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FOREWORD 

The IF AC Symposium on Adaptive Systems in Control and Signal Processing (ACASP'95), 
the fifth in the triennial series, is organized in Budapest, June 14-16, 1995. Previous meetings 
were held in San Francisco 1983, Lund 1986, Glasgow 1989 and Grenoble 1992. 

The 1995 AC ASP includes 74 technical papers in a very stimulating and high quality program 
with topics of interests for all researchers and industrialists working with adaptive systems. 

This Symposium features five Plenary Sessions: 

• Prof. M. GEVERS 
Identification for Control 

• Prof. L. KEVICZKY 
Combined Identification and Control: Another Way 

•  Profs. P.M. GRANT and B. MULGREW 
Nonlinear Adaptive Filters: Design and Application 

• Prof. D. CLARKE 
Adaptive Predictive Control 

• Prof. R. KULHAVY 
A Kullback-Leibler Distance Approach to System Identification 

a Case Study Session 
Multistage Flash Seawater Desalination Plant Control 
organized by Prof. G.P. RAO 

and an Invited Session 
Weak-Duality for Adaptive Control 
organized by Prof SM. VERES 

The program consisting of also 14 contributed sessions makes a good balance between 
applications and theory oriented papers. 

Cs. Bânyâsz, Editor 
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1 

Few people would object to the assertion that con-
trol engineers have been among the key players in 
the development of identification theory. And yet, 
it is fair to say that for much of the seventies and 
eighties - the golden age of the development of 
identification theory as a part of science - only 
scant attention has been given to the control ob-
jective in the design of identification methods. 

The reason for this is that for a long time identi-
fication has been viewed as a search for 'the true 
system' rather than as a methodology whose aim 
is to produce an 'approximation of reality'. Thus, 
the focus of attention during most of the seventies 
was to produce identification methods that could 
be shown to converge to the 'true system' under 
the assumption that this 'true system' was in the 
model set. In the early eighties, the effort shifted 
from the concept of identifying the true system 
to that of 'approximating' the true system and of 
characterizing this approximation in terms of bias 
and variance of the transfer function estimates. 
The first results date back to the mid-eighties. 

Once it is recognized that identification is essen-
tially a methodology for the construction of ap-
proximate models, it makes sense to attempt tun-
ing the identification towards the objective for 
which the model is to be used. Thus, the concept 
of identification design becomes central, namely 
the choices to be made for the experimental con-
ditions, the model set, the data filters, the crite-
rion, etc... One of the main contributions of L. 
Ljung's book (Ljung, 1987) was to introduce this 
engineering view of identification and to lay down 
some foundations for the formal design of goal-

oriented identification. However, the contribu-
tions to control-oriented identification design were 
still very modest in 1987. 

At the same time, it is widely recognized by 
process control engineers that model-based con-
trol design often achieves remarkably good per-
formance on fairly complex processes with models 
that can at best be considered as very crude ap-
proximations of the physical system. This implies 
that, for control design purposes, it often suffices 
to work with models that may have large errors, 
provided they possess with great accuracy some 
features that are essential for the design of high 
performance controllers. 

To make our message less opaque, let us focus 
on linear time-invariant systems. It is then rea-
sonable to expect that the achievement of good 
closed loop performance probably allows for large 
model errors in some frequency bands but requires 
high precision in other frequency bands. The re-
search on Identification for Control aims at re-
placing such loose statements by analysis, and at 
producing identification design guidelines for the 
case where the goal of the identification is to de-
sign model-based controllers. 

The study of the interactions between identifica-
tion and control design can be performed at vari-
ous levels of generality and idealisation. First one 
should examine whether a model is really neces-
sary for control design, or whether one cannot ob-
tain better performance by the direct tuning of 
controller parameters towards the minimization 
of a closed loop performance criterion. We shall 
come back to this question in the concluding sec-
tion of this paper. Assuming now that one takes 

1. INTRODUCTION 

Abstrac t . We present a conceptual characterization of the various ways of addressing the prob-
lem of identification for control. This leads us to distinguish between a dual control approach, an 
optimal experiment design approach and a robust control approach. The connections and distinc-
tions between these three viewpoints are discussed, and recent results for each approach are briefly 
presented. 

K e y Words . Identification; identification for control; optimal experiment design. 

*Center for Engineering Systems and Applied Mechanics, Université Catholique de Louvain, Bâti-
ment Euler, 1348 Louvain la Neuve, Belgium, Fax: +32 10 472180, Tel: +32 10 472590, Email: 
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a model-based approach to controller design, then 
the problem of identification for control can be ad-
dressed at the following levels. 

1. At the most general (or ideal) level, one can 
pose the problem as an optimal control prob-
lem in which the learning of the unknown pa-
rameters is included in the control problem 
formulation. Thus, at each sampling time, 
the control variable is computed that mini-
mizes a performance criterion which explic-
itly incorporates the information about pa-
rameter uncertainty. Whether these parame-
ters are model parameters or controller pa-
rameters does not really matter: the opti-
mal controller has the dual - and conflicting -
task of learning the unknown parameters and 
tracking (or regulating) the output variables. 
This is the area of dual control, in which iden-
tification (or, more precisely, parameter es-
timation) and control design are posed as a 
combined problem. It is an immensely diffi-
cult subject for which few results are avail-
able. We will explain the basic concepts of 
dual control and present some recent results 
in Section 3. We should add that all available 
results are limited to the case where full-order 
models are used, i.e. where 'the system is in 
the model set'. 

2. At the next level of idealisation, one can con-
sider the situation where the identification 
is designed in such a way that the ensuing 
model-based controller performs as close as 
possible to the 'ideal controller' on the actual 
closed loop system. By 'ideal controller' is 
meant the controller that would result from 
the model-based control design criterion if the 
true system were known. Thus, one com-
pares the performance on the actual plant 
of the identified controller and of the ideal 
controller. This problem formulation is of-
ten referred to as optimal experiment design. 
It addresses the problem of identification for 
control rather than the more ideal combined 
identification and control design problem ad-
dressed by dual control. A main drawback of 
this approach is that, as with all optimal ex-
periment design results, the solution depends 
on the unknown system. However, it can 
deliver qualitative guidelines, and, more re-
cently, it has been the basis of a feasible sub-
optimal scheme for certain control designs. 
We will present some recent results in this 
direction in Section 4. All available results 
on optimal experiment design are again lim-
ited to the case where the 'system is in the 
model set'. 

