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Graph-Theoretical Matrices in Chemistry presents a systematic survey of 
graph-theoretical matrices and highlights their potential uses. This compre-
hensive volume is an updated, extended version of a former bestseller featur-
ing a series of mathematical chemistry monographs. In this edition, nearly 200 
graph-theoretical matrices are included.

This second edition is organized like the previous one—after an introduction, 
graph-theoretical matrices are presented in five chapters: The Adjacency 
Matrix and Related Matrices, Incidence Matrices, The Distance Matrix and 
Related Matrices, Special Matrices, and Graphical Matrices. Each of these 
chapters is followed by a list of references.

Among the matrices presented several are novel and some are known only to 
a few. The properties and potential usefulness of many of the presented graph-
theoretical matrices in chemistry have yet to be investigated. 

Most of the graph-theoretical matrices presented have been used as sources 
of molecular descriptors usually referred to as topological indices. They are 
particularly concerned with a special class of graphs that represents chemical 
structures involving molecules. Due to its multidisciplinary scope, this book 
will appeal to a broad audience ranging from chemistry and mathematics to 
pharmacology.
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Preface to the Second Edition

The first edition of this monograph, entitled Graph- Theoretical Matrices in 
Chemistry, was published, under the editorship of Professor Ivan Gutman, by the 
University of Kragujevac, Kragujevac, Serbia (Janežić et al., 2007). That monograph 
appeared in the series Mathematical Chemistry Monographs as the third volume 
and sold out. Therefore, we decided to improve and enlarge the second edition of 
the monograph in order to include novel graph- theoretical matrices that appeared 
after the first edition was published. We also received quite a few comments on 
the first edition; the most detailed were by Professor Milan Randić, the foremost 
mathematical chemist of our times. In the second edition, we include most of his 
comments as well as his suggestions to include a few more graph- theoretical matri-
ces from the early days of chemical graph theory. The term chemical graph theory 
was introduced in the early 1970s by the Theoretical Chemistry Group at the Rugjer 
Bošković Institute in Zagreb. Nenad Trinajstić first used this term that is now gener-
ally accepted for chemical applications of graph theory (Gutman, 2003).

Several new monographs have appeared since 2007 reporting in part on graph- 
theoretical matrices and related molecular descriptors, e.g., Molecular Descriptors 
for Chemoinformatics (Todeschini and Consonni, 2009), Statistical Modelling of 
Molecular Descriptors in QSAR/ QSPR (Dehmer et al., 2012) and Mathematical 
Chemistry and Chemoinformatics (Kerber et al., 2014). Several new graph- 
theoretical matrices have also been proposed, such as the sum- connectivity matrix 
(Zhou and Trinajstić, 2010) and the distance- weighted adjacent matrix (Randić et al., 
2010) and the matrix of dominant distances in a graph (Randić, 2013). The total 
number of graph- theoretical matrices considered here is 170.

The second edition is organized similarly as the first edition; that is, after the 
introduction the considered graph- theoretical matrices are presented in five chapters: 
“The Adjacency Matrix and Related Matrices,” “Incidence Matrices,” “The Distance 
Matrix and Related Matrices,” “Special Matrices,” and “Graphical Matrices.” Each 
chapter is followed by a list of references. The monograph ends with concluding 
remarks and a subject index.

We thank Dr. Sc. Bono Lučić for his help with this manuscript by providing reprints 
of a number of papers we needed to consult. We also thank the master of engineering 
in landscape architecture Zdenko Blažeković for his help with figures. Comments by 
reviewers were most helpful. We thank them for their valuable suggestions.
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Preface to the First Edition

Mathematical chemistry has a long history extending back to the times of Russian 
polymath Mikhail Vasilyevich Lomonosov (Oranienbaum, from 1948; Lomonosov, 
1711–Sankt Peterburg, 1765), when he attempted in the mid-18th century to mathema-
tize chemistry (Trinajstić and Gutman, 2002). A part of mathematical chemistry that 
we call chemical graph theory (Trinajstić, 1983, 1992) also has a distinguished past 
that extends to the second half of the 19th century when Arthur Cayley (Richmond, 
Surrey, 1821–Cambridge, 1895) was enumerating alkane isomers (Cayley, 1875) 
and James Joseph Sylvester (London, 1814–London, 1897) introduced the terms 
algebraic chemistry and graph (Sylvester, 1877/1878, 1878). Alexander Crum Brown 
(Edinburgh, 1838–Edinburgh, 1922), who was trained in both chemistry and math-
ematics, was probably the first chemist who did research in mathematical chemistry 
(Crum Brown, 1864, 1866/1867).

