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of lemmas, propositions, theorems, and corollaries. The core of the text 
covers linear Diophantine equations; unique factorization; congruences; 
Fermat’s, Euler’s, and Wilson’s theorems; order and primitive roots; and 
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•	 Describes exciting applications of number theory to various 
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•	 Discusses recent developments
•	 Includes “check your understanding” problems that test readers on 

fundamental ideas, with solutions at the end of each chapter
•	 Provides numerous examples as well as standard and 

computational exercises, with selected answers or hints in an 
appendix

•	 Reviews the prerequisites in an appendix
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Preface

Number theory has a rich history. For many years, it was one of the
purest areas of pure mathematics, studied because of the intellectual
fascination with properties of integers. More recently, it has been an
area that also has important applications to subjects such as cryptog-
raphy. The goal of this book is to present both sides of the picture,
giving a selection of topics that we find exciting.

The main thing to remember is number theory is supposed to be fun.
We hope you enjoy the book.

The book is designed for use in a basic undergraduate course in number
theory, but the book has also been used in a course for advanced high
school students and could work well for independent study.

How does this book differ from our book An Introduction to Number
Theory with Cryptography (also published by CRC)? Since number the-
ory is often the first theoretical course a student takes, we have added
an introductory section on how to do proofs, including a brief discus-
sion of what lemmas, propositions, theorems, and corollaries are. We
have added a few more cryptographic topics such as Hill ciphers and
transposition ciphers. To fulfill our goal of a more basic course, we have
removed topics that are often not covered in a one-semester course: ge-
ometry of numbers, algebraic integers, analytic techniques, and some of
the more advanced material on primality and factorization. The chapter
on continued fractions contains the highlights, in particular the solu-
tion of Pell’s equation, which is too beautiful to omit, but leaves out
the rather technical proofs. We have also adjusted the exercises to fit
with the present version of the book.

The Chapters. The flowchart (following this preface) gives the de-
pendencies of the chapters. The section number 7.5 that occurs with
an arrow means that only that section from Chapter 7 is needed for
Chapter 9 at the end of the arrow.

The core material is Chapters 1, 2, 3, 5, 6, and 8, plus Section 10.1.

xiii



xiv Preface

These should be covered if at all possible. At this point, there are several
possibilities. It is highly recommended that some sections of Chapters
4, 7, and 9 be covered. These present some of the exciting applications
of number theory to various problems, especially in cryptography. If
time permits, additional topics from Chapters 11 through 14 can be
covered. These chapters are mostly independent of one another, so the
choices depend on the interests of the audience.

We have tried to keep the prerequisites to a minimum. Besides the
introduction to proofs in Chapter 1, there is Appendix A, which treats
some topics such as induction, the binomial theorem, and 2×2 matrices
(for use in Hill ciphers). Our experience is that many students have
seen these topics but that a review is worthwhile. The appendix also
treats Fibonacci numbers, since they occur as examples in a few places
throughout the book and are interesting in their own right.

Notes to the reader. At the end of each chapter, we have a short
list of Chapter Highlights. We were tempted to use the label “If you
don’t know these, no one will believe you read the chapter.” In other
words, when you finish a chapter, make sure you thoroughly know the
highlights. (Of course, there is more that is worth knowing.) At the
end of several sections, there are problems labeled “CHECK YOUR
UNDERSTANDING.” These are problems that check whether you have
learned some basic ideas. The solutions to these are given at the ends
of the chapters. You should not leave a topic until you can do these
problems easily.

Problems. At the end of every chapter, there are problems to solve.
The Exercises are intended to give practice with the concepts and
sometimes to introduce interesting ideas related to the chapter’s topics.
Computations have had a great influence on number theory, and the
Computer Explorations introduce this type of experimentation. Some-
times they ask for specific data, sometimes they are more open-ended.
But they represent the type of exploration that number theorists often
do in their research.

Appendix B contains answers or hints for the odd-numbered problems.
For the problems where the answer is a number, the answer is given.
When the exercise asks for a proof, usually a sketch or a key step is
given.

Computers. Many students are familiar with computers these days
and many have access to software packages such as Mathematica R©,
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Maple R©, MATLAB R©, Sage, or Pari that perform number theoretical
calculations with ease. Some of the exercises (the ones that use numbers
of five or more digits) are intended to be used in conjunction with a
computer. Many can probably be done with an advanced calculator.
The Computer Explorations definitely are designed for students with
computer skills.

Acknowledgments. Jim Kraft thanks the Gilman School for its gener-
ous support during the writing of this book. He also thanks his students
Rishi Bedi, John Chirikjian, Anthony Kim, and John Lee, whose com-
ments helped make this a better book. Many thanks are also due to
Manjit Bhatia, who made many very useful suggestions. We both thank
our many students over the years who have taught us while we have
taught them. This book would not have been possible without them.

We welcome comments, corrections, and suggestions. Corrections
and related matter will be listed on the website for the book
(www.math.umd.edu/∼lcw/elementarynumbertheory.html).

James S. Kraft
Gilman School

jkraft@gilman.edu

Lawrence C. Washington
University of Maryland

lcw@math.umd.edu
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Introduction

At Columbia University there is a Babylonian clay tablet called Plimp-
ton 322 that is more than 3800 years old and not much larger than a
cell phone. Written in cuneiform script with 4 columns and 15 rows, it
contains numbers written in base 60 (just as base 10 is standard today,
base 60 was standard in Babylon). Each row gives a Pythagorean triple,
that is, three whole numbers x, y, z satisfying

x2 + y2 = z2

(for example, 32 + 42 = 52 and 127092 + 135002 = 185412 are triples
from the tablet). This is one of the earliest examples where integers are
studied for their interesting properties, not just for counting objects.