3. In the previous approach, the identification 
design criterion is based on a comparison 
between the optimal closed loop system (= 

true system with its optimal controller) and 
the achieved closed loop system (= true sys-
tem with the 'identified model'-based con-
troller). What makes this design unrealistic 
is that the optimal loop depends on the un-
known system. The next and more realistic 
approach, is to compare the achieved closed 
loop system with the designed or nominal 
closed loop sytem (= identified model with 
its model-based controller). This approach is 
in line with robust control design thinking. 
Of course, there is no guarantee with this 
approach that the performance achieved by 
the model-based designed controller will be 
anywhere near the optimal performance. On 
the other hand, if this nominal performance 
is judged satisfactory, and if the achieved per-
formance can be made close to the nominal 
performance, then the achieved performance 
should be at least satisfactory. We shall see 
later that in this third approach the key fea-
ture is to match the identification to the con-
trol design criterion in such a way that the 
control design and the identification design 
aim at the same global objective, and that 
the achieved and design loops become 'close' 
in a sense that will have to be made precise.1 

In this approach, it is not necessary to restrict 
oneself to the case where 'the system is in the 
model set'. In fact, most of the available re-
sults focus more on the bias error (due to the 
fact that the system is not in the model set) 
than on the variance error (due to the fact 
that the data are noisy). 

In this paper we have chosen to take a rather con-
ceptual view on the problem of identification for 
control. Hence our attempt to present the fun-
damental approaches to this problem in terms of 
their conceptual differences as explained above: 
what are the global criteria that these various ap-
poraches attempt to minimize? There are various 
other (perhaps more technical) subdivisions that 
one could have taken, along the following lines. 

•  What kind of noise and model uncertainty 
description (hard bounded, stochastic, etc) ? 

•  What kind of norm for the identification cri-
terion (Z/2, /i, Hoc, or no norm at all as in set 
membership identification) ? 

•  What kind of control criterion (LQG, #oo, h, 
pole placement) ? 

Each of the three conceptual approaches to iden-
tification for control enunciated above can be 
phrased in many different variants, depending on 
the uncertainty models and the norms used. One 
reason for adopting the conceptual subdivision is 
to bring some fresh way of looking at the prob-

1 Or, as one would say in French, 4that will have to be 
precised'. 
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lern. The other is that the more technical com-
parisons have already been handled in several sur-
veys, tutorials and plenaries in the last few years: 
see (Gevers, 1991; Gevers, 1993; Bitmead, 1993; 
Kosut, 1993; Van den Hof and Schrama, 1994; 
Mäkiläet al. 1994). 

Thus, we shall not attempt to be exhaustive in 
this paper, or to survey the various approaches to 
identification for control. We therefore make no 
apologies to the hundreds of authors in this lively 
field whom we have omitted to quote. Instead, we 
shall try to highlight some of the key issues and 
present some recent results in each of the three 
approaches mentioned above. We shall also, all 
through the paper, develop our ideas in the con-
text of stochastic Least Squares prediction error 
identification. 

In Section 2 we first recall the fundamentals of 
Least Squares prediction error identification. In 
Section 3 we present the concepts of dual control, 
as well as some recent results, illustrating the su-
periority of dual control over the separate designs 
of identification followed by Certainty Equivalence 
control. Section 4 presents the key ideas of opti-
mal experiment design for control. In Section 5 we 
examine how the identification criterion should be 
determined by the control design criterion so that 
the achieved and design loops become 'close', and 
we present some thoughts on direct optimal con-
troller parameter tuning. 

2. IDENTIFICATION IN OPEN AND 
CLOSED LOOP 

We consider that the task is to design a controller 
for some "true" linear time-invariant scalar sys-
tem described by 

S:yt = P{q)ut + H{q)et (1) 

where P(q) and H(q) are scalar rational trans-
fer function operators, with H{q) normalized such 
that limjçj^oo H(q) = 1. Here q"1 is the delay 
operator (q~lut = tit-i), ut is the control in-
put signal, yt is the observed output signal, et 

is white noise of zero mean and variance σ2, and 

vt = H(q)et is the noise acting on yt. 

A controller is to be designed on the basis of a 
model of the plant identified using a finite set of 
N input and output data {yt, uut = 1 ,2 , . . . , N} 
collected on the plant. A parametrized model set 
M = {Μ(θ) : Θ G De C Md} is used, where De is 
a set of admissible values and Μ(θ) is described 
by: 

If there exists a θο G D$ such that P(q) = 
P(g,0o), H(q) = #(g,0o) , then we say that 'the 
system is in the model set': S G M. 

The data collection can be done in open loop or 
in closed loop. In the case of closed loop identi-
fication, we denote by Cid(q) the controller that 
operates during identification: 

ut = Cid{q)[rt -yt], (3) 

where rt is the reference excitation signal used 
during identification. 

The Least Squares prediction error method ap-
plied to N input-output data delivers an estimate 
êN of Θ: 

ΘΝ = arg min VN(0) 
θ£Όθ 

where 

N 

νΝ(β) = 5>/(0)]2 

(4) 

(5) 
t= l 

4{θ) = D(q)ct(0) 

D(q) 

H(g,ey 
yt-P(q,e)ut]. (6) 

Here et(0) = yt — yt\t-i{0) is the one-step-ahead 
prediction error for the model M(0), while D(q) 
is a data filter whose role is to shape the least 
squares fit towards the objective of the identifica-
tion. In turn, this produces a model: 

ΡΝ = Ρφω,θΝ), ΗΝ = Η(έω,θΝ). (7) 

We shall sometimes use the vector notation 

fN = [PN HN)T and T=[P H]T. (8) 

Under reasonable conditions on the data and the 
model structure (Ljung, 1987), ΘΝ converges as 
N -> oo to 

Θ* = arg min ^(0) 

where 

Ϋ(θ)= lim ΕνΝ(θ) = Ε[€{(θ)]2. 
N-¥00 

(9) 

(10) 

M(0):yt = P(q,e)ut + H(q,e)et. (2) 

In identification for control, closed loop identifi-
cation is most often used, as will be shown later. 
Therefore we now present the key formulas that 
characterize the bias and variance of models iden-
tified in closed loop. 

