Advances in Applied Mathematics

POCKET BOOK OF INTEGRALS AND MATHEMATICAL

 FORMULAS 5TH EDITION RONALD J. TALLARIDA$$
L=\int_{x_{1}}^{x_{2}} \sqrt{1+(d y / d x)^{2}} d x
$$

$$
w=\frac{(M G)^{1 / 2}}{(R+H)^{3 / 2}}
$$

POCKET BOOK OF INTEGRALS AND MATHEMATICAL FORMULAS 5TH EDITION

Advances in Applied Mathematics

Series Editor: Daniel Zwillinger

Published Titles

Stochastic Partial Differential Equations, Second Edition Pao-Liu Chow Markov Processes James R. Kirkwood
Green's Functions with Applications, Second Edition Dean G. Duffy
Pocket Book of Integrals and Mathematical Formulas, 5th Edition Ronald J. Tallarida

Advances in Applied Mathematics

POCKET BOOK OF INTEGRALS AND MATHEMATICAL FORMULAS
 5TH EDITION

Ronald J. TALLARidA

Temple University
Philadelphia, Pennsylvania, USA

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2015 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20141212
International Standard Book Number-13: 978-1-4987-0476-2 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface to the Fifth Edition xiii
Preface to the Fourth Edition xv
Preface to the Third Edition xvii
Preface to the Second Edition xix
Preface to the First Edition xxi
Author xxiii
Greek Letters xxv

