


PRINCIPLES 
OF 

ARTIFICIAL INTELLIGENCE 



This page intentionally left blank



Principles 
of 

Artificial Intelligence 
NILS J. NILSSON 
Stanford University 

MORGAN KAUFMANN 

PUBLISHERS, INC. 



Library of Congress Cataloging-in-Publication Data 

Nilsson, Nils J., 1933-
Principles of artificial intelligence. 

Reprint. Originally published: Palo Alto, Calif. : 
TiogaPub. Co., © 1980. 

Bibliography: p. 
Includes indexes. 
1. Artificial intelligence. I. Title. 

Q335.N515 1986 006.3 86-2815 
ISBN 0-934613-10-9 

Copyright © 1980 Morgan Kaufmann Publishers, Inc. 

All rights reserved. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise, without 
the prior written permission of the publisher. Printed in the United States 
of America. Library of Congress Catalog Card Number 86-2815. 

The figures listed below are from "Problem-Solving Methods in Artifi-
cial Intelligence" by Nils J. Nilsson, copyright © 1971 McGraw-Hill 
Book Company. Used with permission of McGraw-Hill Book Company. 
Figures 1.4, 1.5, 1.6, 1.13, 2.6, 2.7, 2.8, 2.9, 2.12, 2.13, 3.8, 3.9, 3.10, 3.11, 
3.12, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14. 

ISBN 0-934613-10-9 
(Previously published by Tioga Publishing Co. under ISBN 0-935382-01-1) 

FG-DO 



for Kristen and Lars 



This page intentionally left blank



TABLE OF CONTENTS 

PREFACE xi 

ACKNOWLEDGEMENTS xiii 

CREDITS XV 

PROLOGUE 

0.1. Some Applications of Artificial Intelligence 2 
0.2. Overview 9 
0.3. Bibliographical and Historical Remarks 10 

CHAPTER 1: PRODUCTION SYSTEMS AND AI 17 
1.1. Production Systems 17 
1.2. Specialized Production Systems 35 
1.3. Comments on the Different Types of Production 

Systems 47 
1.4. Bibliographical and Historical Remarks 48 

Exercises 50 

CHAPTER 2: SEARCH STRATEGIES FOR AI 
PRODUCTION SYSTEMS 53 

2.1. Backtracking Strategies 55 
2.2. Graph-search Strategies 61 
2.3. Uninformed Graph-search Procedures 68 
2.4. Heuristic Graph-search Procedures 72 
2.5. Related Algorithms 88 
2.6. Measures of Performance 91 
2.7. Bibliographical and Historical Remarks 94 

Exercises 96 

CHAPTER 3: SEARCH STRATEGIES FOR DECOMPOSABLE 
PRODUCTION SYSTEMS 99 

3.1. Searching AND/OR Graphs 99 
3.2. AO*: A Heuristic Search Procedure for AND/OR 

Graphs 103 
3.3. Some Relationships Between Decomposable and 

Commutative Systems 109 
3.4. Searching Game Trees 112 
3.5. Bibliographical and Historical Remarks 127 

Exercises 128 

VII 



CHAPTER 4: T H E PREDICATE CALCULUS IN AI 131 
4.1. Informal Introduction to the Predicate 

Calculus 131 
4.2. Resolution 145 
4.3. The Use of the Predicate Calculus in AI 152 
4.4. Bibliographical and Historical Remarks 156 

Exercises 156 

CHAPTER 5: RESOLUTION REFUTATION SYSTEMS 161 
5.1. Production Systems for Resolution 

Refutations 163 
5.2. Control Strategies for Resolution Methods 164 
5.3. Simplification Strategies 172 
5.4. Extracting Answers From Resolution 

Refutations 175 
5.5. Bibliographical and Historical Remarks 189 

Exercises 189 

CHAPTER 6: RULE-BASED DEDUCTION SYSTEMS 193 
6.1. A Forward Deduction System 196 
6.2. A Backward Deduction System 212 
6.3. "Resolving" Within AND/OR Graphs 234 
6.4. Computation Deductions and Program 