Throughout history, there has been a fascination with whole numbers.
For example, the Pythagorean school (ca. 500 BCE) believed strongly
that every quantity could be expressed in terms of integers or ratios of
integers, and they successfully applied the idea to the theory of musical
scales. However, this overriding belief received a sharp setback when one
of the Pythagoreans, possibly Hippasus, proved that

√
2 is irrational.

There is a story, which may be apocryphal, that he discovered this at
sea and was promptly thrown overboard by his fellow Pythagoreans.
Despite their attempt at suppressing the truth, the news of this discov-
ery soon got out. Nevertheless, even though irrational numbers exist
and are plentiful, properties of integers are still important.

Approximately 200 years after Pythagoras, Euclid’s Elements, perhaps
the most important mathematics book in history, was published. Al-
though most people now think of the Elements as a book concerning
geometry, a large portion of it is devoted to the theory of numbers.
Euclid proves that there are infinitely many primes, demonstrates fun-
damental properties concerning divisibility of integers, and derives a
formula that yields all possible Pythagorean triples, as well as many

1
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other seminal results. We will see and prove these results in the first
four chapters of this book.

Number theory is a rich subject, with many aspects that are inextri-
cably intertwined but which also retain their individual characters. In
this introduction, we give a brief discussion of some of the ideas and
some of the history of number theory as seen through the themes of
Diophantine equations, modular arithmetic, the distribution of primes,
and cryptography.

1 Diophantine Equations

Diophantus lived in Alexandria, Egypt, about 1800 years ago. His book
Arithmetica gives methods for solving various algebraic equations and
had a great influence on the development of algebra and number the-
ory for many years. The part of number theory called Diophantine
equations, which studies integer (and sometimes rational) solutions
of equations, is named in his honor. However, the history of this sub-
ject goes back much before him. The Plimpton tablet shows that the
Babylonians studied integer solutions of equations. Moreover, the In-
dian mathematician Baudhāyana (≈ 800 BCE) looked at the equation
x2 − 2y2 = 1 and found the solutions (x, y) = (17, 12) and (577, 408).
The latter gives the approximation 577/408 ≈ 1.4142157 for

√
2, which

is the diagonal of the unit square. This was a remarkable achievement,
considering that, at the time, a standardized system of algebraic nota-
tion did not yet exist.

The equation

x2 − ny2 = 1,

where n is a positive integer not a square, was studied by Brahmagupta
(598–668) and later mathematicians. In 1768, Joseph-Louis Lagrange
(1736–1813) presented the first published proof that this equation al-
ways has a nontrivial solution (that is, with y 6= 0). Leonhard Euler
(1707–1783) mistakenly attributed some work on this problem to the
English mathematician John Pell (1611–1685), and ever since it has
been known as Pell’s equation, but there is little evidence that Pell
did any work on it. In Chapter 14, we show how to solve Pell’s equation.
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Perhaps x2 +y2 = z2, the equation for Pythagorean triples, is the most
well-known Diophantine equation. Since sums of two nonzero squares
can be a square, people began to wonder if this could be generalized.
For example, Abu Mohammed Al-Khodjandi, who lived in the late 900s,
claimed to have a proof that a sum of nonzero cubes cannot be a cube
(that is, the equation x3 + y3 = z3 has no nonzero solutions). Unfor-
tunately, our only knowledge of this comes from another manuscript,
which mentions that Al-Khodjandi’s proof was defective, but gives no
evidence to support this claim. The real excitement began when the
great French mathematician Pierre de Fermat (1601–1665) penned a
note in the margin of his copy of Diophantus’s Arithmetica saying that
it is impossible to solve xn + yn = zn in positive integers when n ≥ 3
and that he had found a truly marvelous proof that the margin was
too small to contain. After Fermat’s son, Samuel Fermat, published
an edition of Diophantus’s book that included his father’s comments,
the claim became known as Fermat’s Last Theorem. Today, it is
believed that he actually had proofs only in the cases n = 4 (the only
surviving proof by Fermat of any of his results) and possibly n = 3. But
the statement acquired a life of its own and led to many developments
in mathematics. Euler is usually credited with the first complete proof
that Fermat’s Last Theorem (abbreviated as FLT) is true for n = 3.
Progress proceeded exponent by exponent, with Adrien-Marie Legendre
(1752–1833) and Johann Peter Gustav Lejeune Dirichlet (1805–1859)
each doing the case n = 5 around 1825 and Gabriel Lamé (1795–1870)
treating n = 7 in 1839. Important general results were obtained by
Sophie Germain (1776–1831), who showed that if p < 100 is prime and
xyz is not a multiple of p, then xp + yp 6= zp.

The scene changed dramatically around 1850, when Ernst Eduard
Kummer (1810–1893) developed his theory of ideal numbers, which are
now known as ideals in ring theory. He used them to give general cri-
teria that allowed him to prove FLT for all exponents up to 100, and
many beyond that. His approach was a major step in the development
of both algebraic number theory and abstract algebra, and it domi-
nated the research on FLT until the 1980s. In the 1980s, new methods,
based on work by Taniyama, Shimura, Weil, Serre, Langlands, Tunnell,
Mazur, Frey, Ribet, and others, were brought to the problem, resulting
in the proof of Fermat’s Last Theorem by Andrew Wiles (with the help
of Richard Taylor) in 1994. The techniques developed during this pe-



4 Introduction

riod have opened up new areas of research and have also proved useful
in solving many classical mathematical problems.