1. Elementary Algebra and Geometry 1
1.1 Fundamental Properties (Real Numbers) 1
1.2 Exponents 2
1.3 Fractional Exponents 2
1.4 Irrational Exponents 3
1.5 Logarithms 3
1.6 Factorials 4
1.7 Binomial Theorem 4
1.8 Factors and Expansion 5
1.9 Progression. 5
1.10 Complex Numbers 6
1.11 Polar Form 7
1.12 Permutations 8
1.13 Combinations 9
1.14 Algebraic Equations 9
1.15 Geometry 11
1.16 Pythagorean Theorem 16
2. Determinants, Matrices, and Linear Systems of Equations 17
2.1 Determinants 17
2.2 Evaluation by Cofactors 19
2.3 Properties of Determinants 19
2.4 Matrices 20
2.5 Operations 21
2.6 Properties 22
2.7 Transpose 23
2.8 Identity Matrix 23
2.9 Adjoint 24
2.10 Inverse Matrix 24
2.11 Systems of Linear Equations 26
2.12 Matrix Solution 27
3. Trigonometry 29
3.1 Triangles 29
3.2 Trigonometric Functions of an Angle 30
3.3 Trigonometric Identities 32
3.4 Inverse Trigonometric Functions 35
4. Analytic Geometry 37
4.1 Rectangular Coordinates 37
4.2 Distance between Two Points: Slope 38
4.3 Equations of Straight Lines 40
4.4 Distance from a Point to a Line 43
4.5 Circle 43
4.6 Parabola 43
4.7 Ellipse 47
4.8 Hyperbola ($e>1$) 48
4.9 Change of Axes 51
4.10 General Equation of Degree 2 53
4.11 Polar Coordinates 54
4.12 Curves and Equations 57
4.13 Exponential Function (Half-Life) 63
5. Series, Number Facts, and Theory 65
5.1 Bernoulli and Euler Numbers 65
5.2 Series of Functions 66
5.3 Error Function 72
5.4 Fermat's Little Theorem 73
5.5 Fermat's Last Theorem 73
5.6 Beatty's Theorem 75
5.7 An Interesting Prime 76
5.8 Goldbach Conjecture 76
5.9 Twin Primes 76
5.10 Collatz Conjecture 77
6. Differential Calculus 79
6.1 Notation 79
6.2 Slope of a Curve 80
6.3 Angle of Intersection of Two Curves 80
6.4 Radius of Curvature 81
6.5 Relative Maxima and Minima 81
6.6 Points of Inflection of a Curve 82
6.7 Taylor's Formula 83
6.8 Indeterminant Forms 84
6.9 Numerical Methods 85
6.10 Functions of Two Variables 87
6.11 Partial Derivatives 88
6.12 Application of Derivatives 89
6.12.1 Related Rate Problems. 89
6.12.2 Rectilinear Motion 92
6.12.3 Applied Problem in Maximum and Minimum 94
7. Integral Calculus 99
7.1 Indefinite Integral 99
7.2 Definite Integral 100
7.3 Properties 100
7.4 Common Applications of the Definite Integral 101
7.5 Cylindrical and Spherical Coordinates 104
7.6 Double Integration 106
7.7 Surface Area and Volume by Double Integration 107
7.8 Centroid 108
7.9 Applications of Integration 110
7.9.1 Indefinite Integral 110
7.9.2 The Definite Integral 113
8. Vector Analysis 119
8.1 Vectors 119
8.2 Vector Differentiation 121
8.3 Divergence Theorem (Gauss) 123
8.4 Stokes' Theorem 123
8.5 Planar Motion in Polar Coordinates 123
8.6 Geostationary Satellite Orbit 124
9. Special Functions 127
9.1 Hyperbolic Functions 127
9.2 Gamma Function (Generalized Factorial Function) 128
9.3 Laplace Transforms 129
$9.4 z$-Transform 133
9.5 Fourier Series 136
9.6 Functions with Period Other than 2π 137
9.7 Bessel Functions 139
9.8 Legendre Polynomials 141
9.9 Laguerre Polynomials 143
9.10 Hermite Polynomials 144
9.11 Orthogonality 145
10. Differential Equations 147
10.1 First-Order, First-Degree Equations 147
10.2 Second-Order Linear Equations (with Constant Coefficients) 150
10.3 Runge Kutta Method (of Order 4) 153
11. Statistics 155
11.1 Arithmetic Mean 155
11.2 Median 155
11.3 Mode 156
11.4 Geometric Mean 156
11.5 Harmonic Mean 156
11.6 Variance 156
11.7 Standard Deviation 157
11.8 Coefficient of Variation. 158
11.9 Probability 158
11.10 Binomial Distribution 160
11.11 Mean of Binomially Distributed Variable 161
11.12 Normal Distribution 161
11.13 Poisson Distribution 163
11.14 Empirical Distributions 164
11.15 Estimation 165
11.16 Hypotheses Testing 165
11.17 t-Distribution 166
11.18 Hypothesis Testing with t - and Normal Distributions 167
11.19 Chi-Square Distribution 170
11.20 Least Squares Regression. 173
11.21 Nonlinear Regression Analysis 176
11.22 The F-Distribution (Analysis of Variance) 181
11.23 Summary of Probability Distributions 183
11.24 Sample Size Determinations 185
12. Financial Mathematics 189
12.1 Simple Interest 189
12.2 True Interest Formula (Loan Payments) 190
12.3 Loan Payment Schedules 192
12.4 Loan Balance Calculation 193
12.5 Accelerated Loan Payment 194
12.6 Lump Sum Payment 196
12.7 Compound Interest 197
12.8 Time to Double (Your Money) 199
12.9 Present Value of a Single Future Payment 200
12.10 Regular Saving to Accumulate a Specified Amount 200
12.11 Monthly Payments to Achieve a Specified Amount 203
12.12 Periodic Withdrawals from an Interest-Bearing Account 203
12.13 Periodic Withdrawals That Maintain the Principal 207
12.14 Time to Deplete an Interest- Bearing Account with Periodic Withdrawals 208
12.15 Amounts to Withdraw for a Specified Number of Withdrawals I: Payments at the End of Each Year 210
12.16 Amounts to Withdraw for a Specified Number of Withdrawals II: Payments at the Beginning of Each Year 211
12.17 Present Value of Regular Payments 214
12.18 Annuities 215
12.19 The In-Out Formula 217
12.20 Stocks and Stock Quotations 219
12.21 Bonds 220
12.22 Tax-Free Yield 223
12.23 Stock Options (Puts and Calls) 224
12.24 Market Averages. 225
12.25 Mutual and Quotations 226
12.26 Dollar Cost Averaging. 228
12.27 Moving Average 229
Table of Derivatives 231
Table of Integrals: Indefinite and Definite Integrals 237
Appendix 305

