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PREFACE 

The favorable reception accorded to our first volume on Uncertainty in 
Artificial Intelligence (Kanal &Lemmer, 1986; see e.g. review on IEEE 
Trans, on SMC, March—April 1987) has encouraged us to put together 
this second volume. The major portion of this second volume consists 
of expanded versions of papers originally presented at the Workshop on 
Uncertainty in Artificial Intelligence which was held August 8—10,1986 
at the University of Pennsylvania in Philadelphia. In addition, this 
volume contains a number of new papers. 

At the time of final preparation the authors knew which other papers 
would appear, so there is considerable cross referencing among the 
papers. Because there is by no means a consensus of opinions within 
this volume, the cross referencing is particularly interesting. 

We have placed the papers in four major sections: analysis, tools, 
theory, and applications. The analysis section contains papers which 
substantiate, dispute, or compare the attributes of various approaches 
to uncertainty. The papers in this first section raise many issues impor­
tant for critical reading of the remaining sections. The tools section 
contains papers which provide sufficient information for one to imple­
ment uncertainty calculations, or aspects of uncertainty, without re­
quiring deep understanding of the underlying theory. Papers in the 
theory section explicate various approaches to uncertainty without 
necessarily addressing how the approaches can be implemented. Finally, 
the applications section describes the difficulties involved in, and results 
produced by, incorporating uncertainty into implemented systems. 

A number of interesting ideas emerge from the papers in this volume, 
and some are briefly mentioned here. Heckerman and Horvitz describe 
some newly discovered work showing that first order predicate calculus 
combined with some simple (and innocuous? ) requirements for conti-
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nuity imply the axioms of probability. They argue that this frees prob­
ability theory from its ties to repeatable events. Hummel and Landy 
show how Dempster-Shafer theory can be fully interpreted in the con­
text of traditional probability theory. Three papers attempt to forge 
a link between probabilistic and non-numeric uncertainty approaches 
and thereby develop a basis for providing explanations for inferred 
probabilities: Norton attempts to directly explain inference results in 
terms of correlations; Su-Shing Chen attempts to bring probabilistic 
logic into the framework of probability theory; Hawthorne describes 
a theory that unifies into a single coherent system a symbolic approach 
to non-monotonic entailment and a quantitative (Bayesian) approach. 
Dalkey disproves by counter-example, an often cited property of distri­
butions formed by product extension. 

It is clear from the papers that there continues to be no consensus con­
cerning the "best" approach to uncertainty for AI systems. Moreover, 
there is no agreement on how to measure "best". Further it is likely 
that best will always depend on the particular use to be made of uncer­
tainty. Because in many experiments all approaches seem to imply 
essentially the same actions, the idea that the choice of any particular 
approach is not important was discussed at some length during the 
workshop without reaching a consensus. 

We would stress that any choice of approach to uncertainty must be 
based on factors in addition to the merits of the uncertainty represen­
tation and calculus. These additional factors include the difficulty 
of acquiring the original uncertainty estimates (knowledge engineer­
ing), the computational complexity of inference, the semantics which 
guide the acquisition of the original estimates and guide the interpre­
tation of computed results, and how the chosen representation is used 
in decision making. 

We hope, that like volume 1, this volume will also stimulate further 
communication among researchers interested in handling uncertainty in 
AI systems. We thank all our colleagues who helped in organizing the 
workshop, and all the authors, reviewers, and the folks at North-Holland 
for their excellent collaboration in helping to produce the earlier 
volume and this volume on Uncertainty in Artificial Intelligence. 

Laveen N. Kanal 
College Park, MD 

John F. Lemmer 
Rome, NY 
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MODELS VS. INDUCTIVE INFERENCE FOR DEALING WITH 

PROBABILISTIC KNOWLEDGE 

N. C. DALKEY* 

1. Introduction 

Two different approaches to dealing with probabilistic knowledge are examined -
models and inductive inference. Examples of the first are: influence diagrams [1], Bayesian 
networks [2], log-linear models [3, 4]. Examples of the second are: games-against nature [5, 6], 
varieties of maximum-entropy methods [7, 8,9], and the author's min-score induction [10]. 

In the modeling approach, the basic issue is manageability, with respect to data 
elicitation and computation. Thus, it is assumed that the pertinent set of users in some sense 
knows the relevant probabilities, and the problem is to format that knowledge in a way that is 
convenient to input and store and that allows computation of the answers to current questions in 
an expeditious fashion. 

The basic issue for the inductive approach appears at first sight to be very different. In 
this approach it is presumed that the relevant probabilities are only partially known, and the 
problem is to extend that incomplete information in a reasonable way to answer current 
questions. Clearly, this approach requires that some form of induction be invoked. Of course, 
manageability is an important additional concern. 

