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Preface

Sufficient Dimension Reduction is a rapidly developing research field that has wide
applications in regression diagnostics, data visualization, Machine Learning, Ge-
nomics, image processing, pattern recognition, and medicine, which often contain
a large number of variables. The purpose of the book is to introduce the basic the-
ories and the main methodologies that have been developed in this field, to explore
the key technical machineries that have been proven useful for conducting related
research, to provide practical and easy-to-use algorithms and computer codes to im-
plement these methodologies, and to survey the recent advances in the frontier of this
field, which has grown too vast to be covered in detail in a single book.

Sufficient Dimension Reduction is a powerful tool to extract the core information
hidden in the high-dimensional data, for the purpose of classifying or predicting one
or several response variables. The extraction of information is based on the notion
of sufficiency, which means a set of functions of the predictors provides all the in-
formation needed to understand the response, so that the rest of the predictors can
be ignored without loss of information. Sufficiency is derived from conditional inde-
pendence, a statistical concept that plays the central role in this theory.

Sufficient Dimension Reduction is akin to Principal Component Analysis — they
both try to organize the variations in the data in an intelligent and interpretable way.
However, Principal Component Analysis organizes the variations in the data itself,
according to the magnitudes of variations; whereas Sufficient Dimension Reduction
organizes the variations in the predictor according to how much they can explain the
response variables. Sufficient Dimension Reduction is also akin to variable selection
— they both try to reduce the number of variables that predict the response. However,
variable selection tries to reduce the number of coordinates in the predicting vector;
whereas Sufficient Dimension Reduction tries to reduce the predictor to a few linear
combinations, or a few nonlinear functions, of the coordinates. In other words, vari-
able selection reduces the data to achieve sparsity; Sufficient Dimension Reduction
reduces the data to achieve low rank.

Sufficient Dimension Reduction has undergone momentous development in re-
cent years, partly due to the increased demands for techniques to process high-
dimensional data, a hallmark of our age of Big Data. The heightened development
is also propelled by the increased complexity of the data structure. The classical
dimension reduction problem proposed in the early 90’s was concerned with a sin-
gle response variable and a vector of continuous predicting variables; it used linear
combinations as the sufficient predictors; its objective was to reduce the predictor
in the conditional distribution. Since then, Sufficient Dimension Reduction has ex-

xix



xx PREFACE

panded in many directions. For example, the predictors and the responses can both
be functions or vectors of functions; the predictor can be matrix- or tensor-valued;
the predictors can have grouped structures, and can be either continuous or categor-
ical. The sufficient predictors are no longer limited to linear functions; it can be a
member of a reproducing kernel Hilbert space. The target of reduction is no longer
restricted to the whole conditional distribution; they can be the conditional means,
conditional quantiles, conditional variances, or other conditional functionals of the
response, according to our primary interests in the study.

The book is organized around four main themes. The first three themes belong to
linear Sufficient Dimension Reduction: the inverse regression methods, order deter-
mination methods and related asymptotic developments, and the forward regression
methods. The last theme is nonlinear Sufficient Dimension Reduction.

Specifically, Chapter 1 introduces the preliminary tools that will be used through-
out the book, as well as some backgrounds and motivations. Chapters 2 lays out the
basic theoretical framework, such as Sufficient Dimension Reduction subspaces and
Fisher consistency. Chapters 3 through 6 develop a variety of inverse regression esti-
mators, such as the Sliced Inverse Regression, the Parametric and the Kernel Inverse
Regression, the Sliced Average Variance Estimate, Contour Regression, and Direc-
tional Regression. Chapter 6 discusses the key assumption — the elliptical distribu-
tion assumption — that underlies these inverse regression methods. Chapter 7 intro-
duces the dimension reduction framework where the conditional mean is of interest.
Chapters 8 and 9 cover the order determination methods that determine the number
of sufficient predictors to be extracted from the data. Chapter 10, a relatively long
chapter, covers the forward regression methods, such as the Outer Product of Gradi-
ents, the Minimal Average Variance Estimator, and the Ensemble Estimator. Chapters
12 through 14 cover Nonlinear Sufficient Dimension Reduction, which includes the
basic theory, the Generalized Sliced Inverse Regression, and the Generalized Sliced
Average Variance Estimator. In the last chapter, Chapter 15, we give an overview of
the developments that cannot be explored in detail in the previous chapters, which
reveals the current scope and trends of this field.