Preface to the Fifth Edition

Pocket Book of Integrals and Mathematical Formulas, Fifth Edition, a revision of a very successful pocket book, provides a handy reference source for students, engineers, scientists, and others seeking essential mathematical formulas, concepts, and definitions. Topics range from precalculus to vector analysis and from Fourier series to statistics. The previous editions added material on business and financial mathematics that has been well received since it provided information on progressions, especially geometric progressions, which form the basis for many formulas related to annuities, growth of funds, and interest payments. That material has been retained. The fourth edition also retained topics in statistics, nonlinear regression, and an expanded discussion in the differential equations section by adding a treatment of Runge Kutta methods and a new application to drug kinetics. This edition includes several classic calculus applications. These gems of calculus illustrate its power and practical use. Readers of the previous editions have enjoyed special topics that included the derivation leading to the geostationary satellite orbit, a timely topic, as well as an interesting set
of topics in number theory whose inclusion was motivated by the recent proof of Fermat's last theorem. An interesting Fermat offshoot, namely, "near misses," is included, thereby extending the range of interest of this popular book. The table of integrals, which contains the most useful forms, has been reformatted and has been rechecked for accuracy. Although we strive to keep the book size small, we have enlarged the type slightly without sacrificing special topics. These include Fourier series, Laplace and Z-transforms, vector analysis, complex numbers, orthogonal polynomials and infinite series. Many other handbooks go too far in their attempts, essentially trying to mimic larger comprehensive texts. The result is a reference less detailed than the full texts and too big to be conveniently portable so that users would not carry them. Through a careful selection of topics and detail, Pocket Book of Integrals and Mathematical Formulas truly meets the needs of students and professionals in being a convenient, compact, and usable resource that also provides worked examples where most necessary. The book is portable, comprehensive, and easy to use.

Ronald J. Tallarida
Philadelphia, Pennsylvania

Preface to the Fourth Edition

As in the previous works, this new edition preserves the content, size, and convenience of this portable reference source for students and workers who use mathematics, while introducing much new material. New in this fourth edition is an expanded chapter on series that now includes many fascinating properties of the natural numbers that follow from number theory, a field that has attracted much new interest since the recent proof of Fermat's last theorem. While the proofs of many of these theorems are deep, and in some cases still lacking, all the number theory topics included here are easy to describe and form a bridge between arithmetic and higher mathematics. The fourth edition also includes new applications such as the geostationary satellite orbit, drug kinetics (as an application of differential equations), and an expanded statistics section that now discusses the normal approximation of the binomial distribution as well as a treatment of nonlinear regression. The widespread use of computers now makes the latter topic amenable to all students, and thus all users of the Pocket Book of Integrals can benefit from the concise summary of this topic. The chapter on financial
mathematics, introduced in the third edition, has proved successful and is retained without change in this edition, whereas the Table of Integrals has been reformatted for easier usage. This change in format also allowed the inclusion of all the new topics without the necessity of increasing the physical size of the book, thereby keeping its wide appeal as a true, handy pocket book that students and professionals will find useful in their mathematical pursuits.

Ronald J. Tallarida
Philadelphia, Pennsylvania

Preface to the Third Edition

This new edition has been enlarged to contain all the material in the second edition, an expanded chapter on statistics that now includes sample size estimations for means and proportions, and a totally new chapter on financial mathematics. In adding this new chapter we have also included a number of tables that aid in performing the calculations on annuities, true interest, amortization schedules, compound interest, systematic withdrawals from interest accounts, etc. The treatment and style of this material reflect the rest of the book, i.e., clear explanations of concepts, relevant formulas, and worked examples. The new financial material includes analyses not readily found in other sources, such as the effect of lump sum payments on amortization schedules and a novel "in-out formula" that calculates current regular deposits to savings in order to allow the start of systematic withdrawals of a specified amount at a later date. While
many engineers, mathematicians, and scientists have found much use for this handy pocket book, this new edition extends its usage to them and to the many business persons and individuals who make financial calculations.