Despite their seeming differences, the two approaches have a fair amount in common, 
especially with respect to the structural framework they employ. Roughly speaking, this 
framework involves identifying clusters of variables which strongly interact, establishing 
marginal probability distributions on the clusters, and extending the subdistributions to a more 
complete distribution, usually via a product formalism. The product extension is justified on the 
modeling approach in terms of assumed conditional independence; in the inductive approach the 
product form arises from an inductive rule. 

2. Structures on Event Spaces 

An event space is a set X =X l5 · · · ,Xn of descriptors which is presumed to cover the 
subject matter of interest. For example, in a medical context, the X,· 's could be disease states, 
symptoms, test results, outcomes of treatment, and the like. Each descriptor X,· involves a set of 
states Xij, which is a partition (exclusive and exhaustive division) of the "universe" of potential 
cases. The vector x = (JC^ · · · , xn) is a joint state for a specific case. It is presumed that there is 
a joint probability distribution P (X) on the set of joint states, so that 

* Department of Computer Science, University of California, Los Angeles, CA. 90024. This work was supported in part by 
National Science Foundation Grant 1ST 84-05161. 
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x 

j 

We define two types of components. An absolute component y is a subset of descriptors. 
A conditional component (Z IW) is an ordered pair of absolute components. A probability P (Y) 
on an absolute component is a joint distribution on the states y for descriptors in Y; P (Y) is a 
subdistribution (or marginal) of P (X). Let -Y denote the complement of Y (all descriptors in X 
noting) . Thus 

Ρ(Υ) = Σρ(χ) (i) 
-Y 

A probability P(Z \W) is a conditional probability distribution on the states z given the 
states w. Thus 

Σ P&) 
P(Z\W) = — (la) 

-w 

(The period in -Z.W denotes the logical product "and".) 

A set of components C - Yiy · · · , Yk is called a structure. The corresponding probability 
distributions on members of C,PC =P(Yl)1 · · · ,P(Yk), is called a probability system (or 
system for short.) In this notation, Y may be either absolute or conditional. 

A system PC is called consistent if there is a probability distribution PCX) that fulfills 
(1) or (la) for all components Y in PC. In general, if PC is consistent, there will be a set 
K {PC ) of distributions compatible with PC. 

In the model approach, it is assumed that a system PC represents the clustering of 
descriptors with respect to dependence; i.e., within a component Yy the descriptors have 
"strong" probabilistic interactions, whereas if Xt- and Xj do not occur together in any 
component, then they are conditionally independent. Specifically, 

P&i.Xj \-Χι.ΧΩ = Ρ(Χΐ \-Xi.Xj)P(Xj \-Xi.Xj) (2) 

In the inductive approach, the system PC represents what is known concerning P (X ). If 
Xi and X; do not occur in a common component, then nothing is known about their probabilistic 
relationship. 

A structure C by itself exhibits many of the general properties of the available 
knowledge. Thus, it is possible to determine that one structure is uniformly more informative 
than another, or to specify which structures have a product extension, without reference to the 
probabilities PC [11]. As the developers of influence diagrams and Bayesian networks have 
noted, this feature allows a significant amount of preliminary analysis to be carried out before 
numbers are introduced. 

file:///-Xi.Xj
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3. Webs 

Structures have an internal organization; e.g., components may overlap. There are a 
number of different ways to represent this organization. A common representation is as a graph, 
where the components are the nodes and one component is connected by an arc to another if they 
overlap. A more convenient representation for the purposes of this paper is what I call a web. 
Let [C] designate the set of all descriptors which belong to some member of C. An absolute 
component Y is terminal if Y consists of two subcomponents Z and 
Wy Z.[C - (Y)] = 0, W c [C - (Y)]. Thus, W "connects** Z to the remainder of C. (W may 
be vacuous, in which case Z is unconnected to the remainder of C.) A conditional component 
Y = (Z IW) is terminal if the preceeding conditions hold for Z and W. (W cannot be vacuous 
for a conditional component.) 

A web is a structure which fulfills the recursion: 

1. Any absolute component is a web. 

2. If y is a terminal component, and C - {Y} is a web, then C is a web. 

From the definition, a web contains at least one absolute component. A web can be 
"unpacked" to generate a linear order on the components by starting with any terminal 
component Y', labeling it 1, choosing any terminal component in C - {Y}, labeling it 2, and so 
on. A web is called conditional if all absolute components are distinct, i.e., do not overlap. 

