Advances in Applied Mathematics

POCKET BOOK OF INTEGRALS AND MATHEMATICAL FORMULAS 5TH EDITION

RONALD J. TALLARIDA

 $L = \int_{x_1}^{x_2} \sqrt{1 + (dy/dx)^2} \, dx$

 $w = \frac{(MG)^{1/2}}{(R+H)^{3/2}}$

CRC Press Taylor & Francis Group A CHAPMAN & HALL BOOK

POCKET BOOK OF INTEGRALS AND MATHEMATICAL FORMULAS 5TH EDITION

Advances in Applied Mathematics

Series Editor: Daniel Zwillinger

Published Titles

Stochastic Partial Differential Equations, Second Edition *Pao-Liu Chow* Markov Processes *James R. Kirkwood* Green's Functions with Applications, Second Edition *Dean G. Duffy* Pocket Book of Integrals and Mathematical Formulas, 5th Edition *Ronald J. Tallarida* Advances in Applied Mathematics

POCKET BOOK OF INTEGRALS AND MATHEMATICAL FORMULAS 5TH EDITION

RONALD J. TALLARIDA

TEMPLE UNIVERSITY PHILADELPHIA, PENNSYLVANIA, USA

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20141212

International Standard Book Number-13: 978-1-4987-0476-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface to	o the Fifth Edition	xiii
Preface to	o the Fourth Edition	xv
Preface to	o the Third Edition	xvii
Preface to	o the Second Edition	xix
Preface to	o the First Edition	xxi
Author		xxiii
Greek Le	tters	xxv
1. Elem	entary Algebra and Geometry	1
1.1	Fundamental Properties	
	(Real Numbers)	1
1.2	Exponents	2
1.3	Fractional Exponents	2
1.4	Irrational Exponents	3
1.5	Logarithms	3
1.6	Factorials	4
1.7	Binomial Theorem	4
1.8	Factors and Expansion	5
1.9	Progression	5
1.10	Complex Numbers	6
1.11	Polar Form	7
1.12	Permutations	8
1.13	Combinations	9
1.14	Algebraic Equations	9
1.15	Geometry	11
1.16	Pythagorean Theorem	16

2.	Dete	rminants, Matrices, and Linear	
	Syste	ems of Equations	17
	2.1	Determinants	17
	2.2	Evaluation by Cofactors	19
	2.3	Properties of Determinants	19
	2.4	Matrices	20
	2.5	Operations	21
	2.6	Properties	22
	2.7	Transpose	23
	2.8	Identity Matrix	23
	2.9	Adjoint	24
	2.10	Inverse Matrix	24
	2.11	Systems of Linear Equations	26
	2.12	Matrix Solution	27
3.	Trigo	nometry	29
	3.1	Triangles	29
	3.2	Trigonometric Functions of an	
		Angle	30
	3.3	Trigonometric Identities	32
	3.4	Inverse Trigonometric Functions	35
4.	Anal	vtic Geometry	37
	4.1	Rectangular Coordinates	37
	4.2	Distance between Two Points: Slope	38
	4.3	Equations of Straight Lines	40
	4.4	Distance from a Point to a Line	43
	4.5	Circle	43
	4.6	Parabola	43
	4.7	Ellipse	47
	4.8	Hyperbola (<i>e</i> > 1)	48
	4.9	Change of Axes	51
	4.10	General Equation of Degree 2	53

	4.11	Polar Coordinates	54
	4.12	Curves and Equations	57
	4.13	Exponential Function (Half-Life)	63
5.	Serie	s, Number Facts, and Theory	65
	5.1	Bernoulli and Euler Numbers	65
	5.2	Series of Functions	66
	5.3	Error Function	72
	5.4	Fermat's Little Theorem	73
	5.5	Fermat's Last Theorem	73
	5.6	Beatty's Theorem	75
	5.7	An Interesting Prime	76
	5.8	Goldbach Conjecture	76
	5.9	Twin Primes	76
	5.10	Collatz Conjecture	77
6.	Diffe	erential Calculus	79
	6.1	Notation	79
	6.2	Slope of a Curve	80
	6.3	Angle of Intersection of Two	
		Curves	80
	6.4	Radius of Curvature	81
	6.5	Relative Maxima and Minima	81
	6.6	Points of Inflection of a Curve	82
	6.7	Taylor's Formula	83
	6.8	Indeterminant Forms	84
	6.9	Numerical Methods	85
	6.10	Functions of Two Variables	87
	6.11	Partial Derivatives	88
	6.12	Application of Derivatives	89
		6.12.1 Related Rate Problems	89
		6.12.2 Rectilinear Motion	92
		6.12.3 Applied Problem in	
		Maximum and Minimum .	94