Consider that the data are collected in closed loop 
with a controller Cid operating in the loop, as ex-
pressed by (3), and assume that a direct prediction 
error identification method is used. Substituting 

3 



the expression (3) for ut and (1) for yt in (6) and 
using ParsevaPs theorem yields2: 

™ ■ U^ 
(Ρ-Ρ(θ)) 

+ l + PCid 

Since θχ converges to Θ* defined by (9), these in-
tegral expressions give an implicit characteriza-
tion of the model to which P{eju,

yêN),H(e^JN) 
will converge if the number of data tends to in-
finity. In other words, they give an implicit char-
acterization of the asymptotic bias error obtained 
by closed loop identification. It follows in par-
ticular from (11) that, even if the input-output 
model set {P(g,0)} is able to represent the true 
P(q), closed loop identification using a direct pre-
diction error method leads to a biased estimate 
of P(q) if the noise model is incorrect, that is if 
H(q) £ {#(?>0)}· This may be a drawback. One 
way to cope with this noise-induced bias in closed 
loop identification is to use one of the indirect 
schemes that have been specifically designed for 
this purpose. Their key feature is that they use 
more information than just the input and output 
data. A good survey of these methods can be 
found in van den Hof and Schrama (1994). 

The expression (11) for the bias error is implicit. 
Approximate, but explicit expressions are also 
available for the noise-induced error, also called 
vanance error. Recall (8) and denote 

* \ i T T = [P(e?»X) #(e^,0*)l 

ATN = τΝ-τ* (12) 

Then, for models of sufficiently high order, the co-
variance of ATff at a frequency u is approximately 
given by (Ljung, 1987): 

E[ATN ΔΤ^] S -φν 
Φ» Φ'νβ 

- 1 
(13) 

Here n is the model order, TV the number of data, 
and σ2 the white noise variance of the true sys-
tem (1), while <j>u is the spectrum of the input 
applied during identification and φηε the cross-
spectrum between this input and the white noise 
source. The formula applies to both open loop 
identification (<f>ue = 0) and closed loop identifi-
cation (</>ue Φ 0). 

2 For reasons of space, we have deleted the u»-dependence 
in all arguments. 

3. THE DUAL CONTROL APPROACH 

In this section we present the key ideas of dual 
control, as well as some recent developments and 
an illustrative example. Dual control can be seen 
as one way (perhaps even the optimal way) of 
solving the joint identification and control design 
problem when the system is in the model set. 
Thus, all the ideas and results of this section are 
limited to the case where S G M. Our presenta-
tion borrows heavily from the recent PhD thesis 
ofC. Kulcsar (1995). 

The concept of dual control was introduced by 
Fel'dbaum (1960) who understood that, when one 
wants to minimize a control performance criterion 
for a system with unknown parameters, the con-
trol has the dual role of maintaining the state (or 
output) close to its desired value while at the same 
time learning the unknown parameters. These two 
roles are conflicting: learning the unknown pa-
rameters requires a sufficiently rich input, while 
regulating a system with poorly known parame-
ters requires a more cautious control action than 
if the parameters were known. The formulation 
of the solution of dual optimal control problems 
owes a large part to the theory of dynamic pro-
gramming developed by Bellman (1957, 1961). 

Thus, consider that the true system S is given 

by (1) and that S G M = {Μ{θ)} (see (2)) for 
some 0Ο· We now consider that the parameter 
vector Θ has a prior probability distribution, say 
Π(0), and that the task is to design an optimal 

control sequence UQ = {tin,tti, · ■ ·,**ΑΓ-Ι} that 
minimizes the following cost: 

N-l 

JoAU?-1) = E[^ct(ut,e)\I% (14) 
t=o 

where 

c*K, 0) = (yt+i - l£+i) + AttiJ (15) 

with A( nonnegative scalars, and where 1° con-
tains all prior information about the system, i.e. 
the noise distribution and the prior distribution 
on Θ. The minimum of (14) is obtained by solv-
ing the following succession of nested optimization 
problems: 

Jo N = minE[c0(uo,e) + minE[ci(u\, Θ) + . . . 
' tiO t i l 

+ min fi^-iftijv.J) | Is-1] ■ ■ ■ | I1 \I°) 
uvsr-i 

Defining 

Jt}N(ut) = E[ct(ut,e) + j ; + 1 > 7 V I I'] (16) 
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and 

J*N = min Jt,N{ut), (17) 

one can then proceed by backwards induction and 
obtain the following set of dynamic programming 
equations: 

ΓΝ_λ N = min £[c;v-i(ti;v-i,0) | IN~x] 

JN-2,N = m m E[CN-2(UN-2,#) 

+JN-1,N I 1 J 

J0V = minJE?[c0(tio,ff) + J r N | / ° ] 

(18) 

Notice that the 'cost-to-go', Jt,N{ut), can be writ-
ten as 

JtM«t) = J[ct(ut,0) + j;+ltN] 

xn{y\e)Ut)U(e \I*)dyd0 (19) 

If the parameters were known, the only stochas-
tic variable over which the expectations of future 
costs would have to be taken would be the noise 
process et. However, in general the expectation 
needs to be taken also over the random parame-
ter vector Θ. Observe that the distribution of the 
random vector Θ influences the distribution of all 
future input and output signals, while it is itself 
influenced by these signals through the parameter 
estimation procedure. This puts the exact solu-
tion to the dual optimal control problem beyond 
the reach of present-day computer technology ex-
cept in the simplest of cases. Even a one param-
eter problem can take hours of CPU time: see 
(Aström and Wittenmark, 1989). 

For this reason, a lot of effort has been spent 
on computing suboptimal solutions. One partic-
ularly simple suboptimal solution is to assume, 
at time t, that 6t is exact, i.e. to replace the 
probability distribution of Θ in (19) by a proba-
bility density centered at Öt and with zero vari-
ance. This idea is called Certainty Equivalence 
(CE) control. It does not take into account the 
effect of the control on the precision of future es-
timates of Θ. Another suboptimal policy, already 
suggested by Bellman, is to replace, at time t, the 
minimization of Jt,jv(tit), in which the future con-
trols ttt+i, · ·, UJV.I are optimal, by the following 
problem: 

min E 
N-\ 

Σ<*Κ,0)|/' 
fc=t 

(20) 

(OLFO). Note that the key difference with the 
dual control policy (which is feedback-optimal) is 
that the controls are computed without taking ac-
count of the future measurements. 

