for a target
audience to appreciate than the alternative, “0.091 times as large”. However, the application
may dictate which group should be the numerator regardless of the sample proportions. This
was the case for the Salk vaccine example, where it is natural to think of the vaccine in
terms of its risk reduction.

Also, relative risk is generally a more useful measure than the difference between proba-
bilities when the probabilities are fairly small. It is of limited use otherwise. For example,
if π2 = 0.8, then the maximum possible relative risk is 1/0.8=1.25. It is therefore useful to
have an alternative statistic for comparing probabilities that is applicable regardless of the
sizes of the probabilities. This is part of the motivation for the next measure.