7.	Integ	ral Calculus	99
	7.1	Indefinite Integral	99
	7.2	Definite Integral	100
	7.3	Properties	100
	7.4	Common Applications of the	
		Definite Integral	101
	7.5	Cylindrical and Spherical	
		Coordinates	104
	7.6	Double Integration	106
	7.7	Surface Area and Volume by	
		Double Integration	107
	7.8	Centroid	108
	7.9	Applications of Integration	110
		7.9.1 Indefinite Integral	110
		7.9.2 The Definite Integral	113
8.	Vecto	or Analysis	119
0.	8.1	Vectors	119
	82	Vector Differentiation	121
	8.3	Divergence Theorem (Gauss)	123
	8.4	Stokes' Theorem	123
	8.5	Planar Motion in Polar	120
	0.0	Coordinates	123
	8.6	Geostationary Satellite Orbit	124
0	C maa	ial Functions	107
9.	o	Hyperbolic Functions	127 197
	9.1	Commo Function (Conoralized	12/
	9.2	Gamma Function (Generalized	100
	0.2	racional Function)	128 120
	9.3	Laplace Iransforms	129
	9.4	z-1ransform	133
	9.5	Fourier Series	136

Contents

	9.6	Functions with Period Other	
		than 2π	. 137
	9.7	Bessel Functions	. 139
	9.8	Legendre Polynomials	. 141
	9.9	Laguerre Polynomials	. 143
	9.10	Hermite Polynomials	. 144
	9.11	Orthogonality	. 145
10.	Diffe	rential Equations	. 147
	10.1	First-Order, First-Degree Equations	147
	10.2	Second-Order Linear Equations	
		(with Constant Coefficients)	. 150
	10.3	Runge Kutta Method (of Order 4)	. 153
11.	Statis	stics	. 155
	11.1	Arithmetic Mean	. 155
	11.2	Median	. 155
	11.3	Mode	. 156
	11.4	Geometric Mean	. 156
	11.5	Harmonic Mean	. 156
	11.6	Variance	. 156
	11.7	Standard Deviation	. 157
	11.8	Coefficient of Variation	. 158
	11.9	Probability	. 158
	11.10	Binomial Distribution	. 160
	11.11	Mean of Binomially Distributed	
		Variable	. 161
	11.12	Normal Distribution	. 161
	11.13	Poisson Distribution	. 163
	11.14	Empirical Distributions	. 164
	11.15	Estimation	. 165
	11.16	Hypotheses Testing	. 165

	11.17	<i>t</i> -Distribution	166
	11.18	Hypothesis Testing with <i>t</i> - and	
		Normal Distributions	167
	11.19	Chi-Square Distribution	170
	11.20	Least Squares Regression	173
	11.21	Nonlinear Regression Analysis	176
	11.22	The F-Distribution (Analysis of	
		Variance)	181
	11.23	Summary of Probability	
		Distributions	183
	11.24	Sample Size Determinations	185
12.	Finar	ncial Mathematics	189
	12.1	Simple Interest	189
	12.2	True Interest Formula (Loan	
		Payments)	190
	12.3	Loan Payment Schedules	192
	12.4	Loan Balance Calculation	193
	12.5	Accelerated Loan Payment	194
	12.6	Lump Sum Payment	196
	12.7	Compound Interest	197
	12.8	Time to Double (Your Money)	199
	12.9	Present Value of a Single Future	
		Payment	200
	12.10	Regular Saving to Accumulate a	
		Specified Amount	200
	12.11	Monthly Payments to Achieve a	
		Specified Amount	203
	12.12	Periodic Withdrawals from an	
		Interest-Bearing Account	203
	12.13	Periodic Withdrawals That	
		Maintain the Principal	207
		—	