An interesting progress has been accomplished in 
the PhD thesis of C. Kulcsâr (1995). For Finite 
Impulse Response (FIR) models, and assuming 
a Gaussian distribution for all random variables, 
she observed that the expected values of all fu-
ture covariances of Θ depend on the future only 
through their dependence on the future control 
signals. She then proposed a suboptimal solu-
tion in which, at time <, the mean of the future 
{0fc, k > t} is frozen at 0U while the expected val-
ues of the covariances {Σ*,& > t} are calculated 
exactly. These future covariances depend on all 
future controls {ut, · · ·, ttw_i}, that need to be 
optimized. This is now a more tractable problem, 
but for large N, the optimization of such cost-to-
go is still a formidable task. An additional simpli-
fication is to perform the optimization only over 
the first m + 1 values ut, · ·, ut+m, assuming that 
the remaining controls will be determined using 
an open loop, say Certainty Equivalence, policy. 
This suboptimal problem can now be solved us-
ing CPU times that are entirely reasonable. C. 
Kulcsâr showed that the same technique works for 
ARX models, with an additional approximation. 

We illlutrate with an example from Kulcsâr (1995) 
the advantages of this suboptimal policy, which is 
a true feedback policy that takes account of the 
future measurement policy, over the classical CE 
and OLFO policies. 

Example 1 
Let the system and the model set be described by 
the FIR model 

yt = 0it i t_i + 02tit-2 + 03Ut-3 + e*. (21) 

This policy is called Open-Loop-Feedback-Optimal 

Let et be zero mean white Gaussian noise with 
variance σ2 = 0.004, and let the true parameter 
vector be 0O = (15,1, —0.2)T. Consider the cost 
function (14)-(15) with N = 39 and Xt = 0.001 V<. 
Consider a piecewise constant reference trajec-
tory: 

y; = 0, t= 1,· · , 1 0 ; * = 2 1 , · · , 3 0 ; 

y*t = 27, < = 11, . . . ,20; * = 3 1 , · · , 3 9 . 

The prior distribution of Θ is Λί(θο, Σο) with 6Q = 
(10,2,0)T and Σ0 = diag%0.3,0.09). 

Figures 1 and 2 represent, respectively, the output 
signals and the control signals for three different 
stragies: LQ with known θο (full line), Certainty 
Equivalence (···)» and the suboptimal dual pol-
icy just described, with m = 0 (- -). This dual 

5 



We now consider the case where no measurements 
can be taken between t = 5 and t = 25. For 
the CE policy, nothing changes until t = 4 since 
each measurement is considered as the last one. 
However, the dual control strategy, even with a 
horizon m = 0 for the feedback computation of 
the control, takes account of the future measure-
ment policy. Knowing that the parameters will 
not be updated between t = 5 and t = 25, it an-
ticipates and learns them before t = 5. This is 
clear from Figures 3 and 4 which show, respec-
tively, the outputs and inputs for the same three 
strategies. Notice that, because the dual control 
policy spends some initial control energy on learn-
ing the parameters, it is much better able than the 
CE policy to respond to the change in the refer-
ence signal at time t = 11. For this second case, 
the respective costs for these three strategies, as 
well as the OLFO strategy, have again been esti-
mated by Monte Carlo simulations. The results 
are presented in the second column of Table 1. 
These simulation results confirm the clear superi-
ority of a dual control policy, even a suboptimal 
one, over the more classical Certainty Equivalence 
policy that prevails in most of the identification 
for control literature. 

Fig. 1. Output sequence with full measurements. LQ 
with known è0: ++ ; EFC: · · · ; Dual: - -

Fig. 2. Input sequence with full measurements. LQ 
with known è0: ++ ; EFC: · · · ; Dual: - -

policy takes account of the fact that future mea-
surements will be made, but at time t only ut is 
optimized in feedback. Note that it spends energy 
in the initial stages, where CE does not, in order 
to learn the unknown parameters in anticipation 
of the jump at t = 11 for which knowledge of È 
will be useful. 

The first column of Table 1 gives a comparison of 
the average costs obtained by these three strate-
gies, as well as the OLFO strategy. These aver-
ages have been computed from 100 Monte Carlo 
simulations. 

Tablel: Case I: all measures available; 
Case II: no measures between t=5 and t=25. 

We now abandon the dual control paradigm that 
attempts to solve the identification and control 
problem as a combined optimal control problem, 
in favour of a more tractable optimal identification 
design problem for certainty equivalence control. 
The results of this section are again limited to the 
case where the true system is in the model set: 
S G M. They are based on (Hjalmarsson et al., 
1994a). 
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FOR CONTROL 

Fig. 3. Output sequence; no measures between t = 5 
and t = 25. LQ with known è0: ++ ; EFC: 
•  · · ; Dual: - -



One measure of the degradation that results from 
using the 'estimated' controller CN on the plant 
instead of the optimal C, is the variance of the er-
ror between the outputs of the ideal and the actual 
closed loop systems. We shall use this degradation 
measure as our identification design criterion: 

Jv = E[y°t - yt]
2. (22) 

The use of this measure as an identification design 
criterion was first proposed in Gevers and Ljung 
(1986). The results of this section can be extended 
to error measures that contain E[u% — ut]

2 or to 
any frequency weighted measure of E[C(etu>) — 
CN{eiu))\ 

From Figures 5 and 6 we note that (dropping the 
operators q): 

* = TTPCrt + TTpcet (23) 

P ■" /^A\ 

Vt = —rt + —et (24) 
1 + PCN 1 + PCN

 V ; 

By a Taylor series expansion and assuming 

ACN = CN — C to be small, we can write: 

y!-y< = -^TPCYACN 

x[Prt + Het] (25) 