This book grew out of the lecture notes I wrote when I taught such a course in
the Spring of 2014 in the Department of Statistics of the Pennsylvania State Univer-
sity, chaired at the time by Professor D. Hunter. I thank the department for giving me
such an opportunity and for the stimulating research environment. My work during
this period has been supported by the National Science Foundation grants. My spe-
cial thanks are due to Professor R. D. Cook, whose many inspiring discussions and
collaborations during and before the writing of this book have benefited me greatly.
I thank Professor X. Yin for reading a large part of the book. I thank my former
students, K.-Y. Lee and W. Luo, for helping to collect and organize some computer
codes. My other former students, S. Wang, Y. Dong, and A. Artemiou also con-
tributed to the computing codes. I thank Professor B. Sriperumbudur for his useful
discussions with me on the reproducing kernel Hilbert space.

State College Bing Li
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Chapter 1

Preliminaries

1.1 Empirical Distribution and Sample Moments 1
1.2 Principal Component Analysis 2
1.3 Generalized Eigenvalue Problem 3
1.4 Multivariate Linear Regression 3
1.5 Generalized Linear Model 5

1.5.1 Exponential Family 5
1.5.2 Generalized Linear Models 6

1.6 Hilbert Space, Linear Manifold, Linear Subspace 8
1.7 Linear Operator and Projection 10
1.8 The Hilbert Space Rp(Σ) 11
1.9 Coordinate Representation 12
1.10 Generalized Linear Models under Link Violation 13

1.1 Empirical Distribution and Sample Moments

Let X be a random vector defined on a probability space (Ω,F ,P), taking values in
a measurable space (ΩX ,FX). Let X1, . . . ,Xn be independent copies of X . We assume
ΩX to be a subset of Rp, the p-dimensional Euclidean space, and FX = {ΩX ∩B : B∈
R p}, where R p is the Borel σ -field on Rp.

Throughout this book, when there is a sample of n random vectors of p dimen-
sion, we always use subscript to indicate subjects, and superscript to indicate com-
ponents. Thus X k

i is the kth component of the ith subject. The symbol Xi without a
superscript is used to denote the p-dimensional vector (X 1

i , . . . ,X
p

i )
T.

The empirical distribution of X based on X1, . . . ,Xn is defined to be the measure
on (ΩX ,FX) that assigns n−1 mass to each Xi. This measure is denoted by Fn. That is,

Fn = n−1
n

∑
i=1

δXi ,

1
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where δXi is a point mass at Xi, defined as the set function

δXi(A) =

{
1 if Xi ∈ A
0 if Xi /∈ A

.

The measure Fn is a random measure, because it depends on the sample X1, . . . ,Xn.
The moments with respect to the measure Fn are called sample moments, and will

be indicated by En. Thus, for a vector-valued function f : ΩX → Rr,

En f (X) =
∫

f (X)dFn = n−1
n

∑
i=1

f (Xi) = n−1
n

∑
i=1

 f1(Xi)
...

fr(Xi)

 .

The sample covariance matrix and the sample variance matrix can then be de-
fined using En, as follows. If g : ΩX → Rr is another vector-valued function, then
covn( f (X),g(X)) is defined as

En[( f (X)−En f (X))(g(X)−Eng(X))T],

where (· · ·)T denote the transpose of a matrix. The sample variance matrix varn[ f (X)]
is then defined to be the sample covariance matrix between f (X) and f (X); that is,

varn[ f (X)] = covn[ f (X), f (X)].

1.2 Principal Component Analysis

Suppose X is a random vector in Rp. The principal components of X are defined
to be the set of linear combinations of X that have the largest variances. Thus, at
the population level, the first principal component is defined through the following
maximization problem:

maximize var(αTX) subject to ‖α‖= 1.

Let α1 be the solution to the above problem. Then αT
1 X is called the first principal

component at the population level. Let Σ = var(X). Then var(αTX) = αTΣα , and so
α1 is the first eigenvector of Σ. Similarly, the kth principal component of X is defined
by the problem of

maximizing α
T
Σα

subject to ‖α‖= 1, `= 1, . . . ,k−1, α
T
α` = 0.