12.14 Time to Deplete an Interest-	
Bearing Account with Periodic	
Withdrawals	208
12.15 Amounts to Withdraw	
for a Specified Number of	
Withdrawals I: Payments at the	
End of Each Year	210
12.16 Amounts to Withdraw	
for a Specified Number of	
Withdrawals II: Payments at the	
Beginning of Each Year	211
12.17 Present Value of Regular	
Payments	214
12.18 Annuities	215
12.19 The In-Out Formula	217
12.20 Stocks and Stock Quotations	219
12.21 Bonds	220
12.22 Tax-Free Yield	223
12.23 Stock Options (Puts and Calls)	224
12.24 Market Averages	225
12.25 Mutual and Quotations	226
12.26 Dollar Cost Averaging	228
12.27 Moving Average	229
Table of Derivatives	231
Table of Integrals: Indefinite and Definite	
Integrals	237
Appendix	305

Preface to the Fifth Edition

Pocket Book of Integrals and Mathematical Formulas, Fifth Edition, a revision of a very successful pocket book, provides a handy reference source for students, engineers, scientists, and others seeking essential mathematical formulas, concepts, and definitions. Topics range from precalculus to vector analysis and from Fourier series to statistics. The previous editions added material on business and financial mathematics that has been well received since it provided information on progressions, especially geometric progressions, which form the basis for many formulas related to annuities, growth of funds, and interest payments. That material has been retained. The fourth edition also retained topics in statistics, nonlinear regression, and an expanded discussion in the differential equations section by adding a treatment of Runge Kutta methods and a new application to drug kinetics. This edition includes several classic calculus applications. These gems of calculus illustrate its power and practical use. Readers of the previous editions have enjoyed special topics that included the derivation leading to the geostationary satellite orbit, a timely topic, as well as an interesting set

of topics in number theory whose inclusion was motivated by the recent proof of Fermat's last theorem. An interesting Fermat offshoot, namely, "near misses," is included, thereby extending the range of interest of this popular book. The table of integrals, which contains the most useful forms, has been reformatted and has been rechecked for accuracy. Although we strive to keep the book size small, we have enlarged the type slightly without sacrificing special topics. These include Fourier series, Laplace and Z-transforms, vector analysis, complex numbers, orthogonal polynomials and infinite series. Many other handbooks go too far in their attempts, essentially trying to mimic larger comprehensive texts. The result is a reference less detailed than the full texts and too big to be conveniently portable so that users would not carry them. Through a careful selection of topics and detail, Pocket Book of Integrals and Mathematical Formulas truly meets the needs of students and professionals in being a convenient, compact, and usable resource that also provides worked examples where most necessary. The book is portable, comprehensive, and easy to use.

> Ronald J. Tallarida Philadelphia, Pennsylvania

Preface to the Fourth Edition

As in the previous works, this new edition preserves the content, size, and convenience of this portable reference source for students and workers who use mathematics, while introducing much new material. New in this fourth edition is an expanded chapter on series that now includes many fascinating properties of the natural numbers that follow from number theory, a field that has attracted much new interest since the recent proof of Fermat's last theorem. While the proofs of many of these theorems are deep, and in some cases still lacking, all the number theory topics included here are easy to describe and form a bridge between arithmetic and higher mathematics. The fourth edition also includes new applications such as the geostationary satellite orbit, drug kinetics (as an application of differential equations), and an expanded statistics section that now discusses the normal approximation of the binomial distribution as well as a treatment of nonlinear regression. The widespread use of computers now makes the latter topic amenable to all students, and thus all users of the Pocket Book of Integrals can benefit from the concise summary of this topic. The chapter on financial

mathematics, introduced in the third edition, has proved successful and is retained without change in this edition, whereas the Table of Integrals has been reformatted for easier usage. This change in format also allowed the inclusion of all the new topics without the necessity of increasing the physical size of the book, thereby keeping its wide appeal as a true, handy pocket book that students and professionals will find useful in their mathematical pursuits.