2 Modular Arithmetic

Suppose you divide 123425147 by 25147. What is the remainder? Why
should you care? A theorem of Fermat tells us that the remainder is
1234. Moreover, as we’ll see, results of this type are surprisingly vital
in cryptographic applications (see Chapters 7 and 9).

Questions about divisibility and remainders form the basis of modular
arithmetic, which we introduce in Chapter 5. This is a very old topic,
and its development is implicit in the work of several early mathemati-
cians. For example, the Chinese Remainder Theorem is a fundamental
and essential result in modular arithmetic and was discussed by Sun
Tzu around 1600 years ago.

Although early mathematicians discovered number theoretical results,
the true beginnings of modern number theory began with the work of
Fermat, whose contributions were both numerous and profound. We
will discuss several of them in this book. For example, he proved that
if a is a whole number and p is a prime then ap−a is always a multiple
of p. Results such as this are best understood in terms of modular
arithmetic.

Euler and Karl Friedrich Gauss (1777–1855) greatly extended the work
done by Fermat. Gauss’s book Disquisitiones Arithmeticae, which was
published in 1801, gives a treatment of modular arithmetic that is very
close to the present-day version. Many of the original ideas in this book
laid the groundwork for subsequent research in number theory.

One of Gauss’s crowning achievements was the proof of Quadratic Reci-
procity (see Chapter 10). Early progress toward this fundamental re-
sult, which gives a subtle relation between squares of integers and prime
numbers, had been made by Euler and by Legendre. Efforts to gener-
alize Quadratic Reciprocity to higher powers led to the development of
algebraic number theory in the 1800s by Kummer, Richard Dedekind
(1831–1916), David Hilbert (1862–1943), and others. In the first half of
the 1900s, this culminated in the development of class field theory by
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many mathematicians, including Hilbert, Weber, Takagi, and Artin. In
the second half of the 1900s up to the present, the Langlands Program,
which can be directly traced back to Quadratic Reciprocity, has been
a driving force behind much number-theoretic research. Aspects of it
played a crucial role in Wiles’s proof of Fermat’s Last Theorem in 1994.

3 The Distribution of Primes

There are two facts about the distribution of prime numbers of
which I hope to convince you so overwhelmingly that they will
be permanently engraved in your hearts. The first is that, de-
spite their simple definitions and role as the building blocks of
the natural numbers, the prime numbers belong to the most ar-
bitrary and ornery objects studied by mathematicians: they grow
like weeds among the natural numbers, seeming to obey no other
law than that of chance, and nobody can predict where the next
one will sprout. The second fact is even more astonishing, for it
states just the opposite: that the prime numbers exhibit stunning
regularity, that there are laws governing their behavior, and that
they obey these laws with almost military precision. – Don Zagier

Euclid proved that there are infinitely many primes, but we can ask for
more precise information. Let π(x) be the number of primes less than or
equal to x. Legendre and Gauss used experimental data to conjecture
that

π(x)

x/ lnx
≈ 1,

and this approximation gets closer to equality as x gets larger. For
example,

π(104)

104/ ln 104
= 1.132, and

π(1010)

1010/ ln 1010
= 1.048.

In 1852, Pafnuty Chebyshev (1821–1894) showed that the conjecture
of Legendre and Gauss is at least approximately true by showing that,
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for sufficiently large values of x,

0.921 ≤ π(x)

x/ lnx
≤ 1.106.

A few years later, Bernhard Riemann (1826–1866) introduced tech-
niques from the theory of complex variables and showed how they
could lead to more precise estimates for π(x). Finally, in 1896, us-
ing Riemann’s ideas, Jacques Hadamard (1865–1963) and Charles de
la Vallée-Poussin (1866–1962) independently proved that

lim
x→∞

π(x)

x/ lnx
= 1,

a result known as the Prime Number Theorem.

If we look at the list of all integers, we know that within that list there
is an infinite number of primes. Suppose we look at a list like this:

1, 6, 11, 16, 21, 26, . . . ,

or like this:
3, 13, 23, 33, 43, 53, . . . ,

or like this:
1, 101, 201, 301, 401, . . . .

Does each of the three lists contain an infinite number of primes as
well? The answer is yes, and we owe the proof of this remarkable fact
to Dirichlet. In 1837, he proved that every arithmetic progression of
the form a, a+ b, a+ 2b, a+ 3b, . . . contains infinitely many primes if a
and b are positive integers with no common factor greater than 1. We
will not prove this result in this book.

There are many other questions that can be asked about primes. One of
the most famous is Goldbach’s Conjecture. In 1742, Christian Gold-
bach (1690–1764) conjectured that every even integer greater than 2 is
a sum of two primes (for example, 100 = 83 + 17). Much progress has
been made on this conjecture over the last century. In 1937, I. M. Vino-
gradov (1891–1983) proved that every sufficiently large odd integer is
a sum of three primes, and in 1966, Jingrun Chen (1933–1996) proved
that every sufficiently large even integer is either a sum of two primes or
the sum of a prime and a number that is the product of two primes (for
example, 100 = 23 + 7 · 11). In 2013, Helfgott completed Vinogradov’s
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work by showing that every odd integer greater than or equal to 7 is a
sum of three primes. These results require very delicate analytic tech-
niques. Work on Goldbach’s Conjecture and related questions remains
a very active area of modern research in number theory.

4 Cryptography

For centuries, people have sent secret messages by various means. But in
the 1970s, there was a dramatic change when Fermat’s theorem and Eu-
ler’s theorem (a generalization of Fermat’s theorem), along with other
results in modular arithmetic, became fundamental ingredients in many
cryptographic systems. In fact, whenever you buy something over the
Internet, it is likely that you are using Euler’s theorem.