Synthesis 241 
6.5. A Combination Forward and Backward 

System 253 
6.6. Control Knowledge For Rule-Based Deduction 

Systems 257 
6.7. Bibliographical and Historical Remarks 267 

Exercises 270 

CHAPTER 7: BASIC PLAN-GENERATING SYSTEMS 275 
7.1. Robot Problem Solving 275 
7.2. A Forward Production System 281 
7.3. A Representation for Plans 282 
7.4. A Backward Production System 287 
7.5. STRIPS 298 
7.6. Using Deduction Systems to Generate Robot 

Plans 307 
7.7. Bibliographical and Historical Remarks 315 

Exercises 317 

Vili 



CHAPTER 8: ADVANCED PLAN-GENERATING SYSTEMS 321 
8.1. RSTRIPS 321 
8.2. DCOMP 333 
8.3. Amending Plans 342 
8.4. Hierarchical Planning 349 
8.5. Bibliographical and Historical Remarks 357 

Exercises 358 

CHAPTER 9: STRUCTURED OBJECT REPRESENTATIONS 361 
9.1. From Predicate Calculus to Units 362 
9.2. A Graphical Representation: Semantic 

Networks 370 
9.3. Matching 378 
9.4. Deductive Operations on Structured Objects 
9.5 Defaults and Contradictory Information 408 
9.6. Bibliographical and Historical Remarks 412 

Exercises 414 

PROSPECTUS 417 
10.1. AI System Architectures 418 
10.2. Knowledge Acquisition 419 

10.3. Representational Formalisms 422 

BIBLIOGRAPHY 429 

A U T H O R INDEX 467 

SUBJECT INDEX 471 



This page intentionally left blank



PREFACE 

Previous treatments of Artificial Intelligence (AI) divide the subject 
into its major areas of application, namely, natural language processing, 
automatic programming, robotics, machine vision, automatic theorem 
proving, intelligent data retrieval systems, etc. The major difficulty with 
this approach is that these application areas are now so extensive, that 
each could, at best, be only superficially treated in a book of this length. 
Instead, I have attempted here to describe fundamental AI ideas that 
underlie many of these applications. My organization of these ideas is 
not, then, based on the subject matter of their application, but is, instead, 
based on general computational concepts involving the kinds of data 
structures used, the types of operations performed on these data struc-
tures, and the properties of control strategies used by AI systems. I stress, 
in particular, the important roles played in AI by generalized production 
systems and the predicate calculus. 

The notes on which the book is based evolved in courses and seminars 
at Stanford University and at the University of Massachusetts at 
Amherst. Although certain topics treated in my previous book, Problem-
solving Methods in Artificial Intelligence, are covered here as well, this 
book contains many additional topics such as rule-based systems, robot 
problem-solving systems, and structured-object representations. 

One of the goals of this book is to fill a gap between theory and 
practice. AI theoreticians have little difficulty in communicating with 
each other; this book is not intended to contribute to that communica-
tion. Neither is the book a handbook of current AI programming 
technology; other sources are available for that purpose. As it stands, the 
book could be supplemented either by more theoretical treatments of 
certain subjects, for AI theory courses, or by project and laboratory 
sessions, for more practically oriented courses. 

The book is designed as a text for a senior or first-year graduate course 
in AI. It is assumed that the reader has a good background in the 
fundamentals of computer science; knowledge of a list-processing 
language, such as LISP, would be helpful. A course organized around this 
book could comfortably occupy a full semester. If separate practical or 

xi 



theoretical material is added, the time required might be an entire year. A 
one-quarter course would be somewhat hurried unless some material 
(perhaps parts of chapter 6 and chapter 8) is omitted. 

The exercises at the end of each chapter are designed to be thought-
provoking. Some expand on subjects briefly mentioned in the text. 
Instructors may find it useful to use selected exercises as a basis for class 
discussion. Pertinent references are briefly discussed at the end of every 
chapter. These citations should provide the interested student with 
adequate entry points to much of the most important literature in the 
field. 

I look forward someday to revising this book—to correct its inevitable 
errors, and to add new results and points of view. Toward that end, I 
solicit correspondence from readers. 

Nils J. Nilsson 

xn 



ACKNOWLEDGEMENTS 

Several organizations supported and encouraged the research, teach-
ing, and discussions that led to this book. The Information Systems 
Program, Marvin Denicoff, Director, of the Office of Naval Research, 
provided research support under contract no. N00014-77-C-0222 with 
SRI International. During the academic year 1976-77,1 was a part-time 
visiting professor in the Computer Science Department at Stanford 
University. From September 1977 to January 1978, I spent the Winter 
Semester at the Computer and Information Sciences Department of the 
University of Massachusetts at Amherst. The students and faculty of 
these departments were immensely helpful in the development of this 
book. 