Ronald J. Tallarida
Philadelphia, Pennsylvania

Preface to the Second Edition

This second edition has been enlarged by the addition of several new topics while preserving its convenient pocket size. New in this edition are the following topics: z-transforms, orthogonal polynomials, Bessel functions, probability and Bayes' rule, a summary of the most common probability distributions (binomial, Poisson, normal, t , Chi square, and F), the error function, and several topics in multivariable calculus that include surface area and volume, the ideal gas laws, and a table of centroids of common plane shapes. A list of physical constants has also been added to this edition.

I am grateful for many valuable suggestions from users of the first edition, especially Lt. Col. W. E. Skeith and his colleagues at the U.S. Air Force Academy.

Ronald J. Tallarida
Philadelphia, Pennsylvania

Preface to the First Edition

The material of this book has been compiled so that it may serve the needs of students and teachers as well as professional workers who use mathematics. The contents and size make it especially convenient and portable. The widespread availability and low price of scientific calculators have greatly reduced the need for many numerical tables (e.g., logarithms, trigonometric functions, powers, etc.) that make most handbooks bulky. However, most calculators do not give integrals, derivatives, series, and other mathematical formulas and figures that are often needed. Accordingly, this book contains that information in addition to a comprehensive table of integrals. A section on statistics and the accompanying tables, also not readily provided by calculators, have also been included.

The size of the book is comparable to that of many calculators, and it is really very much a companion to the calculator and the computer as a source of information for writing one's own programs. To facilitate such use, the author and the publisher have worked together to make the format attractive and clear. Yet, an important requirement in a book of this kind is accuracy.

Toward that end we have checked each item against at least two independent sources.

Students and professionals alike will find this book a valuable supplement to standard textbooks, a source for review, and a handy reference for many years.

Ronald J. Tallarida
Philadelphia, Pennsylvania

Author

Ronald J. Tallarida holds BS and MS degrees in physics/mathematics and a PhD in pharmacology. His primary appointment is professor of pharmacology at Temple University School of Medicine, Philadelphia, Pennsylvania. For more than 30 years, he also served as an adjunct professor of Biomedical Engineering at Drexel University in Philadelphia where he received the Lindback Award for Distinguished Teaching of mathematics. As an author and researcher, he has published more than 290 works that include eight books, has been the recipient of research grants from NIH, and has served as a consultant to both industry and government agencies. His main research interests are in the areas of mathematical modeling of biological systems, feedback control, and the action of drugs and drug combinations.

Greek Letters

α	A	Alpha
β	B	Beta
γ	Γ	Gamma
δ	Δ	Delta
ε	E	Epsilon
ζ	Z	Zeta
η	H	Eta
θ	Θ	Theta
1	I	Iota
κ	K	Kappa
λ	Λ	Lambda
μ	M	Mu
ν	N	Nu
ξ	Ξ	Xi
o	O	Omicron
π	Π	Pi
ρ	P	Rho
σ	Σ	Sigma
τ	T	Tau
ν	Υ	Upsilon
ϕ	Φ	Phi
χ	X	Chi
ψ	Ψ	Psi
ω	Ω	Omega
	Ω	

The Numbers π and e

π	$=3.14159$	26535	89793
e	$=2.71828$	18284	59045
$\log _{10} \mathrm{e}$	$=0.43429$	44819	03252
$\log _{\mathrm{e}} 10$	$=2.30258$	50929	94046

Prime Numbers

2	3	5	7	11	13	17	19	23	29
31	37	41	43	47	53	59	61	67	71
73	79	83	89	97	101	103	107	109	113
127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229
233	239	241	251	257	263	269	271	277	281
\ldots				\cdots					\cdots

Important Numbers in Science (Physical Constants)