A web is somewhat more general than influence diagrams or Bayesian networks. These 
can be characterized as conditional webs where for any conditional component Y = (Z IW), Z 
consists of a single descriptor. 

Conditional webs are significant for modeling probabilistic knowledge as a result of two 
basic properties: 

a. The product P \X ) = ΠIP (Y ) is a joint probability distribution on X. 
c 

b. P\X ) is an extension of PC ; i.e., it fulfills (1) or (la) for all Y in C. 

Proofs for these assertions are readily constructed by induction on the number of 
components in a web. 

What these two properties entail, in effect, is that if you can represent your knowledge 
concerning a distribution P(X) by the sub-distributions PC for a web C plus assuming 
conditional independence for descriptors not in common components, then the product P\X) 
"automatically" expresses that knowledge. 

From the modeling point of view, then, a web is a relatively manageable representation 
of probabilistic knowledge. All that need be input are the subdistributions PC. The product is 
quite convenient for computations; e.g., the manipulations feasible for influence diagrams are 
directly extendable to webs. 



6 N.C. Dalkey 

4. Induction and maximum-entropy 

Turning to the inductive approach, in an earlier publication I demonstrated that for a 
subspecies of web, namely a forest, the product extension is the maximum entropy extension of 
PC [11]. A forest is a web in which all terminal components Y = (Z:W) fulfill the additional 
restriction that W is contained some component Y' in C - {Y}. (In a general web, W need only 
be contained in the set of all descriptors "covered" by C - {Y}.) In the graphical representation 
mentioned earlier where arcs are defined by overlap of components, a forest is a graph with no 
loops. A forest corresponds to Goodman's decomposable model [3]. 

Maximum entropy is an instance of min-score inference which has the dual properties: 
(a) guaranteed expectation ~ in the case of maximum entropy, the conclusion is always at least 
as informative as it claims to be - and (b) positive value of information - a conclusion based on 
additional knowledge will be at least as informative as a conclusion without that knowledge 
[10]. Thus, if all you know is a set of subdistributions PC, and PC is a forest, then the product 
extension is a supportable estimate of the total distribution. 

One of the motivations for studying webs was the expectation that the product extension 
would also turn out to be the maximum entropy extension for a general web. The expectation 
was based on a purported result of P.M. Lewis frequently cited in the literature to the effect that 
for a structure with a product extension, the product is the maximum entropy extension [12]. 
Unfortunately, the Lewis "result" happens to be incorrect. 

An elementary counter-example is furnished by the simplest of all possible webs that is 
not a forest, namely the structure C = {Χί9Χ2* (Χ3ΙΧι.Χ2)λ S e t ρ(χ0 =ρ(χι) = ·5 a n d 

define P (X3IX j . X2) by Table I, where " 1 " means occurrence in the list of cases. 

Table I 

Xx X2 P(X3\Xl.X2) 

1 1 1 

1 0 .5 
0 1 .5 
0 0 0 

The product distribution P\X) is displayed in Table II, along with another distribution 
P°(X). P\X) is an extension of PC ~ which can easily be verified by summation ~ and is also 
clearly a higher entropy distribution. 

The entropy of P\X) = -J^P(x)logP(x) = U329t whereas the entropy of 
x 

P°(X) = 1.7918. The numerical difference in entropy is small, but the difference between .25 
and 1/6 for P (1,1,1), e.g., may not seem trivial. 

The elementary structure C of the example is actually a substructure of any web that is 
not a forest. Hence a similar counter-example can be constructed for any such web. The 
example is also a counter to the Lewis "result". 
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Table II 

*1 

1 
1 
1 
1 
0 
0 
0 
0 

x2 

1 
1 
0 
0 
1 
1 
0 
0 

x3 

1 
0 
1 
0 
1 
0 
1 
0 

P\X) 

.25 
0 

.125 

.125 

.125 

.125 
0 
.25 

P\X) 

1/6 
0 
1/6 
1/6 
1/6 
1/6 
0 
1/6 

The upshot of this inquiry, then, is that a forest is the most general structure for which the 
product extension is always the maximum entropy extension. 

5. Discussion 

At first glance, the fact that the product extension of a web is not in general maximum 
entropy may appear benign. From the standpoint of the model approach, the basic properties of 
a web -- the product is a probability and an extension of PC - make webs a highly convenient 
representation of probabilistic knowledge. All that is lost is a desirable, but by no means 
essential, fallback. In the case of a forest, for example, if the assumption of conditional 
independence for separated descriptors is shaky, then it can still be contended that the product is 
a reasonable estimate of the joint distribution, given PC. It would be a valuable safety feature if 
the same could be claimed for a web. 