= — - — A C N y ? 
1 + PC Nyt 

Therefore, using ParsevaPs relation, 

Here, the expected value is taken with respect to 
the probability distribution of the noise during the 
identification experiment, which produces the ran-
dom variable CN = C(PN,HN)> With ACN small, 
assume again that we can write : 

A C = [ft F2] [ *£>N ] , (27) 

where APN à P-PNt AHN à H-HN, Fx = f g 

and Fi = | ^ . Using the vector notation ÄÔÍ = 
Tfi — T introduced earlier, we can then write : 

E\ACN(<J»)\2 = [Ft F2] E [ATN ■ ÄÔ^] 

x [Fi Fa]*, (28) 

where the superscript * denotes conjugate trans-
pose. We note that all the expressions are fre-
quency functions. For brevity of notation, the 
argument ù has been dropped in this and subse-
quent expressions. Inserting the approximate co-
variance formula (13) into (28) yields, after some 

Fig. 4. Input sequence; no measures between t = 5 
and t = 25. LQ with known è0: ++ ; EFC: 
•  ■ · ; Dual: - -

The optimal identification design is based on the 
minimization of a quality criterion that compares 
the optimal closed loop system with the actual 
closed loop system: see Figures 5 and 6. 

\H\ 

Fig. 5. Optimal closed loop system 

un 

ri—tcy-JTôl Ut .ΓΤ"μ»ü-Γ-^ 
T- ■ I I I I 

Fig. 6. Actual closed loop system 

These two loops are assumed to be driven by the 
same external signals, the reference signal rt with 
spectrum <t>r{u) and the white noise et with vari-
ance ó2. Their outputs are denoted yf and yt, 
their inputs u% and tit, respectively. In the opti-
mal closed loop sytem of Figure 5, the controller C 
is computed from the true plant [P, H] using the 
control design criterion that the user has chosen: 
this control design criterion can be viewed as a 
mapping from [P, H] to a controller: C = c(P, H). 
In the actual closed loop system of Figure 6, the 
controller C is the Certainty Equivalence con-
troller that results from a model [PN , HN] iden-
tified using N data: C = CN = C(PN,HN). The 
control design criterion can be any one- or two-
degree-of-freedom control design criterion. Here 
we shall, for simplicity, specialize our analysis to 
the case of a one-degree-of-freedom controller. 
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manipulations, the following expression for the 
variance of the controller error at a frequency ù: 

E\ACN(ei»)f 2 ^ | # | 2 | F 2 | 2 

X\1+<rV?-kU2J' 
This controller variance is minimized, at every 
frequency, by a choice of experimental conditions 
such that 

<CeV") = r! · V · (29) 

During closed loop identification, we have: 

Ut = TTPC-d
rt-TTpc-d

et' (30) 

where Cid{q) is the controller that operates during 
data collection: see (3). Therefore, 

*» = ΐΤΗΐ72· <31> 
Equating (29) and (31) we conclude that the vari-
ance of the controller error is minimized at ev-
ery frequency if the identification is performed in 
closed loop with an operating controller: 

c^t{q)=-i^m^FMim- (32) 

This optimal choice of course also minimizes the 
closed loop degradation criterion Jy, since it min-
imizes the integrand of (26) at every ù. 

COMMENTS 

• As is typical of optimal experiment design 
results, this optimal design depends on the 
unknown system [P, H] and is therefore not 
feasible. It depends on the control criterion 
through the sensitivities Fi and F^. 

• It has been shown in (Hjalmarsson et al., 
1994a) that, for Model Reference Control de-
sign, C°$l(q) = C(q). The same result had 
been shown for Minimum Variance Control 
in (Gevers and Ljung, 1986). Thus, for these 
control design criteria the optimal experi-
ment design is to perform closed loop iden-
tification with the ideal controller C(q) oper-
ating in the loop. 

• If identification is performed under the ideal 
closed loop condition with dd = Cffiiv)* the 
control error variance becomes: 

£ | A C * ( O I L , - ^ | # | 2 | F 2 | 2 . (33) 

With open loop identification, we get 

E\ACN(e*»)\l, S -£ |# | 2 |F 2 | 2 

This result shows that, whatever the control design 
criterion, the variance of C — CN is minimized by 
performing the identification in closed loop with 
the feedback controller (32). Under those ideal 
closed loop experimental conditions, at every fre-
quency E\ACN(^%W)\2 is smaller than the corre-
sponding variance under open loop identification. 

One merit of this result, and the earlier result of 
(Gevers and Ljung, 1986) for minimum variance 
control design, is that they give a proof, albeit 
under a severe restrictive assumption, that if the 
identification is performed for the purpose of con-
trol design, then closed loop identification is opti-
mal. The restrictive assumption is that the system 
is in the model set. As far as we know, all other 
results that show that identification for control 
should be performed in closed loop are based on 
showing that a ^-dependent control criterion can 
be approximated by an identification criterion; in 
addition most of these results are based on mini-
mizing upper bounds on closed loop performance 
measures rather than the measure itself: see our 
next section. 

Even though this result is of obvious theoretical 
interest, it might not appear very useful given that 
the optimal identification design depends on the 
unknown system. However, it is shown in (Hjal-
marsson et al., 1994a) that, when C^l(q) = C(q) 
(as is the case for Minimum Variance Control and 
Model Reference Control), an iterative identifica-
tion and control design leads to a better controller 
than open loop identification. By iterative design 
is meant that identification is performed first in 
open loop for a fraction of the total data collec-
tion interval; the model estimated at the end of 
that interval is used to design a certainty equiva-
lence controller, which is applied to the plant; the 
identification is continued in closed loop during a 
second time interval with this controller operating 
on the plant; at the end of this second interval a 
new certainty equivalence controller is computed 
from the present model and applied to the plant 
again; etc. 

We now present a simulation example, from (Hjal-
marsson et al., 1994a), to illustrate the bene-
fits that can be gained by applying this iterative 
scheme over straight open loop identification. The 
example implements only one iteration: identifi-
cation is performed in open loop during the first 
part of the data collection interval, and in closed 
loop during the second part. 
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Example 2 
Consider a 'true system' with the following ARX 
structure: 

(1 - 1.5g"1 + 0.7q-2)yt = q~l{l + Ï.ä?"1)^ + tu 

with et white noise of unit variance, and a Min-
imum Variance (MV) control design objective. 
The optimal MV controller is 

1.5-0.7c"1 

Ut = ~ l + O-Sg-i yt + r" 

Now consider that the system is unknown (but 
its structure is known), and that N = 1000 data 
points are allowed to be collected to estimate the 
model parameters, and, from these, the controller 
parameters. We compare the performance degra-
dation Jy obtained in the following three experi-
ments. 