I want to give special thanks to my home organization, SRI Interna-
tional, for the use of its facilities and for its liberal attitude toward 
book-writing. I also want to thank all my friends and colleagues in the 
Artificial Intelligence Center at SRI. One could not find a more dynamic, 
intellectually stimulating, and constructively critical setting in which to 
work and write. 

Though this book carries the name of a single author, it has been 
influenced by several people. It is a pleasure to thank here everyone who 
helped guide me toward a better presentation. Some of those who 
provided particularly detailed and extensive suggestions are: Doug 
Appelt, Michael Arbib, Wolfgang Bibel, Woody Bledsoe, John Brown, 
Lew Creary, Randy Davis, Jon Doyle, Ed Feigenbaum, Richard Fikes, 
Northrup Fowler, Peter Friedland, Anne Gardner, David Gelperin, 
Peter Hart, Pat Hayes, Gary Hendrix, Doug Lenat, Vic Lesser, John 
Lowrance, Jack Minker, Tom Mitchell, Bob Moore, Allen Newell, Earl 
Sacerdoti, Len Schubert, Herb Simon, Reid Smith, Elliot Soloway, Mark 
Stefik, Mabry Tyson, and Richard Waldinger. 

I also want to thank Robin Roy, Judy Fetler, and Georgia Navarro, for 
patient and accurate typing; Sally Seitz for heroic insertion of typesetting 
instructions into the manuscript; and Helen Tognetti for creative 
copy-editing. 

Most importantly, my efforts would not have been equal to this task 
had they not been generously supported, encouraged, and understood by 
my wife, Karen. 

xiii 



This page intentionally left blank



CREDITS 

The manuscript for this book was prepared on a Digital Equipment 
Corporation KL-10 computer at SRI International. The computer 
manuscript file was processed for automatic photo-typesetting by W. A. 
Barrett's TYPET system on a Hewlett-Packard 3000 computer. The main 
typeface is Times Roman. 

Book design: Ian Bastelier 
Cover design: Andrea Hendrick 
Illustrations: Maria Masterson 
Typesetting: Typothetae, Palo Alto, CA 
Page makeup: Vera Allen Composition, Castro Valley, CA 
Printing and binding: R. R. Donnelley and Sons Company 

xv 



This page intentionally left blank



PROLOGUE 

Many human mental activities such as writing computer programs, 
doing mathematics, engaging in commonsense reasoning, understanding 
language, and even driving an automobile are said to demand "intelli-
gence." Over the past few decades, several computer systems have been 
built that can perform tasks such as these. Specifically, there are 
computer systems that can diagnose diseases, plan the synthesis of 
complex organic chemical compounds, solve differential equations in 
symbolic form, analyze electronic circuits, understand limited amounts 
of human speech and natural language text, or write small computer 
programs to meet formal specifications. We might say that such systems 
possess some degree of artificial intelligence. 

Most of the work on building these kinds of systems has taken place in 
the field called Artificial Intelligence (AI). This work has had largely an 
empirical and engineering orientation. Drawing from a loosely struc-
tured but growing body of computational techniques, AI systems are 
developed, undergo experimentation, and are improved. This process 
has produced and refined several general AI principles of wide applica-
bility. 

This book is about some of the more important, core AI ideas. We 
concentrate on those that find application in several different problem 
areas. In order to emphasize their generality, we explain these principles 
abstractly rather than discuss them in the context of specific applications, 
such as automatic programming or natural language processing. We 
illustrate their use with several small examples but omit detailed case 
studies of large-scale applications. (To treat these applications in detail 
would each certainly require a separate book.) An abstract understanding 
of the basic ideas should facilitate understanding specific AI systems 
(including strengths and weaknesses) and should also prove a sound basis 
for designing new systems. 

1 



PROLOGUE 

AI has also embraced the larger scientific goal of constructing an 
information-processing theory of intelligence. If such a science of 
intelligence could be developed, it could guide the design of intelligent 
machines as well as explicate intelligent behavior as it occurs in humans 
and other animals. Since the development of such a general theory is still 
very much a goal, rather than an accomplishment of AI, we limit our 
attention here to those principles that are relevant to the engineering goal 
of building intelligent machines. Even with this more limited outlook, 
our discussion of AI ideas might well be of interest to cognitive 
psychologists and others attempting to understand natural intelligence. 