> **Ronald J. Tallarida** *Philadelphia, Pennsylvania*

Preface to the Third Edition

This new edition has been enlarged to contain all the material in the second edition, an expanded chapter on statistics that now includes sample size estimations for means and proportions, and a totally new chapter on financial mathematics. In adding this new chapter we have also included a number of tables that aid in performing the calculations on annuities, true interest, amortization schedules, compound interest, systematic withdrawals from interest accounts, etc. The treatment and style of this material reflect the rest of the book, i.e., clear explanations of concepts, relevant formulas, and worked examples. The new financial material includes analyses not readily found in other sources, such as the effect of lump sum payments on amortization schedules and a novel "in-out formula" that calculates current regular deposits to savings in order to allow the start of systematic withdrawals of a specified amount at a later date. While

many engineers, mathematicians, and scientists have found much use for this handy pocket book, this new edition extends its usage to them and to the many business persons and individuals who make financial calculations.

Ronald J. Tallarida

Philadelphia, Pennsylvania

Preface to the Second Edition

This second edition has been enlarged by the addition of several new topics while preserving its convenient pocket size. New in this edition are the following topics: z-transforms, orthogonal polynomials, Bessel functions, probability and Bayes' rule, a summary of the most common probability distributions (binomial, Poisson, normal, t, Chi square, and F), the error function, and several topics in multivariable calculus that include surface area and volume, the ideal gas laws, and a table of centroids of common plane shapes. A list of physical constants has also been added to this edition.

I am grateful for many valuable suggestions from users of the first edition, especially Lt. Col. W. E. Skeith and his colleagues at the U.S. Air Force Academy.

> **Ronald J. Tallarida** *Philadelphia, Pennsylvania*

Preface to the First Edition

The material of this book has been compiled so that it may serve the needs of students and teachers as well as professional workers who use mathematics. The contents and size make it especially convenient and portable. The widespread availability and low price of scientific calculators have greatly reduced the need for many numerical tables (e.g., logarithms, trigonometric functions, powers, etc.) that make most handbooks bulky. However, most calculators do not give integrals, derivatives, series, and other mathematical formulas and figures that are often needed. Accordingly, this book contains that information in addition to a comprehensive table of integrals. A section on statistics and the accompanying tables, also not readily provided by calculators, have also been included.

The size of the book is comparable to that of many calculators, and it is really very much a companion to the calculator and the computer as a source of information for writing one's own programs. To facilitate such use, the author and the publisher have worked together to make the format attractive and clear. Yet, an important requirement in a book of this kind is accuracy. Toward that end we have checked each item against at least two independent sources.

Students and professionals alike will find this book a valuable supplement to standard textbooks, a source for review, and a handy reference for many years.

Ronald J. Tallarida

Philadelphia, Pennsylvania

Author

Ronald J. Tallarida holds BS and MS degrees in physics/mathematics and a PhD in pharmacology. His primary appointment is professor of pharmacology at Temple University School of Medicine, Philadelphia, Pennsylvania. For more than 30 years, he also served as an adjunct professor of Biomedical Engineering at Drexel University in Philadelphia where he received the Lindback Award for Distinguished Teaching of mathematics. As an author and researcher, he has published more than 290 works that include eight books, has been the recipient of research grants from NIH, and has served as a consultant to both industry and government agencies. His main research interests are in the areas of mathematical modeling of biological systems, feedback control, and the action of drugs and drug combinations.

Greek Letters

α	А	Alpha
β	В	Beta
γ	Г	Gamma
δ	Δ	Delta
3	Е	Epsilon
ζ	Ζ	Zeta
η	Н	Eta
θ	Θ	Theta
l	Ι	Iota
κ	Κ	Kappa
λ	Λ	Lambda
μ	М	Mu
ν	Ν	Nu
ξ	Ξ	Xi
0	0	Omicron
π	Π	Pi
ρ	Р	Rho
σ	Σ	Sigma
τ	Т	Tau
υ	r	Upsilon
φ	Φ	Pĥi
χ	Х	Chi
ψ	Ψ	Psi
ω	Ω	Omega