The optimal, but unfeasible, identification design 
is to perform the identification in closed loop with 
this optimal controller in the loop. The objec-
tive of our simulation is to compare the perfor-
mance degradation Jy that results from this un-
feasible optimal design with that obtained by open 
loop identification, and by the feasible iterative 
scheme. Thus, we compare the following three 
experiments. 

1. The optimal unfeasible design. The identifi-
cation is performed in closed loop using 1000 
data generated with the ideal MV controller 
operating in the loop, and with öô = 1. 

2. Open loop identification using 1000 data gen-
erated with <f>u = 1. 

3. The iterative design. The identification is 
performed in open loop first using (1—a) 1000 
data (with 0 < a < 1) generated with öç = 1; 
at the end of that first interval, the corre-
sponding certainty equivalence MV controller 
£(À_á)Àïïï is applied to the plant, and the 
remaining a 1000 data are collected on the 
closed loop system with <f>r = 1. The final 
parameter estimate #iooo is computed using 
all the 1000 data thus collected.3 This has 
been done for all values of a between 0 and 
1. 

In each case, the certainty equivalence MV con-
troller Ciooo is computed from the model obtained 
at the end of the 1000 data and the corresponding 
performance degradation Jy vis-à-vis the optimal 
controller achieved on the 'true system' is com-
puted. Experimental estimates of Jy have been 
computed using 200 Monte Carlo simulations for 
each experiment. The results are shown in the top 
part of Figure 7. 

3 If a model other than ARX is used (such as OE, or BJ), 
then the estimate 0(i_Q)iooo obtained at the end of the 
open loop phase is used as initial estimate for the closed 
loop phase. 

The bottom line of this top figure represents the 
performance degradation Jy = 0.0015 that re-
sults from identifying the system using 1000 data 
collected under the ideal experimental conditions. 
The top line represents the performance degra-
dation Jy = 0.0187 that results from identify-
ing the system using 1000 data collected in open 
loop. We observe that open loop identification 
performs more than 10 times worse than closed 
loop identification with the ideal controller. The 
broken line represents the performance degrada-
tion Jy that results from using open loop followed 
by closed loop identification, for different values of 
the fraction a of 'closed loop identification time'. 
We observe that for most values of a, this feasi-
ble two-stage scheme performs almost as well as 
the unfeasible ideal experiment design. Except for 
a close to 0 (mostly open loop identification) or 
close to 1 (mostly closed loop,identification), the 
curve is fairly insensitive to the choice of a; thus, 
it appears that it would not make much sense to 
optimize the design parameter a. 

Mean porformanc· degradation voraus alpha 

0.02| I I I I I I I I I | 

0.015K i 

0.01 L \ i 

0.005h V \ / \ ^ ~ / j 

I , ^ — ^ ^ ^ ■ • Í Ã . ^ Ë , / | 
°0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Ï.â 1 
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alpha 

Fig. 7. Mean performance degradation and number of 
unstable closed loops versus a 

If the open loop identification time is too short (a 
too large), then the model obtained at the end of 
open loop identification may be so poor that the 
corresponding controller destabilizes the true sys-
tem. This is indeed what happens. The lower part 
of Figure 7 represents the total number of runs 
that produced unstable closed loops as a function 
of a, until 200 stable runs were produced. The av-
erages in the top part of the figure are computed 
on the stable runs only. 

5. MATCHING IDENTIFICATION AND 
CONTROL CRITERION 

The main drawback of the optimal identification 
design for control, as we have noted, is that the de-
sign depends upon the unknown system, because 
the design criterion Jy is based on a comparison 
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between the optimal and the achieved closed loop 
systems of Figures 5 and 6. 

An alternative, but suboptimal, formulation of the 
identification criterion is based on a comparison 
between the achieved closed loop system of Figure 
6 and the designed or nominal closed loop system 
of Figure 8. 

[et 

Vt 

Fig. 8. Designed (or nominal) closed loop system 

Comparing these two loops is classical in robust 
control theory; thus, we could call this third ap-
proach to identification design for control the ro-
bust control paradigm. However, there is an im-
portant distinction with the classical robust con-
trol thinking. In classical robust control theory, 
a nominal model, say P, is given; a controller, 
say C, is then called robust if the performance 
achieved by this controller on the actual plant P 
is not too different from the nominal performance, 
that is the performance designed on the nominal 
model P. A key difference (and complication) in 
our problem formulation with respect to classi-
cal robust control theory is that now the nominal 
model P is also an object to be designed. Thus, 
in this robust control paradigm to identification 
for control one must attempt to perform both the 
identification design and the control design in such 
a way that the nominal performance is high and 
that the two loops of Figures 6 and 8 are 'close to 
one another' in a sense to be defined. 

If nothing is fixed, then such problem formulation 
might not make much sense. To simplify matters 
somewhat, we shall therefore make the following 
assumptions. 

•  A control criterion has been selected, i.e. the 
designer has selected a mechanism that maps 
a model into a controller (e.g. LQG, #oo> 
etc..) 

•  At some stage of the design, a model struc-
ture has been chosen, typically of lower com-
plexity than the 'true system'. Choosing a 
model order is a way of imposing a controller 
complexity via the control design mapping. 
The model order may have to be increased at 
a later stage of the design if the controller is 
found to be inappropriate. 

With these assumptions we claim that every con-
trol criterion induces an identification criterion 
that 'matches' that control criterion. In addition 
these identification criteria take the form of closed 

loop identification criteria. The idea that an iden-
tification criterion can be made to match a con-
trol criterion was initially advanced for LQG con-
trol by Zang et al. (1991) and for Hoo control by 
Schrama (1992). It was then applied to pole place-
ment control by Äström (1993) and Äström and 
Nilsson (1994), where a convergence (and diver-
gence!) analysis of the resulting iterative scheme 
is given for some simple examples. 