In 1976, Whitfield Diffie and Martin Hellman introduced the concept of
public key cryptography and also gave a key establishment protocol (see
Chapter 9) that uses large primes. A year later, Ron Rivest, Adi Shamir,
and Len Adleman introduced the RSA cryptosystem (see Chapter 7), an
implementation of the public key concept. It uses large prime numbers
and its security is closely tied to the difficulty of factoring large integers.

Topics such as factorization and finding primes became very popular,
and soon there were several major advances in these subjects. For ex-
ample, in the mid-1970s, factorization of 40-digit numbers was the limit
of technology. As of 2014, the limit was 230 digits. Some factorization
methods will be discussed in Chapter 11.

Cryptography brought about a fundamental change in how number
theory is viewed. For many years, number theory was regarded as one
of the purest areas of mathematics, with little or no application to
real-world problems. In 1940, the famous British number theorist G. H.
Hardy (1877–1947) declared, “No one has yet discovered any warlike
purpose to be served by the theory of numbers or relativity, and it seems
unlikely that anyone will do so for many years” (A Mathematician’s
Apology, section 28). Clearly this statement is no longer true.

Although the basic purpose of cryptography is to protect communi-
cations, its ideas have inspired many related applications. In Chapter
9, we’ll explain how to sign digital documents, along with more light-
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hearted topics such as playing mental poker and flipping coins over the
telephone.



Chapter 1

Divisibility

1.1 What Is a Proof?

If you are studying chemistry and read that the boiling point of salt
water changes as the concentration of salt changes, you might try an
experiment to see if this is really true. How do you proceed? You use a
thermometer to measure the water temperature and you calculate the
concentration of the salt in the water. After performing this experiment
several times, you conclude that the statement is, in fact, correct.

If you are studying mathematics and read that the sum of two even
integers is always an even integer, you might also try an experiment
to see if this is really true. How do you proceed in this case? You can
write down two lists of even numbers, take a number from each list,
and add them up. If you do this correctly, can you conclude that the
sum of two even numbers is always even? If you suspect that this does
not completely justify the statement, you’re on to something. This is
not how mathematics works. Although mathematicians can do exper-
iments (often with computers) to try to decide if something seems to
be true, they do not use experiments to conclude that things are true.
Instead, mathematicians prove things. What is a proof? Why do we
prove things? How is a proof different from experimental verification?
We’ll answer these questions in the next few paragraphs.

Simply put, we prove things to convince others (and ourselves) that a
statement we’re asserting to be true really is true. We start off with an
initial assumption or hypothesis and use a chain of logical deductions

9
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to arrive at what we want to prove. The validity of our proof rests on
our correct use of logic, not on the consistency of experimental data.
Let’s see how this works as we prove that the sum of two even integers
is an even integer.

To begin, coming up with several examples

4 + 12 = 16, 36 + 20 = 56, 128 + 416 = 544

does not constitute a proof because it’s impossible to write down the
sum of every pair of even integers. Even if you calculated the sum of
1000 different pairs of even integers, it’s possible that the next pair
you’d try would contradict what you believe to be true. Instead, you
need to come up with some general method that handles all possibilities.
In order to do this, you need to begin with a clear and precise definition
of even integers. (You can’t prove something about even integers until
you have defined them.) This is the motivation behind the following
definition.

Definition 1.1. An integer n is an even integer if n is a multiple of
2. In other words, there is an integer k with n = 2k.

For example, 26 is even because 26 = 2 · 13, and 100 is even because
100 = 2 · 50.

Now that we’ve defined even, let’s take another look at what we want to
prove, namely that the sum of two even integers is also an even integer.
When trying to prove something, it’s essential to recognize what your
assumptions are and be absolutely certain what it is you want to prove.
In this case, we’re assuming that we have two even integers and we
want to prove that their sum is even. Sometimes it helps to link our
assumption with what we want to prove in an “if, then” sentence called
a conditional statement. Here’s what a conditional statement looks like
in this example.

If you have two even integers, then their sum is even.

The underlined clause that follows the “if” is called the hypothesis,
and the underlined clause that follows the “then” is called the conclu-
sion. The hypothesis is what you assume; the conclusion is what you
want to prove.

Now, let’s begin the proof. We start off with our even integers: we’ll
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call them m and n. (Giving the numbers names such as m and n makes
it much easier to work with them. Don’t skip this step.) We want to
prove that m + n is also even. The best way to begin is to make use
of the hypotheses. Since both m and n are even, we’ll write down the
only thing we know about even integers, namely their definition. Since
m is even, we know that m = 2k1 for some integer k1, and since n is
even, n = 2k2 for some integer k2. What do we do now? Since we want
to prove something about the sum of m and n, we’ll add m to n and
see what happens. We see that m+n = 2k1 + 2k2. Our goal is to show
that m + n is even, which means (by the definition) that we want to
express m+ n as a multiple of 2. If fact, this is what we’ve done:

m+ n = 2k1 + 2k2 = 2(k1 + k2).

This shows that m+ n is twice the integer k1 + k2, which tells us that
m+ n is even.

This proof is in many ways a model for how you should think of any
proof you try to do. First, make sure you have an unambiguous def-
inition of all your terms. Next, write what you want to prove as a
conditional statement, making sure you understand the hypothesis and
conclusion. Then, translate the hypothesis into a mathematical state-
ment. Finally, develop a strategy that will allow you to go from the
hypothesis to the conclusion. Although many of the proofs in this book
are more complex than the present example, the method that we just
outlined will always apply.