The term algebraic chemistry has in due course been replaced by the more general 
term mathematical chemistry, but a better term than graph has never been found. 
The seminal role of Cayley and Sylvester in the early development of mathemati-
cal chemistry in general and chemical graph theory in particular has been expertly 
reviewed by Dennis H. Rouvray (1989). It is important to point out why mathematical 
chemistry is relevant to chemistry. We could not do better than Jerome Karle, Nobel 
Prize Laureate 1985, who wrote: “Mathematical chemistry provides the framework 
and broad foundation on which chemical science proceeds” (Karle, 1986).

Mathematical chemistry and chemical graph theory were developing sluggishly 
with only a few leaps, such as Pólya’s work on combinatorial enumeration (Polya, 
1937), until the 1970s. Then there suddenly appeared several research groups, 
located worldwide, that started to speedily develop chemical graph theory. One of 
the directions in which this vigorous revival was moving was the introduction of a 
number of novel graph- theoretical matrices.

Matrices are the backbone of chemical graph theory. Classical graph- theoretical 
matrices are the (vertex-) adjacency matrix, the (vertex- edge) incidence matrix, and 
the (vertex-) distance matrix (Harary, 1971; Behzad and Chartrand, 1971; Johnson 
and Johnson, 1972; Wilson, 1972; Bondy and Murty, 1976; Rouvray, 1976; Chartrand, 
1977; Cvetković et al., 1988, 1995; Buckley and Harary, 1990). Historically, inci-
dence matrices appear to have been the first to be used (Poincaré, 1900). However, 
the most important graph- theoretical matrix is the vertex- adjacency matrix, as is well 
illustrated by Cvetković, Doob, and Sachs in their monograph Spectra of Graphs—
Theory and Applications (Cvetković et al., 1995), the first edition of which appeared 
in 1982. An important source for the distance matrix is the monograph Distance in 
Graphs by Buckley and Harary (1990).

In the last 25 years perhaps more than 100 novel graph- theoretical matrices have 
been introduced. Among the literature sources reporting some of these matrices 
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and their uses are the monographs Topological Indices and Related Descriptors in 
QSAR and QSPR, edited by Devillers and Balaban (1999), Handbook of Molecular 
Descriptors by Todeschini and Consonni (2000), and Molecular Topology by 
Diudea et al. (2001), and the review articles “Molecular Graph Matrices and Derived 
Structural Descriptors” by Ivanciuc et al. (1997) and “Eigenvalues as Molecular 
Descriptors” by Randić et al. (2001).

We present 130 graph- theoretical matrices in the encyclopedic manner, classified 
into five groups: adjacency matrices and related matrices, incidence matrices, dis-
tance matrices and related matrices, special matrices, and graphical matrices. The 
motivation for preparing this monograph comes from the fact that among the matri-
ces presented, several are novel, several are known only to a few, and the properties 
and potential usefulness of many graph- theoretical matrices in chemistry are yet to 
be investigated.

Most of the graph- theoretical matrices that we present here have been used as 
sources of molecular descriptors, usually referred to as topological indices—the term 
topological index was introduced 35 years ago by Hosoya (1971)—which have found 
considerable application in structure- property- activity modeling (Trinajstić, 1983, 
1992; Gutman and Polansky, 1986; Devillers and Balaban, 1999; Karelson, 2000; 
Diudea, 2001; Diudea et al., 2001), usually abbreviated QSPR (quantitative structure- 
property relationship) (Sabljić and Trinajstić, 1981) and QSAR (quantitative 
structure- activity relationship) (Tichy, 1976). Graph- theoretical and related matrices, 
however, have also been used for many other purposes in chemistry (e.g., Randić, 
1974; Hendrickson and Toczko, 1983; Lukovits, 2000, 2002, 2004; Lukovits and 
Gutman, 2002; Klein et al., 2002; Babić et al., 2004; Miličević and Trinajstić, 2006; 
Diudea et al., 2006) and in other sciences (e.g., Avondo- Bodino, 1962; Johnson and 
Johnson, 1972; Chartrand, 1977; Hage and Harary, 1986; Roberts, 1989).

Hopefully, this monograph will stimulate some readers to undertake research in 
this fruitful and rewarding area of chemical graph theory and introduce new kinds 
of graph- theoretical matrices that may find use in chemistry.

Finally, we wish to point out that this book is an outcome of the long- standing 
Croatian- Slovenian joint research collaboration in computational and mathemati-
cal chemistry.