As we have already mentioned, AI methods and techniques have been 
applied in several different problem areas. To help motivate our 
subsequent discussions, we next describe some of these applications. 

0.1. SOME APPLICATIONS OF ARTIFICIAL 
INTELLIGENCE 

0.1.1. NATURAL LANGUAGE PROCESSING 

When humans communicate with each other using language, they 
employ, almost effortlessly, extremely complex and still little understood 
processes. It has been very difficult to develop computer systems capable 
of generating and "understanding" even fragments of a natural language, 
such as English. One source of the difficulty is that language has evolved 
as a communication medium between intelligent beings. Its primary use 
is for transmitting a bit of "mental structure" from one brain to another 
under circumstances in which each brain possesses large, highly similar, 
surrounding mental structures that serve as a common context. Further-
more, part of these similar, contextual mental structures allows each 
participant to know that the other also possesses this common structure 
and that the other can and will perform certain processes using it during 
communication "acts." The evolution of language use has apparently 
exploited the opportunity for participants to use their considerable 
computational resources and shared knowledge to generate and under-
stand highly condensed and streamlined messages: A word to the wise 
from the wise is sufficient. Thus generating and understanding language 
is an encoding and decoding problem of fantastic complexity. 

2 



SOME APPLICATIONS OF ARTIFICIAL INTELLIGENCE 

A computer system capable of understanding a message in natural 
language would seem, then, to require (no less than would a human) both 
the contextual knowledge and the processes for making the inferences 
(from this contextual knowledge and from the message) assumed by the 
message generator. Some progress has been made toward computer 
systems of this sort, for understanding spoken and written fragments of 
language. Fundamental to the development of such systems are certain 
AI ideas about structures for representing contextual knowledge and 
certain techniques for making inferences from that knowledge. Although 
we do not treat the language-processing problem as such in this book, we 
do describe some important methods for knowledge representation and 
processing that do find application in language-processing systems. 

0.1.2. INTELLIGENT RETRIEVAL FROM DATABASES 

Database systems are computer systems that store a large body of facts 
about some subject in such a way that they can be used to answer users' 
questions about that subject. To take a specific example, suppose the facts 
are the personnel records of a large corporation. Example items in such a 
database might be representations for such facts as "Joe Smith works in 
the Purchasing Department," "Joe Smith was hired on October 8, 1976," 
"The Purchasing Department has 17 employees," "John Jones is the 
manager of the Purchasing Department," etc. 

The design of database systems is an active subspecialty of computer 
science, and many techniques have been developed to enable the efficient 
representation, storage, and retrieval of large numbers of facts. From our 
point of view, the subject becomes interesting when we want to retrieve 
answers that require deductive reasoning with the facts in the database. 

There are several problems that confront the designer of such an 
intelligent information retrieval system. First, there is the immense 
problem of building a system that can understand queries stated in a 
natural language like English. Second, even if the language-understand-
ing problem is dodged by specifying some formal, machine-understand-
able query language, the problem remains of how to deduce answers 
from stored facts. Third, understanding the query and deducing an 
answer may require knowledge beyond that explicitly represented in the 
subject domain database. Common knowledge (typically omitted in the 
subject domain database) is often required. For example, from the 
personnel facts mentioned above, an intelligent system ought to be able 

3 



PROLOGUE 

to deduce the answer "John Jones" to the query "Who is Joe Smith's 
boss?" Such a system would have to know somehow that the manager of a 
department is the boss of the people who work in that department. How 
common knowledge should be represented and used is one of the system 
design problems that invites the methods of Artificial Intelligence. 

0.13. EXPERT CONSULTING SYSTEMS 

AI methods have also been employed in the development of automatic 
consulting systems. These systems provide human users with expert 
conclusions about specialized subject areas. Automatic consulting sys-
tems have been built that can diagnose diseases, evaluate potential ore 
deposits, suggest structures for complex organic chemicals, and even 
provide advice about how to use other computer systems. 