When you finish reading a proof (yes, you should always try to read
the proofs; that’s how to learn how concepts fit together and how to
do proofs), it is very good practice to look back and see where the
hypotheses were used. In our example, the hypothesis was that m and
n are even. How was this used? It allowed us to write m = 2k1 and
n = 2k2, which is what got us started. If a proof is not using one of the
hypotheses, it is likely that something is wrong (or that the hypothesis
is not needed).

No discussion of how to prove things is complete without saying how to
disprove things. Suppose you see the statement that all integers are less
than 100. That’s absurd, you say. For example, 123 is an integer and it
is not less than 100. You have disproved the statement. Whenever you
want to disprove a statement, all you need to do is find a counterexam-
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ple. One counterexample suffices. This is in complete contrast to most
proofs, where an example is not the same as a proof.1

For practice, let’s try to prove or disprove the following statements. For
each you should first try a few examples (“experiments”) to get a feel
for what is being said. If you find a counterexample, you are done, since
you have disproved the statement. If your examples seem to indicate
that the statement is true, try to give a proof. We’ll give answers after
the statements, but you should try each before looking at the solutions.

Prove or Disprove:

1. The sum of two odd integers is always even. (Note: First, you
need a definition of odd; we say that n is odd if there is an
integer k such that n = 2k + 1.)

2. The product of two even integers is always a multiple of 4.

3. Every multiple of 3 is odd.

4. Every multiple of 6 is even.

5. Every odd number larger than 1 is a prime number.

Solutions:

1. Some examples show that this seems to be true: 5 + 9 = 14,
21 + 111 = 132, 1 + 3 = 4. Now let’s prove it. First, write
the statement as a conditional statement: If m and n are odd
integers, then m + n is even. The hypothesis is that m and
n are odd. To write this mathematically, use the definition:
m = 2k1 + 1 for some integer k1, and n = 2k2 + 1 for some
integer k2. Our goal is to say something about the sum m+n,
so we compute

m+ n = (2k1 + 1) + (2k2 + 1) = 2k1 + 2k2 + 2.

What do we do now? Look at the conclusion. It says that m+n

1An exception: If the statement you want to prove is an existence statement,
then an example might suffice. For example, if the statement says that there exists
a cube that is two more than a square, then the example 33 = 52 + 2 shows that the
statement is true.
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is even, which means that we need to be able to express m+n
as a multiple of 2. Our expression for m+ n lets us do this:

m+ n = 2k1 + 2k2 + 2 = 2(k1 + k2 + 1).

Therefore, m+ n is even, which is what we wanted to prove.

2. Try some examples: 2 · 6 = 12, 8 · 6 = 48, 10 · 10 = 100.
The products are multiples of 4, so the statement seems to be
true. Let’s prove it. The hypothesis is that we have two even
integers. Let’s call them m and n. Since m and n are even, we
can write m = 2k1 and n = 2k2 for some integers k1 and k2.
The conclusion says something about the product mn, so we
write

mn = (2k1)(2k2) = 4(k1k2).

This says that mn is a multiple of 4, so we have completed
the proof.

3. Let’s try some examples: 3 ·1 = 3, 3 ·2 = 6, 3 ·3 = 9. Two out
of three; not bad. In most sporting events, winning two out
of three is awesome. But in math, one counterexample to a
statement is enough to disprove the statement. Since 2 · 3 = 6
shows that there is a multiple of 3 that is even, the statement
that all multiples of 3 are odd is false. So we have disproved
the statement.

4. Try some examples: 6 ·1 = 6, 6 ·2 = 12, 6 ·3 = 18. All of these
are even, so the statement looks correct. Let’s try to prove it.
A conditional form of the statement is “If n is an integer, then
6n is even.” The hypothesis is that n is an integer. There’s
not much that we can say about n, so let’s look at what we’re
trying to do. The conclusion says something about 6n, so let’s
look at this number. We’re trying to prove that 6n is even,
which means that we need to express it as a multiple of 2. In
fact, this is easy:

6n = 2(3n).

Therefore, 6n is a multiple of 2, so 6n is even. This proves the
statement.

5. Let’s look at some odd numbers: 3, 5, 7, 9, 11, 13. The numbers
3, 5, 11, and 13 are primes, but 9 is 3·3, so it is not prime. Since



14 Chapter 1 Divisibility

the odd number 9 is not prime, we have a counterexample,
which means the statement is false.

Throughout this book you will see proofs and wonder how in the world
anyone could have thought of them. Don’t be disheartened. They might
represent hours, or years, of work by brilliant people. We don’t see their
mistakes and false starts — we see only the final successes. Andrew
Wiles, who proved Fermat’s Last Theorem (see the Introduction and
Chapter 15), explained it as follows:

“Perhaps I could best describe my experience of doing mathematics
in terms of entering a dark mansion. One goes into the first room,
and it’s dark, completely dark. One stumbles around bumping into
the furniture, and gradually, you learn where each piece of furniture
is, and finally, after six months or so, you find the light switch. You
turn it on, and suddenly, it’s all illuminated. You can see exactly
where you were.” (PBS NOVA Broadcast, October 28, 1997)

Although none of the proofs you will be asked to do in this book should
take six months, don’t be afraid of stumbling around and making mis-
takes. Learning what doesn’t work is sometimes as important as learn-
ing what does work.