To explain the matching of the control and iden-
tification criteria, we take the simplest control 
design problem, namely the pole placement con-
trol problem without disturbances analysed by 
Äström. Thus, consider the two loops of Figures 6 
and 8, and consider that the control design prob-
lem is to design C such that the designed closed 
loop transfer function from rt to yt is a given ref-
erence model. This is identical to computing C 
from the identified model P such that 

= S(q), (34) 
1 + P(q)C(q) 

where S(q) is some admissible reference model. 

Now, staring at Figures 6 and 8, and remembering 
that there are no disturbances, one observes that: 

Vt 

Vt 

PC 

1 + PC 
PC 

1 + Pc1 

-rt and ut = 
1 + PC 

T.rti 

(35) 

It then follows that the 'control performance 
error'4, defined as the error between the actual 
and the designed outputs, is given by: 

Vt-Vt = S 
PC 

1 + PC 

= S[yt-Put] 

xrt-
PC 

l + pc' 

(36) 

Equation (36) can be seen as an equality be-
tween a control performance error on the left hand 
side (LHS) and a filtered identification error on 
the right hand side (RHS). Indeed, the RHS is 
a filtered (by S(q)) version of the output error 
yt — P{Q,0)v>t, where ut and yt are collected on 
the actual closed loop system of Figure 6 with C 
operating. Thus, it appears that the control per-
formance error can be minimized by performing 
identification in closed loop with a data filter S(q). 
However, life is more subtle and complicated. In-
deed, in the RHS of (36) the controller C and the 
model P are both functions of the model param-
eter vector Θ. Hence, a more suggestive way to 

4 It is called that way by Äström (1993) because, if the 
closed loop transfer function of the actual system was equal 
to the reference model 5(g), this error would be zero. 
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write (36) is as follows: 

yt-yt = S[yt(e)-P(q,e)ut(e)}. (37) 

Consider now optimization-based control design 
criteria, such as e.g. LQG, or #00· For such crite-
ria one cannot equate a 'control performance er-
ror' to an 'identification error' as above. However, 
the matching of the identification criterion to the 
control criterion is obtained via a double trian-
gle inequality, in which the achieved performance 
(of the system of Figure 6) is shown to be very 
close to the designed performance (of the system 
of Figure 8) provided a robustness criterion can 
be made very small. This robustness criterion ex-
presses the mismatch between the two closed loop 
systems in a measure determined by the control 
design criterion: see (Schrama, 1992) or (Gevers, 
1993). In the simplest cases this robustness crite-
rion is a norm of the following error: 

yt-ih = S(q,e)[yt(e) - P(q,e)ut(6)], (38) 

where the data filter S(q, È) is proportional to the 
sensitivity function of the design loop (compare 
with (34)) and is now also ^-dependent. 

Even though the errors (37) or (38) look like closed 
loop prediction errors, they cannot be minimized 
by standard identification techniques, because È 
appears everywhere and not just in Ñ{è). As a 
consequence, the approach suggested in all known 
'identification for control' schemes is to perform 
identification and control design steps in an iter-
ative way, whereby the i-th identification step is 
performed on filtered closed loop data collected on 
the actual closed loop system with the (i — l)-th 
controller operating in the loop. This corresponds 
to an i-th identification step in which the following 
filtered prediction error is minimized with respect 
too: 

yt-Vt = S(qJi-i) 

x\yt(êi-i)-P(q,e)ut{êi-i)U39) 

We refer the reader to (Gevers, 1993) and to (van 
den Hof and Schrama, 1994) for details and for a 
survey on such iterative schemes. 

An interesting question is whether these itera-
tive identification and control schemes converge 
to the minimum of the achieved cost over the set 
C à {0{Ñ(è)) V0 G De} of all certainty equiv-
alence controllers. For the example given above, 
this corresponds to asking whether by successively 
minimizing over È the mean square of the predic-
tion errors defined by (39) one will converge to the 
minimum of 

J(0) à E{S(q, È)\3Ç(9) - P(q, 0)ut(0)]}2. (40) 

This question has been thoroughly analyzed in 
(Hjalmarsson et al., 1995), where it has been 
shown that the answer is in general negative: 
the iterative identification and control schemes do 
not generically converge to the minimum of the 
achieved cost. In fact, it has been shown in (De 
Bruyne and Gevers, 1994) that the optimal con-
troller within this reduced order controller set C 
is not always the Certainty Equivalence controller 
of a model P that can be obtained as a result of 
an identification experiment on the true system, 
whether the data are collected in open loop or in 
closed loop. 

The last observation raises the question whether 
one could not minimize the criterion (40) directly 
by some optimization method, without resorting 
to identification. In fact, minimizing (40) over all 
possible È corresponds to a direct minimization 
over the controller set C, since every model param-
eter vector È defines a controller parameter vector, 
say p = p(0), via the mapping C(p) = C(P(0)). 
In particular, returning to the model reference 
problem above, we note that yt — yt can also be 
written as: 

Ã pc 1 

= [yt(p)-Trt). (41) 

where T = 1 — S and is a fixed design quantity. 
Thus, minimizing J(0) is equivalent to minimizing 
the control criterion E[yt{p) — Trt]

2 with respect 
to the controller parameters p. The direct mini-
mization of a control criterion with respect to the 
parameters of a restricted complexity controller 
has been a longstanding pursuit of control engi-
neers. Recent work of Hjalmarsson et al. (1994b) 
has shown that this is indeed possible using an it-
erative scheme that avoids any identification step. 

6. CONCLUSIONS 

It should be clear from this paper that the subject 
area of identification for control is still full of chal-
lenging open problems. In an attempt to clarify 
the issues, we have proposed to distinguish be-
tween three approaches, going from the idealised 
'dual control approach' through the 'optimal de-
sign approach' to the more realistic 'robust control 
approach'. This last approach leads to the much 
publicised iterative identification and control de-
sign schemes. 