(1.1)

The solution is the kth eigenvector of Σ. The kth principal component at the popula-
tion level is defined as the random variable αT

k X .
Intuitively, the random variable αT

1 X explains the most variation in X ; αT
2 X ex-

plains most variation in X left in the orthogonal complement of α1. In this way, we
decompose the variations of X sequentially by orthogonal linear combinations.
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At the sample level, suppose that X1, . . . ,Xn is an independent and identically
distributed (i.i.d.) sample of X . Let Σ̂ = varn(X), and let α̂1, . . . , α̂k be the first k
eigenvectors of Σ̂. The first k sample-level principal components of X are

{α̂T
` Xi : i = 1, . . . ,n}, `= 1, . . . ,k.

1.3 Generalized Eigenvalue Problem

Principal Component Analysis is one of many problems that can be formulated as a
generalized eigenvalue problem. Let Σ and Λ be symmetric matrix and Λ be positive
definite. The generalized eigenvalue problem is defined by the following iterative
optimization problem: at the kth step

maximizing α
T
Σα

subject to α
T
Λα = 1, α

T
Λα` = 0, `= 1, . . . ,k−1,

(1.2)

where α1, . . . ,αk−1 are the maximizers in the previous k− 1 steps. This is a gener-
alization of problem (1.1) and can be reduced to it by making the transformation
β = Λ1/2α . Then this problem becomes

maximizing β
T
Λ
−1/2

ΣΛ
−1/2

β

subject to β
T
β = 1, β

T
β` = 0, `= 1, . . . ,k−1.

Thus, the solution to problem (1.2) is αk = Λ−1/2βk, where βk is the kth eigenvector
of the symmetric matrix Λ−1/2ΣΛ−1/2.

We call αk the kth eigenvector of the generalized eigenvalue problem (Σ,Λ). We
abbreviate the phrase “generalized eigenvalue problem with respect to (Σ,Λ)” as
GEV(Σ,Λ).

1.4 Multivariate Linear Regression

Let U and V be random vectors in Rp and Rq. In multivariate linear regression, at the
population level, we are interested in minimizing the least squares criterion

E‖U−BV‖2

over all matrices in Rp×q. This problem has an explicit solution, which will be useful
in discussing many problems in Sufficient Dimension Reduction.

Henceforth, we will say a random vector V is square integrable if E‖V‖2 < ∞.
By the Cauchy-Schwarz inequality, this is true if and only if each component of V
has finite second moment. In the following, if A is a positive definite matrix, we write
A > 0.

Theorem 1.1 Suppose U and V are square integrable with E(U) = 0 and E(V ) = 0
and var(V )> 0. Then E‖U−BV‖2 is uniquely minimized over Rp×q by

B∗ = E(UVT)[E(VVT)]−1.
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PROOF. First, expand E‖U−BV‖2 as

E‖U−BV‖2 = E‖U−B∗V +B∗V −BV‖2

= E‖U−B∗V‖2 +2trE[(U−B∗V )(B∗V −BV )T]+E‖B∗V −BV‖2,
(1.3)

where tr(· · ·) stands for the trace of a matrix. The middle term on the right-hand side
is 0, because

E[(U−B∗V )(B∗V −BV )T] =E[(U−B∗V )VT](B∗−B)T

=[E(UVT)−E(UVT)](B∗−B)T = 0.

Therefore

E‖U−BV‖2 ≥ E‖U−B∗V‖2

for all B ∈ Rp×q.
To see that the minimizer B∗ is unique, we note that if B 6= B∗, then the third term

on the right-hand side of (1.3) is

E‖B∗V −BV‖2 = tr[(B∗−B)var(V )(B∗−B)T],

which is greater than 0 because var(V ) is positive definite. 2

There are several variations of Theorem 1.1 that will also be useful.

Corollary 1.1 Suppose U and V are square integrable and var(V ) > 0. Then the
function E‖U−a−BV‖2 is minimized uniquely by

B∗ = cov(U,V )[var(V )]−1, a∗ = EU−B∗EV.

PROOF. Let Uc =U−E(U) and Vc =V −E(V ). Then

E‖U−a−BV‖2 = E‖Uc−BVc‖2 +‖EU−a−BE(V )‖2

By Proposition 1.1 the first term is minimized at

B∗ = E(UcVT
c )(EVcVT

c )
−1 = cov(U,V )[var(V )]−1.

The second term is 0 if a∗ = E(U)−B∗E(V ). 2

This result is also applicable if we replace the true distribution of (U,V ) by its
empirical distribution. Let (U1,V1), . . . ,(Un,Vn) be an i.i.d. sample of (U,V ).