The authors thank G.W.A. Milne, former editor- in- chief of the Journal of 
Chemical Information and Computer Sciences, for his editorial assistance with 
this book.
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1

1 Introduction

The aim of this monograph is to present a number of the graph- theoretical matri-
ces and related matrices that are frequently encountered in chemical graph theory. 
Matrices are convenient devices for the algebraic representation of graphs—they 
allow numerical handling of graphs (e.g., Randić, 1974; Hendrickson and Toczko, 
1983; Lukovits, 2000, 2002, 2004; Lukovits and Gutman, 2002; Klein et al., 2002; 
Babić et al., 2004; Miličević and Trinajstić, 2006; Diudea et al., 2006). A graph is 
a mathematical object, usually denoted by G, which consists of two nonempty sets; 
one set, usually denoted by V, is a set of elements called vertices, and the other, usu-
ally denoted by E, is a set of unordered pairs of distinct elements of V called edges 
(Wilson, 1972). Thus, G = (V, E). Note in the parlance of Harary (1971), vertices are 
called points and edges lines. The degree of a given vertex in G is equal to the num-
ber of adjacent vertices, denoted by d.

We are here concerned with a special class of graphs called chemical graphs, that 
is, graphs representing chemical structures. If chemical structures under consider-
ation are molecules, we call this type of chemical graph a molecular graph. They 
are generated by replacing atoms and bonds with vertices and edges, respectively 
(Trinajstić, 1983, 1992; Gutman and Polansky, 1986). Hydrogen atoms are ordinar-
ily neglected. A picture of a simple molecular graph G1 representing the hydrogen- 
depleted carbon skeleton of 1-ethyl-2-methylcyclobutane is given in Figure 1.1.

A simple graph is defined as a graph that contains no multiple edges or loops. Two 
or more edges that join a pair of vertices are called multiple edges. A graph contain-
ing multiple edges is called the multiple graph or multigraph (Harary, 1971). A loop 
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H
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FIGURE 1.1 1-Ethyl-2-methylcyclobutane C7H14, its hydrogen- depleted carbon skeleton C7, 
and the corresponding molecular graph G1.
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is an edge joining a vertex to itself. Graphs containing multiple edges and loops are 
called general graphs (Wilson, 1972).

Labeling vertices and edges of a graph is important, because the structure of any 
graph- theoretical matrix depends on the labeling (Trinajstić, 1983, 1992). In other 
words, two graphs may be identical, but because they are differently labeled, the 
corresponding matrices will appear to be different in their manifested arrangements.

REFERENCES

D. Babić, D.J. Klein, J. von Knop, and N. Trinajstić, Combinatorial enumeration in chemistry, 
in Chemical modelling: Applications and theory, ed. A. Hinchliffe, Vol. 3, Royal Society 
of Chemistry, Cambridge, 2004, pp. 126–170.

M.V. Diudea, M.S. Florescu, and P.V. Khadikar, Molecular topology and its applications, 
EfiCon Press, Bucharest, 2006.

I. Gutman and O.E. Polansky, Mathematical concepts in organic chemistry, Springer, Berlin, 
1986.

F. Harary, Graph theory, 2nd printing, Addison- Wesley, Reading, MA, 1971.
J.B. Hendrickson and A.G. Toczko, Unique numbering and cataloging of molecular structures, 

J. Chem. Inf. Comput. Sci. 23 (1983) 171–177.
D.J. Klein, D. Babić, and N. Trinajstić, Enumeration in chemistry, in Chemical model-

ling: Applications and theory, ed. A. Hinchliffe, Vol. 2, Royal Society of Chemistry, 
Cambridge, 2002, pp. 56–95.

I. Lukovits, A compact form of the adjacency matrix, J. Chem. Inf. Comput. Sci. 40 (2000) 
1147–1150.

I. Lukovits, The generation of formulas for isomers, in Topology in chemistry: Discrete math-
ematics of molecules, ed. D.H. Rouvray and R.B. King, Horwood, Chichester, 2002, 
pp. 327–337.

I. Lukovits, Constructive enumeration of chiral isomers of alkanes, Croat. Chem. Acta 77 
(2004) 295–300.

I. Lukovits and I. Gutman, On Morgan trees, Croat. Chem. Acta 75 (2002) 563–576.
A. Miličević and N. Trinajstić, Combinatorial enumeration in chemistry, in Chemical model-

ling: Applications and theory, ed. A. Hinchliffe, Vol. 4, Royal Society of Chemistry, 
Cambridge, 2006, pp. 408–472.

M. Randić, On the recognition of identical graphs representing molecular topology, J. Chem. 
Phys. 60 (1974) 3920–3928.

N. Trinajstić, Chemical graph theory, Vols. I and II, CRC, Boca Raton, FL, 1983.
N. Trinajstić, Chemical graph theory, 2nd ed., CRC, Boca Raton, FL, 1992.
R.J. Wilson, Introduction to graph theory, Oliver and Boyd, Oxford, 1972.