A key problem in the development of expert consulting systems is how 
to represent and use the knowledge that human experts in these subjects 
obviously possess and use. This problem is made more difficult by the 
fact that the expert knowledge in many important fields is often 
imprecise, uncertain, or anecdotal (though human experts use such 
knowledge to arrive at useful conclusions). 

Many expert consulting systems employ the AI technique of rule-based 
deduction. In such systems, expert knowledge is represented as a large set 
of simple rules, and these rules are used to guide the dialogue between 
the system and the user and to deduce conclusions. Rule-based deduction 
is one of the major topics of this book. 

0.1.4. THEOREM PROVING 

Finding a proof (or disproof) for a conjectured theorem in mathemat-
ics can certainly be regarded as an intellectual task. Not only does it 
require the ability to make deductions from hypotheses but demands 
intuitive skills such as guessing about which lemmas should be proved 
first in order to help prove the main theorem. A skilled mathematician 
uses what he might call judgment (based on a large amount of specialized 
knowledge) to guess accurately about which previously proven theorems 
in a subject area will be useful in the present proof and to break his main 

4 



SOME APPLICATIONS OF ARTIFICIAL INTELLIGENCE 

problem down into subproblems to work on independently. Several 
automatic theorem proving programs have been developed that possess 
some of these same skills to a limited degree. 

The study of theorem proving has been significant in the development 
of AI methods. The formalization of the deductive process using the 
language of predicate logic, for example, helps us to understand more 
clearly some of the components of reasoning. Many informal tasks, 
including medical diagnosis and information retrieval, can be formalized 
as theorem-proving problems. For these reasons, theorem proving is an 
extremely important topic in the study of AI methods. 

0.1.5. ROBOTICS 

The problem of controlling the physical actions of a mobile robot 
might not seem to require much intelligence. Even small children are 
able to navigate successfully through their environment and to manipu-
late items, such as light switches, toy blocks, eating utensils, etc. However 
these same tasks, performed almost unconsciously by humans, per-
formed by a machine require many of the same abilities used in solving 
more intellectually demanding problems. 

Research on robots or robotics has helped to develop many AI ideas. It 
has led to several techniques for modeling states of the world and for 
describing the process of change from one world state to another. It has 
led to a better understanding of how to generate plans for action 
sequences and how to monitor the execution of these plans. Complex 
robot control problems have forced us to develop methods for planning 
at high levels of abstraction, ignoring details, and then planning at lower 
and lower levels, where details become important. We have frequent 
occasion in this book to use examples of robot problem solving to 
illustrate important ideas. 

0.1.6. AUTOMATIC PROGRAMMING 

The task of writing a computer program is related both to theorem 
proving and to robotics. Much of the basic research in automatic 
programming, theorem proving, and robot problem solving overlaps. In 
a sense, existing compilers already do "automatic programming." They 
take in a complete source code specification of what a program is to 

5 



PROLOGUE 

accomplish, and they write an object code program to do it. What we 
mean here by automatic programming might be described as a "super-
compiler," or a program that could take in a very high-level description 
of what the program is to accomplish and produce a program. The 
high-level description might be a precise statement in a formal language, 
such as the predicate calculus, or it might be a loose description, say, in 
English, that would require further dialogue between the system and the 
user in order to resolve ambiguities. 

The task of automatically writing a program to achieve a stated result is 
closely related to the task of proving that a given program achieves a 
stated result. The latter is called program verification. Many automatic 
programming systems produce a verification of the output program as an 
added benefit. 

One of the important contributions of research in automatic program-
ming has been the notion of debugging as a problem-solving strategy. It 
has been found that it is often much more efficient to produce an 
inexpensive, errorful solution to a programming or robot control 
problem and then modify it (to make it work correctly), than to insist on a 
first solution completely free of defects. 

0.1.7. COMBINATORIAL AND SCHEDULING PROBLEMS 

An interesting class of problems is concerned with specifying optimal 
schedules or combinations. Many of these problems can be attacked by 
the methods discussed in this book. A classical example is the traveling 
salesman's problem, where the problem is to find a minimum distance 
tour, starting at one of several cities, visiting each city precisely once, and 
returning to the starting city. The problem generalizes to one of finding a 
minimum cost path over the edges of a graph containing n nodes such 
that the path visits each of the n nodes precisely once. 