Avogadro constant (N_{A})	$6.02 \times 10^{26} \mathrm{kmole}^{-1}$
Boltzmann constant (k)	$1.38 \times 10^{-23} \mathrm{~J} \cdot{ }^{\circ} \mathrm{K}^{-1}$
Electron charge (e)	$1.602 \times 10^{-19} \mathrm{C}$
Electron, charge/mass (e/me)	$1.760 \times 10^{11} \mathrm{C} \cdot \mathrm{kg}^{-1}$
Electron rest mass (m_{e})	$9.11 \times 10^{-31} \mathrm{~kg}(0.511 \mathrm{MeV})$
Faraday constant (F)	$9.65 \times 10^{4} \mathrm{C} \cdot \mathrm{mole}^{-1}$
Gas constant (R)	$8.31 \times 10^{3} \mathrm{~J} \cdot{ }^{\circ} \mathrm{K}^{-1} \mathrm{kmole}^{-1}$
Gas (ideal) normal volume (V_{o})	$22.4 \mathrm{~m}^{3} \cdot \mathrm{kmole}^{-1}$
Gravitational constant (G)	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{~kg}^{-2}$
Hydrogen atom (rest mass) (m_{H})	$1.673 \times 10^{-27} \mathrm{~kg}(938.8 \mathrm{MeV})$
Neutron (rest mass) (m_{n})	$1.675 \times 10^{-27} \mathrm{~kg}(939.6 \mathrm{MeV})$
Planck constant (h)	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Proton (rest mass) (m_{p})	$1.673 \times 10^{-27} \mathrm{~kg}(938.3 \mathrm{MeV})$
Speed of light (c)	$3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$

1

Elementary Algebra and Geometry

1.1 Fundamental Properties (Real Numbers)

$a+b=b+a$	Commutative Law for
$(a+b)+c=a+(b+c)$	Addition Associative Law for $a+0=0+a$ Addition $a+(-a)=(-a)+a=0$ Identity Law for $a(b c)=(a b) c$ Addition Inverse Law for Addition $a\left(\frac{1}{a}\right)=\left(\frac{1}{a}\right) a=1, \quad a \neq 0$ Associative Law for Multiplication Inverse Law for (a)(1) $=(1)(a)=a$
	Multiplication
	Identity Law for
Multiplication	

$a b=b a$
$a(b+c)=a b+a c$

Commutative Law for Multiplication Distributive Law

Division by zero is not defined.

1.2 Exponents

For integers m and n,

$$
\begin{aligned}
a^{n} a^{m} & =a^{n+m} \\
a^{n} / a^{m} & =a^{n-m} \\
\left(a^{n}\right)^{m} & =a^{n m} \\
(a b)^{m} & =a^{m} b^{m} \\
(a / b)^{m} & =a^{m} / b^{m}
\end{aligned}
$$

1.3 Fractional Exponents

$$
a^{p / q}=\left(a^{1 / q}\right)^{p}
$$

where $a^{1 / q}$ is the positive q th root of a if $a>0$ and the negative q th root of a if a is negative and q is odd. Accordingly, the five rules of exponents given above (for integers) are also valid if m and n are fractions, provided a and b are positive.

1.4 Irrational Exponents

If an exponent is irrational, e.g., $\sqrt{2}$, the quantity, such as $a^{\sqrt{2}}$, is the limit of the sequence $a^{1.4}, a^{1.41}$, $a^{1.414}, \ldots$.

- Operations with Zero

$$
0^{m}=0 ; \quad a^{0}=1
$$

1.5 Logarithms

If x, y, and b are positive and $b \neq 1$,

$$
\begin{aligned}
\log _{b}(x y) & =\log _{b} x+\log _{b} y \\
\log _{b}(x / y) & =\log _{b} x-\log _{b} y \\
\log _{b} x^{p} & =p \log _{b} x \\
\log _{b}(1 / x) & =-\log _{b} x \\
\log _{b} b & =1 \\
\log _{b} 1 & =0 \quad \text { Note: } b^{\log _{b} x}=x .
\end{aligned}
$$

- Change of Base $(a \neq 1)$

$$
\log _{b} x=\log _{a} x \log _{b} a
$$

1.6 Factorials

The factorial of a positive integer n is the product of all the positive integers less than or equal to the integer n and is denoted n ! Thus,

$$
n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n
$$

Factorial 0 is defined $0!=1$.