We’ll wrap up this introductory section with a brief discussion of some
of the terminology concerning proofs you’ll be seeing throughout this
book. A proposition is a statement that we’ll be able to prove. A
theorem is an extremely important proposition, and is usually a high-
light of the topic under consideration. If something is called a theorem,
you should make a special effort to remember its statement and to un-
derstand what it says. A lemma is a statement that is used to prove
a proposition or theorem. Often, a lemma is singled out because it
is useful and interesting in its own right, but is not considered to be
as important as a proposition or a theorem. (Admittedly, this can be
somewhat subjective. One person’s lemma can, at times, be someone
else’s proposition.) A corollary is a result that is an easy consequence
of a proposition or theorem.

A statement that says “A is true if and only if B is true” is a combina-
tion of two statements: “If A is true then B is true” and “If B is true
then A is true.” To prove such a statement, you assume A is true and
deduce that B is true. Then you assume B is true and deduce that A
is true.
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Often, “A if and only if B” is written as “A⇔ B.” Similarly, “A⇒ B”
means that “A implies B.”

Sometimes you will see a statement saying that A, B, and C are equiv-
alent. This is the same as saying that A is true if and only if B is true,
B is true if and only if C is true, and A is true if and only if C is true.
However, it is not necessary to prove all six implications. Instead, prove
that if A is true then B is true, then prove that if B is true then C
is true, and finally prove that if C is true then A is true. This suffices
to prove all of the necessary implications and is much more efficient.
For example, since A implies B and B implies C, we automatically
conclude that A implies C without proving it directly.

1.1.1 Proof by Contradiction

Sometimes, the easiest way to prove a statement is to suppose the
statement is false and deduce a false consequence. This is known as
proof by contradiction. Classically, it was called reductio ad absurdum
(Latin for “reduction to absurdity”).

In the following, we give three examples of proof by contradiction. In
each case, proof by contradiction arises naturally because the conclusion
is a negative statement (“there is no such number” and “the number is
not rational”). The proof proceeds by assuming the positive statement
(“there is such a number” or “the number is rational”) and showing
that this leads to a contradiction, so the negative statement must be
true.

Recall that a rational number is a number that can be expressed as the
ratio of two integers; for example, 2/3, −15/2, 71 = 71/1, and 0 = 0/1
are rational. An irrational number is a number that is not rational.
We will see in Chapter 4 that

√
2 and

√
3 are examples of irrational

numbers.

I. Prove that there is no largest integer.

Proof. If someone told you that there exists a largest integer, you would
probably say something like this: “That’s ridiculous. Adding one to any
integer gives you a larger integer. So there can’t be a largest one.”

This reasoning is essentially the proof of the statement: Suppose that
the statement to be proved is false. Then there exists a largest integer
n. Let m = n+ 1. Then m is an integer and m > n, which contradicts
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the assumption that n was the largest integer. So, no largest integer
can exist. This completes the proof. �

II. Prove that there is no smallest positive rational number. (Recall that
“positive” means greater than 0, and does not include 0.)

Proof. Let’s suppose the statement is false. Then there is a smallest
positive rational number. Call it r. Since r is rational, we can write
r = a/b, where a and b are integers. Then r/2 = a/(2b) is positive,
rational, and smaller than r, which contradicts the assumption that r
is the smallest positive rational number. Therefore, the assumption that
there is a smallest positive rational number has led to a contradiction.
The only possibility that remains is that there is no smallest positive
rational number. �

III. Prove that a rational number plus an irrational number is irra-
tional.

Proof. Let’s translate the statement into symbols: It says that if x is
rational and y is irrational, then z = x+y is irrational. We need to show
that z is irrational, which means that z cannot be written in the form
z = c/d with integers c and d. Because we’re saying that something is
not rational, it’s very natural to use a proof by contradiction. So let’s
assume that z is rational, which means that z = c/d for some integers
c and d. Moreover, one of the hypotheses is that x is rational, so x can
be written in the form x = a/b, where a and b are integers. Therefore,
x+ y = z tells us that y = z − x, which we can write as

y =
c

d
− a

b
=
bc− ad
bd

.

But bc−ad and bc are integers, so y can be expressed as the ratio of two
integers. This contradicts the assumption that y is irrational. Therefore,
the assumption that z is rational led to the false consequence that y is
rational. Therefore, we conclude that z must be irrational. �

A consequence of what we just proved is that 3−
√

2 is irrational. How
do we show this? As mentioned earlier, we’ll show in Chapter 4 that

√
2

is irrational. Suppose 3−
√

2 is rational. Then 3 = (3−
√

2) +
√

2 is a
rational plus an irrational, which is irrational by what we just proved.
But 3 is rational, so we have a contradiction. Therefore, our assumption
that 3−

√
2 is rational must be false, so 3−

√
2 is irrational.

For the record, we now note that an irrational plus an irrational can
be either rational or irrational. For example,

√
2 +
√

2 = 2
√

2 is an
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example where the sum of two irrational numbers is irrational. On the
other hand,

√
2 + (3 −

√
2) = 3 is an example where the sum of two

irrationals is rational.

When we have an “if–then” statement such as “if A is true then B is
true,” its contrapositive is “if B is false then A is false.” A statement is
true if and only if its contrapositive is true. A proof by contradiction
is really just proving the contrapositive of the statement in question.

Warning: Proof by contradiction is a very useful tool, but do not
overuse it. It is not uncommon to see something like the following:
You are asked to prove that x2 − x = 12 has a solution that is an inte-
ger. You write, “Suppose it does not have such a solution. Let x = 4.
Then 42−4 = 12, so the equation has a solution. Contradiction. There-
fore, the equation has an integral solution.” What’s wrong? Technically,
nothing. But what you’ve really done is say, “Suppose this does not have
a solution. But it does! Let x = 4. Since 42−4 = 12, the equation has a
solution that is an integer.” It makes much more sense to state directly
that x = 4 is a solution. The moral is, don’t use proof by contradiction
when a direct proof is more straightforward.