Many puzzles have this same general character. Another example is 
the 8-queens problem, where the problem is to place eight queens on a 
standard chessboard in such a way that no queen can capture any of the 
others; that is, there can be no more than one queen in any row, column 
or diagonal. In most problems of this type, the domain of possible 
combinations or sequences from which to choose an answer is very large. 
Routine attempts at solving these types of problems soon generate a 
combinatorial explosion of possibilities that exhaust even the capacities of 
large computers. 

6 



SOME APPLICATIONS OF ARTIFICIAL INTELLIGENCE 

Several of these problems (including the traveling salesman problem) 
are members of a class that computational theorists call NP-complete. 
Computational theorists rank the difficulty of various problems on how 
the worst case for the time taken (or number of steps taken) using the 
theoretically best method grows with some measure of the problem size. 
(For example, the number of cities would be a measure of the size of a 
traveling salesman problem.) Thus, problem difficulty may grow linearly, 
polynomially, or exponentially, for example, with problem size. 

The time taken by the best methods currently known for solving 
NP-complete problems grows exponentially with problem size. It is not 
yet known whether faster methods (involving only polynomial time, say) 
exist, but it has been proven that if a faster method exists for one of the 
NP-complete problems, then this method can be converted to similarly 
faster methods for all the rest of the NP-complete problems. In the 
meantime, we must make do with exponential-time methods. 

AI researchers have worked on methods for solving several types of 
combinatorial problems. Their efforts have been directed at making the 
time-versus-problem-size curve grow as slowly as possible, even when it 
must grow exponentially. Several methods have been developed for 
delaying and moderating the inevitable combinatorial explosion. Again, 
knowledge about the problem domain is the key to more efficient 
solution methods. Many of the methods developed to deal with combin-
atorial problems are also useful on other, less combinatorially severe 
problems. 

0.1.8. PERCEPTION PROBLEMS 

Attempts have been made to fit computer systems with television 
inputs to enable them to "see" their surroundings or to fit them with 
microphone inputs to enable them to "hear" speaking voices. From these 
experiments, it has been learned that useful processing of complex input 
data requires "understanding" and that understanding requires a large 
base of knowledge about the things being perceived. 

The process of perception studied in Artificial Intelligence usually 
involves a set of operations. A visual scene, say, is encoded by sensors and 
represented as a matrix of intensity values. These are processed by 
detectors that search for primitive picture components such as line 
segments, simple curves, corners, etc. These, in turn, are processed to 

7 



PROLOGUE 

infer information about the three-dimensional character of the scene in 
terms of its surfaces and shapes. The ultimate goal is to represent the 
scene by some appropriate model. This model might consist of a 
high-level description such as "A hill with a tree on top with cattle 
grazing." 

The point of the whole perception process is to produce a condensed 
representation to substitute for the unmanageably immense, raw input 
data. Obviously, the nature and quality of the final representation 
depend on the goals of the perceiving system. If colors are important, 
they must be noticed; if spatial relationships and measurements are 
important, they must be judged accurately. Different systems have 
different goals, but all must reduce the tremendous amount of sensory 
data at the input to a manageable and meaningful description. 

The main difficulty in perceiving a scene is the enormous number of 
possible candidate descriptions in which the system might be interested. 
If it were not for this fact, one could conceivably build a number of 
detectors to decide the category of a scene. The scene's category could 
then serve as its description. For example, perhaps a detector could be 
built that could test a scene to see if it belonged to the category "A hill 
with a tree on top with cattle grazing." But why should this detector be 
selected instead of the countless others that might have been used? 

The strategy of making hypotheses about various levels of description 
and then testing these hypotheses seems to offer an approach to this 
problem. Systems have been constructed that process suitable represen-
tations of a scene to develop hypotheses about the components of a 
description. These hypotheses are then tested by detectors that are 
specialized to the component descriptions. The outcomes of these tests, in 
turn, are used to develop better hypotheses, etc. 

This hypothesize-and-test paradigm is applied at many levels of the 
perception process. Several aligned segments suggest a straight line; a 
line detector can be employed to test it. Adjacent rectangles suggest the 
faces of a solid prismatic object; an object detector can be employed to 
test it. 

The process of hypothesis formation requires a large amount of 
knowledge about the expected scenes. Some AI researchers have 
suggested that this knowledge be organized in special structures called 
frames or schémas. For example, when a robot enters a room through a 

8 