Corollary 1.2 If varn(V )> 0, then the criterion En‖U −a−BV‖2 is uniquely mini-
mized by

B̂ = covn(U,V )(varnV )−1, â = EnU− B̂EnV.
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1.5 Generalized Linear Model

Since one of the first ideas of Sufficient Dimension Reduction stems from a study
of Generalized Linear Models under link violation (Li and Duan (1989), Li (1991)),
it is helpful to review the basic structure and properties of the Generalized Linear
Models. For more information on this topic, see McCullagh and Nelder (1989).

1.5.1 Exponential Family

Let Y be a random variable that takes values in (ΩY ,FY ). We say that the distribution
of Y belongs to an exponential family if the probability density function (p.d.f.) of
Y has the form c(θ)eθy with respect to some σ -finite measure ν on ΩY . This can be
rewritten as

eθy−b(θ),

where b(θ) = − logc(θ). The moment generating function of Y can be easily com-
puted, as follows:

MY (t) =
∫

eteθy−b(θ)dν(y) = eb(t+θ)−b(θ)
∫

e(t+θ)y−b(t+θ)dν(y) = eb(t+θ)−b(θ).

The cumulant generating function, defined as the natural log of the moment generat-
ing function, is then

CY (θ) = b(t +θ)−b(θ).

The derivatives of the cumulant generating function evaluated at t = 0 generate cu-
mulants, the first two of which are the mean and the variance:

ĊY (0) = Eθ (Y ), C̈Y (0) = varθ (Y ). (1.4)

See, for example, McCullagh (1987). It follows that

ḃ(θ) = Eθ (Y ), b̈(θ) = varθ (Y ).

From the second equality we see that if varθ (Y ) > 0 for all θ , then ḃ is a monotone
increasing function, and therefore its inverse ḃ−1 is a well defined function. If we
denote Eθ (Y ) by µ , then

θ = ḃ−1(µ).

Moreover, varθ (Y ) can be reexpressed in µ as b̈(ḃ−1(µ)). The function b̈◦ḃ−1 charac-
terizes the mean-variance relation in an exponential family, and is called the variance
function. We denote the variance function by V (µ).
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1.5.2 Generalized Linear Models

Let X be a random vector in Rp as defined in Section 1.1. In a Generalized Linear
Model we assume that Y is related with X by the conditional density

fY |X(y|x) ∝ eθ(x)y−b(θ(x)), (1.5)

where θ(x) is a function of x. The regression relation between Y and X is modeled
through the link function. Note that

θ(x) = ḃ−1(E(Y |x)).

We model E(Y |x) by

E(Y |x) = µ(η), η = α +β
Tx,

where µ(η) is called the mean function and η = α +βTx is called the the linear pre-
dictor or the linear index. Usually, we assume µ(·) to be one-to-one, and its inverse
µ−1 is called the link function.

Substituting the relation θ(x) = ḃ−1(µ(α + βTx)) into the conditional density
(1.5), we have

fY |X(y|x;α,β ) ∝ exp
{
(ḃ−1

◦µ)(α +β
Tx)y−b((ḃ−1

◦µ)(α +β
Tx))

}
. (1.6)

In Generalized Linear Models, α and β are estimated by maximum likelihood es-
timation based on the density (1.6). Suppose that Dn = {(X1,Y1), . . . ,(Xn,Yn)} are a
sample of i.i.d. observations on (X ,Y ). Then the joint log likelihood is proportional
to

`(α,β ;Dn) =En

{
(ḃ−1

◦µ)(α +β
TX)X−b((ḃ−1

◦µ)(α +β
TX))

}
= En

{
(ḃ−1

◦µ)(γTX̃)Y −b((ḃ−1
◦µ)(γTX̃))

}
,

(1.7)

where

γ =

(
α

β

)
, X̃ =

(
1
X

)
.

Differentiate (1.7) with respect to γ to obtain

∂`(γ;Dn)/∂γ = En

{
∂ [(ḃ−1

◦µ)(γTX̃)Y ]/∂γ−∂ [b((ḃ−1
◦µ)(γTX̃))]/∂γ

}
.

This function is called the score function, and we denote it by s(γ;Dn). The deriva-
tives in the score function are computed by the chain rule:

∂ (ḃ−1◦µ)(γTX̃)

∂γ
=

∂ ḃ−1(µ)

∂ µ

∂ µ

∂η

∂η

∂γ
=

X̃ µ̇(γTX̃)

b̈(ḃ−1(µ(γTX̃)))
=

X̃ µ̇(γTX̃)

V (µ(γTX̃))
.