1.2 Divisibility

A large portion of this book will be spent studying and proving proper-
ties of the integers. You can add, subtract, and multiply integers, and
doing so always gives you another integer. Division is a little trickier —
sometimes when you divide one integer by another you get an integer
(12 divided by 3) and sometimes you don’t (12 divided by 5). Because
of this, the first idea we have to make precise is that of divisibility.

Definition 1.2. Given two integers a and d with d nonzero, we say
that d divides a (written d | a) if there is an integer c with a = cd.
If no such integer exists, so d does not divide a, we write d - a. If d
divides a, we say that d is a divisor of a and that a is a multiple of
d.

Examples. 5 | 30 since 30 = 5 · 6, and 3 | 102 since 102 = 3 · 34, but
6 - 23 and 4 - −3. Also, −7 | 35, 8 | 8, 3 | 0, −2 | −10, and 1 | 4.
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Remark. There are two technical points that need to be mentioned.
First, we never consider 0 to be a divisor of anything. Of course, we
could agree that 0 | 0, but it’s easiest to avoid this case completely since
we never need it. Second, if d is a divisor of a, then −d is a divisor of
a. However, whenever we talk about the set of divisors of a positive
integer, we follow the convention that we mean the positive divisors. So
we say that the divisors of 6 are 1, 2, 3, and 6 (and ignore −1, −2, −3,
−6).

There are several basic results concerning divisibility that we will be
using throughout this book.

Proposition 1.3. Assume that a, b, and c are integers. If a | b and
b | c, then a | c.

Proof. We first need to change the hypotheses into something we can
use. We are assuming that a | b and b | c. What can we deduce from
this? Maybe the best thing to do is use the definition of divisibility:
Since a | b, we can write b = ea for some integer e, and since b | c,
we can write c = fb for some integer f . Since we are trying to show
a | c, we need to find an equation that relates a and c. Let’s try putting
together what we have so far. Substitute b = ea into c = fb to obtain

c = fb = f(ea) = (fe)a.

Therefore, c equals a times an integer so, by definition, a | c.

Example. The proposition implies, for example, that a multiple of 6
is even: Let a = 2 and b = 6, and let c be an arbitrary integer. Then
a | b. If 6 | c, the proposition says that 2 | c, which says that c is even.

Proposition 1.4. Assume that a, b, d, x, and y are integers. If d | a
and d | b, then d | ax+ by.

Proof. Write a = md and b = nd. Then

ax+ by = (md)x+ (nd)y = d(mx+ ny),

so c | ax+ by by definition.

Often, ax+ by is called a linear combination of a and b, so Proposition
1.4 says that every divisor of both a and b is also a divisor of each linear
combination of a and b.
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Corollary 1.5. Assume that a, b, and d are integers. If d | a and d | b,
then d | a+ b and d | a− b.

Proof. To show that d | a + b, set x = 1 and y = 1 in the proposition
and to show that d | a−b, set x = 1 and y = −1 in the proposition.

Examples. Since 3 | 9 and 3 | 21, the proposition says that

3 | 5 · 9 + 4 · 21 = 129.

Since 5 | 20 and 5 | 30, we have 5 | 20 + 30 = 50. Since 10 | 40 and
10 | 60, we have 10 | 40− 60 = −20.

CHECK YOUR UNDERSTANDING2

1. Does 7 divide 1001?
2. Show that 7 - 1005.

1.3 Euclid’s Theorem

Fundamental to the study of the integers is the idea of a prime number.

Definition 1.6. A prime number is an integer p ≥ 2 whose only
divisors are 1 and itself. A composite number is an integer n ≥ 2
that is not prime.

You may be wondering why 1 is not considered to be prime. After all, its
only divisors are 1 and itself. Although there have been mathematicians
in the past who have included 1 in the list of primes, nobody does
so anymore. The reason for this is that mathematicians want to say
there’s exactly one way to factor an integer into a product of primes.
If 1 were a prime, and we wanted to factor 6, for example, we’d have
6 = 2 · 3 = 2 · 3 · 1 = 2 · 3 · 1 · 1, ... and we would have an infinite number
of ways to factor an integer into primes. So, to avoid this, we simply
declare that 1 is not prime.

2Answers are at the end of the chapter.
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The first ten prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

Notice that 2 is prime because its only divisors are 1 and 2, but no
other even number can be prime because every other even number has
2 as a divisor.

It’s natural to ask if the list of primes ever terminates. It turns out that
it doesn’t; that is, there are infinitely many primes. This fact is one of
the most basic results on number theory. The first written record we
have of it is in Euclid’s Elements, which was written more than 2300
years ago. In the next section, we’ll discuss Euclid’s original proof.
Before we do that, here’s a proof that is a variation of his idea. We
begin with a lemma.

Lemma 1.7. Every integer greater than 1 is either prime or is divisible
by a prime.

Proof. If an integer n is not a prime, then it is divisible by some integer
a1, with 1 < a1 < n. If a1 is prime, we’ve found a prime divisor of n. If
a1 is not prime, it must be divisible by some integer a2 with 1 < a2 < a1.
If a2 is prime, then since a2 | a1 and a1 | n, we have a2 | n, and a2 is a
prime divisor of n. If a2 is not prime, we continue and get a decreasing
sequence of positive integers a1 > a2 > a3 > a4 > · · · , all of which are
divisors of n. Since you can’t have a sequence of positive integers that
decreases forever, this sequence must stop at some am. The fact that
the sequence stops means that am must be prime, which means that
am is a prime divisor of n.