From the standpoint of the inductive approach, it is perhaps unfortunate that the product 
extension of a web is not maximum entropy. However, the maximum entropy extension can be 
sought by other means [13]. What is lost is the convenience of the product form. For the 
complex systems of many descriptors common in expert systems, maximum entropy formalisms 
are likely to be cumbersome. 

On a somewhat deeper level, however, the result is thought-provoking. Independence is 
a common "simplifying" assumption in expert systems [14]. The maximum entropy property, 
where germaine, is a good justification of the "assumption" even when there is no evidence 
either for or against independence. However, as the example shows, maximum entropy does not 
imply independence, not even conditional independence, if the structure is not a forest. In the 
example, Ρ*(χι\χζ) = Ρ0(χ2\Χι) = 2Μ but Ρ°{χι.χ2\Χ'$) = 1/3, rather than 4/9 as required by 
conditional independence. 

One route that can be taken is to "prune" the structure to a forest. Lemmer [15] has 
adopted this suggestion, following a program proposed by Lewis [12], Chow and Liu [16], and 
others. The advantages of this approach are clear: substantive inputs can be restricted to the 
subdistributions in PC for the forest, the product extension is automatically consistent with the 
inputs, and, as I mentioned above, the fact that the product extension is maximum entropy 
carries strong guarantees. 



8 N.C. Dalkey 

A basic element missing from this program is a measure of the information that is lost by 
the pruning process. Concommitantly, there is no systematic procedure for determining the most 
informative forest contained in the knowledge available to the analyst. Given a general 
probability system PC, if PC is consistent, the amount of information in PC can be defined as 

max Entropy (P ). At present, there is no way to determine this quantity directly from PC ~ 
PzK{PC) 
or, for that matter, determining whether PC is consistent. These issues appear to be one area of 
potentially fruitful research. 
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AN AXIOMATIC FRAMEWORK FOR BELIEF UPDATES 

David E. Heckerman 

Medical Computer Science Group, Knowledge Systems Laboratory 
Medical School Office Building, Room 215, Stanford, California 94305 

In the 1940's, a physicist named Cox provided the first formal justification for the 
axioms of probability based on the subjective or Bayesian interpretation. He showed 
that if a measure of belief satisfies several fundamental properties, then the measure 
must be some monotonie transformation of a probability. In this paper, measures of 
change in belief or belief updates are examined. In the spirit of Cox, properties for 
a measure of change in belief are enumerated. It is shown that if a measure satisfies 
these properties, it must satisfy other restrictive conditions. For example, it is 
shown that belief updates in a probabilistic context must be equal to some 
monotonie transformation of a likelihood ratio. It is hoped that this formal 
explication of the belief update paradigm will facilitate critical discussion and useful 
extensions of the approach. 

1. INTRODUCTION 

As researchers in artificial intelligence have begun to tackle real-world domains such as 
medical diagnosis, mineral exploration, and financial planning, there has been increasing 
interest in the development and refinement of methods for reasoning with uncertainty. Much 
of the work in this area has been focused on methods for the representation and manipulation 
of measures of absolute belief, quantities which reflect the absolute degree to which 
propositions are believed. There has also been much interest in methodologies which focus on 
measures of change in belief or belief updates1, quantities which reflect the degree to which 
beliefs in propositions change when evidence about them becomes known. Such methodologies 
include the MYCIN certainty factor model [1], the PROSPECTOR scoring scheme [2], and the 
application of Dempster's Rule to the combination of "weights of evidence" [3]. 

In this paper, a formal explication of the belief update paradigm is given. The presentation is 
modeled after the work of a physicist named R.T. Cox. In 1946, Cox [4] enumerated a small 
set of intuitive properties for a measure of absolute belief and proved that any measure that 
satisfies these properties must be some monotonie transformation of a probability. In the 
same spirit, a set of properties or axioms that are intended to capture the notion of a belief 
update are enumerated. It is then shown that these properties place strong restrictions on 
measures of change in belief. For example, it is shown that the only measures which satisfy 
the properties in a probabilistic context are monotonie transformations of the likelihood ratio 
X(H,E,e) = p(E|H,e)/p(EhH,e), where H is a hypothesis, E is a piece of evidence relevant to the 
hypothesis, and e is background information. 

It should be emphasized that the goal of this axiomization is not to prove that belief updates 
can only take the form described above. Rather, it is hoped that a formal explication of the 
update paradigm will stimulate constructive research in this area. For example, the axioms 
presented here can serve as a tool for the identification and communication of dissatisfaction 
with the update approach. Given the properties for a belief update, a researcher may be able 