Here, µ̇(η) denote the function η 7→ ∂ µ/∂η . Similarly,

∂b((ḃ−1◦µ)(γTX̃))

∂γ
=

∂b(θ)
∂θ

∣∣∣∣
θ=ḃ−1(µ)

× ∂ ḃ−1(µ)

∂ µ

∂ µ

∂η

∂η

∂γ
=

X̃ µ̇(γTX̃)µ(γTX̃)

V (µ(γTX̃))
.
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Hence the score function is written explicitly as

s(γ;Dn) = En

{
X̃ µ̇(γTX̃)[Y −µ(γTX̃)]

V (µ(γTX̃))

}
.

This is completely specified by the mean function µ , which is our regression model,
and the mean-variance relation V (µ), which is determined by the exponential family.

The parameter γ is usually estimated by the maximum likelihood estimation.
Under the exponential family assumption, the log likelihood is concave and differen-
tiable. Thus the maximum likelihood estimate can be found by solving the likelihood
equation

s(γ;Dn) = 0.

This is usually solved by the Newton-Raphson algorithm, or the Fisher scoring
method. See, for example, Section 2.5.1 of McCullagh and Nelder (1989) for de-
tails.

The link function that makes θ(x)= γTx̃ is called the natural link, or the canonical
link. In other words µ has to make ḃ−1◦µ the identity mapping, which implies µ−1 =
ḃ−1. Under the natural link the conditional density (1.6) reduces to

fY |X(y|x;γ) ∝ exp
{
(γTx̃)y−b(γTx̃)

}
.

The score function reduces to the simple form

s(γ;Dn) = En

[
X̃(Y −µ(γTX̃))

]
.

We now illustrate the Generalized Linear Models by two simple examples.

Example 1.1 Suppose Y ∼ Poisson(λ ). Then

f (y;θ) ∝ λ
ye−λ = ey logλ−λ = eθy−eθ

.

Here, λ is the conventional parameter of a Poisson distribution, θ = logλ is the
canonical parameter, and the cumulant generating function of Y is

CY (t) = eθ+t− eθ .

From this we see that

ḃ−1(µ) = log µ, b̈(θ) = eθ , V (µ) = exp(log(µ)) = µ.

The natural link function is ḃ−1(µ) = log(µ), and the score function is simply

En[X̃(Y − eγTX̃)] = 0.

This model is also known as the log linear regression model. 2
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Example 1.2 Suppose, for a fixed p, Y has a binomial distribution b(n, p), where p
is a function of x. That is,

f (y) =
(

n
x

)
py(1− p)n−y

∝ ey log p
1−p +n log(1−p)

.

If we let θ = log[p/(1− p)], then n log(1− p) = −n log(1+ eθ ). The density f (y)
can be rewritten as the canonical form

f (y) ∝ exp[θy−n log(1+ eθ )].

Hence

b(θ) = n log(1+ eθ ), ḃ(θ) = n
eθ

1+ eθ
, b̈(θ) = n

eθ

(1+ eθ )2
.

It follows that

ḃ−1(µ) = log
µ/n

1−µ/n
, (b̈◦ḃ−1)(µ) = n(µ/n)(1−µ/n).

Thus the natural link function is log µ/n
1−µ/n , which is called the logit function, and the

score function is

s(γ;Dn) = En

[
X̃

(
Y −n

eγTX̃

1+ eγTX

)]
.

This type of Generalized Linear Model is called the logistic regression. 2

1.6 Hilbert Space, Linear Manifold, Linear Subspace

The theory of Sufficient Dimension Reduction is geometric in nature, where inner
product, orthogonality, and projection play a critical role. In this and the next two
sections we bring together some geometric concepts and machineries that will be
used repeatedly in this book. When developing these concepts we follow this path:

group→ Abelian group→ vector space→

{
normed space→ Banach space
inner product space→ Hilbert space

More information about these topics can be found in Kelley (1955) and Conway
(1990).

Let H be a set. Let + be a mapping from H ×H to H such that the following
conditions are satisfied:
1. +(+(g1,g2),g3) = +(g1,+(g2,g3));
2. there is a member e of H such that +(e,g) = +(g,e) = g for all g ∈H ;
3. for each g ∈H , there is a member f ∈H such that +(g, f ) = e.