Example. In the proof of the lemma, suppose n = 72000 = 720× 100.
Take a1 = 720 = 10 × 72. Take a2 = 10 = 5 × 2. Finally, take a3 = 5,
which is prime. Working backwards, we see that 5 | 72000.

Euclid’s Theorem. There are infinitely many primes.

Proof. We assume that there is a finite number of primes and arrive at
a contradiction. So, let

2, 3, 5, 7, 11, ..., pn (1.1)
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be the list of all the prime numbers. Form the integer

N = 2 · 3 · 5 · 7 · 11 · · · pn + 1.

To begin, N can’t be prime since it’s larger than pn and pn is assumed
to be the largest prime. So, we can use the previous lemma to choose a
prime divisor p of N . Since equation (1.1) is a list of every prime, p is
equal to one of the pi and therefore must divide 2 ·3 ·5 ·7 ·11 · · ·pn. But
p now divides both N and N − 1 = 2 · 3 · 5 · 7 · 11 · · · pn. By Corollary
1.5, p divides their difference, which is 1. This is a contradiction: p - 1
because p > 1. This means that our initial assumption that there is a
finite number of primes must be incorrect.

Since mathematicians like to prove the same result using different meth-
ods, we give an alternative proof.

Another proof of Euclid’s Theorem. We’ll show that for each n >
0, there is a prime number larger than n. Let N = n! + 1 and let p
be a prime divisor of N . Either p > n or p ≤ n. If p > n, we’re done.
If p ≤ n, then p is a factor of n!, so p | N − 1. Recall that p was
chosen so that p | N , so we now have p | N and p | N − 1. Therefore,
p | N − (N − 1) = 1, which is impossible. This means that p ≤ n is
impossible, so we must have p > n.

In particular, if n is prime, there is a prime p larger than n, so there is
no largest prime. This means that there are infinitely many primes. �

CHECK YOUR UNDERSTANDING

3. Explain why 5 - 2 · 3 · 5 · 7 + 1.

1.4 Euclid’s Original Proof

Here is Euclid’s proof that there is an infinite number of primes, using
the standard translation of Sir Thomas Heath. Euclid’s statements are
written in italics. Since his terminology and notation may be unfamil-
iar, we have added comments in plain text where appropriate. It will
be helpful to know that when Euclid says “A measures B” or “B is
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measured by A,” he means that A divides B or, equivalently, that B
is a multiple of A. Rather than saying that there are infinitely many
primes, he says that, given a finite set of primes, there is at least one
prime that is not in this set.

Euclid’s Statements Explanation

Let A, B, and C be the assigned
prime numbers.

This is the finite set of primes.
Euclid assumes that there are
only three. You can think of this
as representing some arbitrary,
unknown number of primes.

I say that there are more prime
numbers than A, B, and C.

I will show that there is a prime
that is not in our finite set.

Take the least number DE mea-
sured by A, B, and C. Add the
unit DF to DE.

DE is the least common multiple
of A, B, and C, and EF = DE +
1.

Then EF is either prime or not.
Let it be prime.

Either EF is prime or it’s not.
First, assume that it’s prime.

Then the prime numbers A, B, C,
and EF have been found which are
more than A, B, and C.

Then we have found a set of
primes that is larger than our
original set of primes.

Next, let EF not be prime. There-
fore it is measured by some prime

Next, assume that EF is not
prime. Then, it is a multiple of

number. Let it be measured by the
prime number G.

some prime. Let it be a multiple
of the prime G.

I say that G is not the same with
any of the numbers A, B, and C.

We will now show that G is not
in our set of primes.

For if possible, let it be so. Now A,
B, and C measure DE, therefore
G also will measure DE.

Assume that G is in our set. Since
DE is a multiple of all of the
primes in our set, G divides DE.

But it also measures EF. But, EF is also a multiple of G.
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Therefore G, being a number, will
measure the remainder, the unit
DF, which is absurd.

Since EF is a multiple of G, and
DE = EF + 1 is a multiple of G,
their difference (EF + 1 - EF ),
which equals 1, is also a multiple
of G. This is a contradiction.

Therefore G is not the same with
any one of the numbers A, B, and

So G is a prime number that is
not in our set of primes. There-

C. And by hypothesis it is prime.
Therefore, the prime numbers A,

fore, no finite set can contain all
of the primes.

B, C, and G have been found
which are more than the assigned
multitude of A, B, and C. There-
fore, prime numbers are more
than any assigned multitude of
prime numbers. Q.E.D.

1.5 The Sieve of Eratosthenes

Eratosthenes was born in Cyrene (in modern-day Libya) and lived in
Alexandria, Egypt, around 2300 years ago. He made important contri-
butions to many subjects, especially geography. In number theory, he
is famous for a method of producing a list of prime numbers up to a
given bound without using division. To see how this works, we’ll find
all the prime numbers up to 50.

List the integers from 1 to 50. Ignore 1 and put a circle around 2. Now
cross out every second number after 2. This yields (we give just the
beginning of the list)

1 2© 3 4/ 5 6/ 7 8/ 9 10//

11 12// 13 14// 15 16// 17 18// 19 20//.

Now look at the next number after 2 that is not crossed out. It’s 3. Put
a circle around 3 and cross out every third number after 3. This yields

1 2© 3© 4/ 5 6/ 7 8/ 9/ 10//

11 12// 13 14// 15// 16// 17 18// 19 20//.