The Numbers π and e

π	=	3.14159	26535	89793
e	=	2.71828	18284	59045
log ₁₀ e	=	0.43429	44819	03252
log _e 10	=	2.30258	50929	94046

Prime Numbers

2	3	5	7	11	13	17	19	23	29
31	37	41	43	47	53	59	61	67	71
73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229
233	239	241	251	257	263	269	271	277	281

Important Numbers in Science (Physical Constants)

Avogadro constant (N_A)	$6.02 \times 10^{26} \text{ kmole}^{-1}$
Boltzmann constant (k)	$1.38 \times 10^{-23} J^{\circ} K^{-1}$
Electron charge (e)	$1.602 \times 10^{-19} \text{ C}$
Electron, charge/mass (e/m_e)	$1.760 \times 10^{11} \mathrm{C} \cdot \mathrm{kg}^{-1}$
Electron rest mass (m_e)	9.11 × 10 ⁻³¹ kg (0.511 MeV)
Faraday constant (F)	$9.65 \times 10^4 \mathrm{C} \cdot \mathrm{mole}^{-1}$
Gas constant (R)	$8.31 \times 10^3 \text{ J}\cdot^{\circ}\text{K}^{-1} \text{ kmole}^{-1}$
Gas (ideal) normal volume (V_{o})	22.4 m ³ · kmole ⁻¹
Gravitational constant (G)	$6.67 imes 10^{-11} N \cdot m^2 \cdot kg^{-2}$
Hydrogen atom (rest mass) (m_{H})	1.673 × 10 ⁻²⁷ kg (938.8 MeV)
Neutron (rest mass) (m_n)	1.675 × 10 ⁻²⁷ kg (939.6 MeV)
Planck constant (<i>h</i>)	$6.63 \times 10^{-34} \mathrm{J}\cdot\mathrm{s}^{-34}$
Proton (rest mass) (m_p)	1.673 × 10 ⁻²⁷ kg (938.3 MeV)
Speed of light (c)	$3.00 \times 10^8 \mathrm{m \cdot s^{-1}}$

1

Elementary Algebra and Geometry

1.1 Fundamental Properties (Real Numbers)

$$a+b=b+a$$

$$(a + b) + c = a + (b + c)$$

$$a + 0 = 0 + a$$

$$a + (-a) = (-a) + a = 0$$

$$a(bc) = (ab)c$$

$$a\left(\frac{1}{a}\right) = \left(\frac{1}{a}\right)a = 1, \quad a \neq 0$$

(a)(1) = (1)(a) = a

Commutative Law for Addition Associative Law for Addition Identity Law for Addition Inverse Law for Addition Associative Law for Multiplication Inverse Law for Multiplication Identity Law for Multiplication

ab = ba	Commutative Law for
	Multiplication
a(b+c) = ab + ac	Distributive Law

Division by zero is not defined.

1.2 Exponents

For integers *m* and *n*,

$$a^{n}a^{m} = a^{n+m}$$

$$a^{n}/a^{m} = a^{n-m}$$

$$(a^{n})^{m} = a^{nm}$$

$$(ab)^{m} = a^{m}b^{m}$$

$$(a/b)^{m} = a^{m}/b^{m}$$

1.3 Fractional Exponents

$$a^{p/q} = (a^{1/q})^p$$

where $a^{1/q}$ is the positive *q*th root of *a* if a > 0 and the negative *q*th root of *a* if *a* is negative and *q* is odd. Accordingly, the five rules of exponents given above (for integers) are also valid if *m* and *n* are fractions, provided *a* and *b* are positive.

1.4 Irrational Exponents

If an exponent is irrational, e.g., $\sqrt{2}$, the quantity, such as $a^{\sqrt{2}}$, is the limit of the sequence $a^{1.4}$, $a^{1.41}$, $a^{1.414}$,

• Operations with Zero

$$0^m = 0; a^0 = 1$$

1.5 Logarithms

If *x*, *y*, and *b* are positive and $b \neq 1$,

$$log_b(xy) = log_b x + log_b y$$

$$log_b(x/y) = log_b x - log_b y$$

$$log_b x^p = p log_b x$$

$$log_b(1/x) = -log_b x$$

$$log_b b = 1$$

$$log_b 1 = 0 \quad Note: b^{log_b x} = x.$$

• Change of Base $(a \neq 1)$

$$\log_b x = \log_a x \log_b a$$

1.6 Factorials

The factorial of a positive integer n is the product of all the positive integers less than or equal to the integer n and is denoted n! Thus,

 $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n.$

Factorial 0 is defined 0! = 1.