- Stirling's Approximation

$$
\lim _{n \rightarrow \infty}(n / e)^{n} \sqrt{2 \pi n}=n!
$$

(See also Section 9.2.)

1.7 Binomial Theorem

For positive integer n,

$$
\begin{aligned}
(x+y)^{n}= & x^{n}+n x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2} \\
& +\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\cdots \\
& +n x y^{n-1}+y^{n} .
\end{aligned}
$$

1.8 Factors and Expansion

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
& \left(a^{2}-b^{2}\right)=(a-b)(a+b) \\
& \left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& \left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

1.9 Progression

An arithmetic progression is a sequence in which the difference between any term and the preceding term is a constant (d):

$$
a, a+d, a+2 d, \ldots, a+(n-1) d
$$

If the last term is denoted $l[=a+(n-1) d]$, then the sum is

$$
s=\frac{n}{2}(a+l) .
$$

A geometric progression is a sequence in which the ratio of any term to the preceding terms is a constant r. Thus, for n terms,

$$
a, t a r, a r^{2}, \ldots, a r^{n-1}
$$

The sum is

$$
S=\frac{a-a r^{n}}{1-r}
$$

1.10 Complex Numbers

A complex number is an ordered pair of real numbers (a, b).

Equality: $(a, b)=(c, d)$ if and only if $a=c$ and $b=d$ Addition: $(a, b)+(c, d)=(a+c, b+d)$

Multiplication: $(a, b)(c, d)=(a c-b d, a d+b c)$
The first element of (a, b) is called the real part; the second, the imaginary part. An alternate notation for (a, b) is $a+b i$, where $i^{2}=(-1,0)$, and $i(0,1)$ or $0+1 i$ is written for this complex number as a convenience. With this understanding, i behaves as a number, i.e., $(2-3 i)(4+i)=8-12 i+2 i-3 i^{2}=11-10 i$. The conjugate of $a+b i$ is $a-b i$, and the product of a complex number and its conjugate is $a^{2}+b^{2}$.

Thus, quotients are computed by multiplying numerator and denominator by the conjugate of the denominator, as illustrated below:

$$
\frac{2+3 i}{4+2 i}=\frac{(4-2 i)(2+3 i)}{(4-2 i)(4+2 i)}=\frac{14+8 i}{20}=\frac{7+4 i}{10}
$$

1.11 Polar Form

The complex number $x+i y$ may be represented by a plane vector with components x and y :

$$
x+i y=r(\cos \theta+i \sin \theta)
$$

(see Figure 1.1). Then, given two complex numbers $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+\right.$ $i \sin \theta_{2}$), the product and quotient are:

Product: $z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$
Quotient: $z_{1} / z_{2}=\left(r_{1} / r_{2}\right)\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]$
Powers: $z^{n}=[r(\cos \theta+i \sin \theta)]^{n}$

$$
=r^{n}\lceil\cos n \theta+i \sin n \theta\rceil
$$

Roots: $z^{1 / n}=[r(\cos \theta+i \sin \theta)]^{1 / n}$

$$
\begin{array}{r}
=r^{1 / n}\left[\cos \frac{\theta+k \cdot 360}{n}+i \sin \frac{\theta+k \cdot 360}{n}\right], \\
k=0,1,2, \ldots, n-1
\end{array}
$$

FIGURE 1.1

Polar form of complex number.

1.12 Permutations

A permutation is an ordered arrangement (sequence) of all or part of a set of objects. The number of permutations of n objects taken r at a time is

$$
\begin{aligned}
p(n, r) & =n(n-1)(n-2) \cdots(n-r+1) \\
& =\frac{n!}{(n-r)!}
\end{aligned}
$$

A permutation of positive integers is even or odd if the total number of inversions is an even