Our discussion of the last section need not imply 
that such iterative schemes are doomed for failure, 
because the suggestion has never been to iterate 
indefinitely, but to improve the performance of an 
existing controller by performing a few iterations 
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of identification and control using available closed 
loop data. However, it certainly should send a 
warning about the use (or misuse) of the robust 
control paradigm. The danger of abandoning any 
comparison with the optimal loop of Figure 5 is 
that in the end all one is able to ascertain is that 
the actual and the designed closed loop systems 
perform much the same way. However, this could 
just as well mean equally weir as equally poorly'. 
Indeed, nothing tells us that the designed perfor-
mance will be anywhere near what could actually 
be achieved on the real system. In conclusion, one 
needs to question the use of such indirect schemes 
in the face of the new possibility of optimally tun-
ing the parameters of a reduced order controller. 
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Abstract A new generic optimal controller structure and regulator design method are 
introduced avoiding the solution of polynomial equations. The model sensitivity properties 
of some combined identification and control schemes are investigated. It is shown that a 
new structure is superior to the others. An applicable strategy for iterative control 
refinement based on the generic scheme is presented and illustrated by simulation 
examples. A worst-case optimal input design algorithm is also introduced to increase the 
robustness of the closed-loop control in the relevant medium frequency range by generating 
a "maximum-variance" reference signal. The adaptive version of the control refinement 
strategy is also shown with a special "triple-control" extension for recursive optimal input 
design. 
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1. INTRODUCTION 

The need to design high performance control systems 
has not lost the importance inspite of the thousands 
of methods and algorithms published in the past 
decades. The huge number of papers indicates that 
no unique or best method was found. The solution 
depends on the model, criterion, uncertainties, 
disturbances, constrains, etc. (sometimes even on the 
designer's taste). 

CONTROLLER 

i \ 

u 
PROCESS A '-~^{<J~~ 

Fig. 1. A general closed-loop control system 

A general closed loop system is shown in Fig. 1, 
where yr, ut y and w are the reference, input, output 
and disturbance signals, respectively. Here discrete-
time representations are considered for computer 

controlled systems. The argument k of variables 
means the integer value discrete time (integer 
multiple of the sampling period) and z"1 means the 
backward shift operator (z~]y{k) = y(k - l)j. 

Many experts believe that the essence of all control 
problems can be lead back for the simple problem 
shown in Fig. 2, i.e., how to choose a serial 
compensator transfer function X to S ensuring a 
unity dynamic transfer. The trivial solution X = S~l 

is not always applicable because S is not invertible. 
This is mostly the case if the control is discrete time 
and based on sampled linear dynamic systems. In a 
general case the 

n 

X 

1 

s = s+s. 
V _ ï 

Fig. 2. The simple problem of control systems 
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system S = S+S_ is factorable for inverse stable S+ 

and inverse unstable S_ components. Because S_ 
can not be eliminated by simple cancellation 
mechanism it is sometimes called invariant system 
component. A heuristic but widely applicable 

solution is to choose X = S~\ when the inverse 
stable part is canceled, however the invariant inverse 
unstable factor is untouched. Several controller 
design schemes are based on this method, inspite of 
there is no optimality connected. Unfortunately the 
remaining invariant factor can sometimes cause not 
tolerable dynamics, so its effect must be attenuated. 
This can be done, if we use a criterion for this 
purpose. It is known from the classical Wiener 
framework of optimal stochastic systems, that the 
solution of the minimum mean square error (//2) 
problem 

X = argmin{E{e2(À:)}} = 

= argmin{E{[(l-^5+5_)^)]2}} 

can be obtained if 

ic - i 

0) 

x = s:ls; (2) 

where S_ is obtained by reflecting the zeros (they are 
unstable!) of S_ through the unit circle and 
providing 

5Γ1(1)5.(1) = 1 (3) 

Note that the solution depends on the applied input 
excitation n(k). Here n(k) is assumed as a white 
noise sequence. 

A characteristic approach of optimal controller 
schemes is called pole-placement technique (Âstrom 
and Wittenmark (1984); Landau (1990)) targeting to 
provide prescribed transient properties for the servo 
and disturbance rejection paradigm of closed-loop 
controller design. The standard technique 
representing a two degrees of freedom so-called 
M-SP-& controller assumes basically the 
structure shown in Fig. 3. Here M, ^ a n d ^ are 
polynomials. The advantage of this scheme is that 
the implementation of a so-called direct adaptive 
regulator method is very easy, because it is easy to 
construct a predictor equation linear in the 
parameters of these polynomials. The disadvantage 
of this scheme is that it hides the internal operation 
of an optimal system and special considerations are 
necessary in a recursive parameter estimation 
algorithm because the ^ i ^ a n d ^ " are redundant, 
having more parameters than minimally necessary, 
furthermore the solution of a Diophantine equation is 
necessary to obtain the regulator polynomials. 

yr 

L· Γ -ς > ? 

M 

u 
PROCESS 

^ Ί 

Fig. 3. A classical pole-placement controller 

Another well-known classical scheme of optimal 
control systems is called internal model principle 
shown in Fig. 4. The name origins from the system 
model applied in the controller. Here PT and Pw are 
the desired overall tracking and disturbance rejection 
transfer functions (or reference models) for the 
design requirements. They can also be interpreted as 
predictors for the reference and output disturbance 
signals. In this case, e.g., w is the estimated (or 
predicted) disturbance. (Here an ideal case was 
assumed when the true process S is known to ease 
the understanding of the basic schemes. This 
assumption is good to explain the operation of the 
system, however, only a process model M is 
available in most practical cases as it will be 
discussed later.) 

This scheme has a much less known form if we want 
to use the same principle for inverse unstable factors. 
A straightforward extension to the modified internal 
model principle is shown in Fig. 5., if only inverse 
stable factors are canceled. Note that the whole 
system should be taken into consideration in the 
internal model, because realizability problem arises 
only using the inverted model. If we want to 
attenuate the invariant system component then 

SZlS~} must be used instead of S~l in the partially 
inverse model, according to the optimality of Eq. (2). 

The advantage of this optimal control scheme is that 
the principal operation of the regulator is very easy 
to follow and the computations of the regulator 
polynomials are easy and obvious. The disadvantage 
of this scheme is that the identification (parameter 
estimation) method indicated by the internal model 
in the closed loop arises several difficulties. 

""p i 
INVERSE MODEL I l 

I I " 

Fig. 4. Optimal control scheme based on internal 
model principle 
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