• Stirling's Approximation

$$\lim_{n\to\infty}(n/e)^n\sqrt{2\pi n}=n!$$

(See also Section 9.2.)

1.7 Binomial Theorem

For positive integer *n*,

$$(x+y)^{n} = x^{n} + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + nxy^{n-1} + y^{n}.$$

1.8 Factors and Expansion

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$
$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$
$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$
$$(a^{2} - b^{2}) = (a - b)(a + b)$$
$$(a^{3} - b^{3}) = (a - b)(a^{2} + ab + b^{2})$$
$$(a^{3} + b^{3}) = (a + b)(a^{2} - ab + b^{2})$$

1.9 Progression

An *arithmetic progression* is a sequence in which the difference between any term and the preceding term is a constant (*d*):

$$a, a + d, a + 2d, \dots, a + (n - 1)d.$$

If the last term is denoted l[= a + (n-1)d], then the sum is

$$s = \frac{n}{2}(a+l).$$

A *geometric progression* is a sequence in which the ratio of any term to the preceding terms is a constant *r*. Thus, for *n* terms,

$$a, tar, ar^2, ..., ar^{n-1}$$

The sum is

$$S = \frac{a - ar^n}{1 - r}$$

1.10 Complex Numbers

A complex number is an ordered pair of real numbers (*a*, *b*).

Equality: (*a*, *b*) = (*c*, *d*) if and only if *a* = *c* and *b* = *d*

Addition: (*a*, *b*) + (*c*, *d*) = (*a* + *c*, *b* + *d*)

Multiplication: (a, b)(c, d) = (ac - bd, ad + bc)

The first element of (a, b) is called the *real* part; the second, the *imaginary* part. An alternate notation for (a, b) is a + bi, where $i^2 = (-1, 0)$, and i(0, 1) or 0 + 1i is written for this complex number as a convenience. With this understanding, *i* behaves as a number, i.e., $(2 - 3i)(4 + i) = 8 - 12i + 2i - 3i^2 = 11 - 10i$. The conjugate of a + bi is a - bi, and the product of a complex number and its conjugate is $a^2 + b^2$.

Thus, *quotients* are computed by multiplying numerator and denominator by the conjugate of the denominator, as illustrated below:

$$\frac{2+3i}{4+2i} = \frac{(4-2i)(2+3i)}{(4-2i)(4+2i)} = \frac{14+8i}{20} = \frac{7+4i}{10}$$

1.11 Polar Form

The complex number x + iy may be represented by a plane vector with components x and y:

$$x + iy = r(\cos\theta + i\sin\theta)$$

(see Figure 1.1). Then, given two complex numbers $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$, the product and quotient are:

Product: $z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$

Quotient: $z_1/z_2 = (r_1/r_2)[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]$

Powers:
$$z^n = [r(\cos\theta + i\sin\theta)]^n$$

= $r^n [\cos n\theta + i\sin n\theta]$

Roots:
$$z^{1/n} = \left[r\left(\cos\theta + i\sin\theta\right)\right]^{1/n}$$

= $r^{1/n} \left[\cos\frac{\theta + k.360}{n} + i\sin\frac{\theta + k.360}{n}\right],$
 $k = 0, 1, 2, \dots, n-1$

FIGURE 1.1 Polar form of complex number.

1.12 Permutations

A permutation is an ordered arrangement (sequence) of all or part of a set of objects. The number of permutations of n objects taken r at a time is

$$p(n, r) = n(n-1)(n-2)\cdots(n-r+1)$$
$$= \frac{n!}{(n-r)!}$$

A permutation of positive integers is even or odd if the total number of inversions is an even