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PREFACE 

This book is the outcome of the International Symposium on Neural Networks for 
Sensory and Motor Systems (NSMS) held in Neuss (near Düsseldorf (FRG)) from 22 
to 24 March, 1990. 

The NSMS symposium assembled 45 invited experts from Europe, America, and 
Japan representing the fields of Neuroinformatics, Computer Science, Computational 
Neuroscience, and Neuroscience. 
More than 150 additional scientists from various countries representing a number of 
research institutes and companies with interest in neural computing participated in the 
discussions and made poster presentations. 

The 45 invited contributions in this book are arranged in six sections ranging from 
Biological Sensory and Motor Systems via Theory of Artificial Neural Networks and 
Neural Network Simulators to Pattem Recognition and Motor Control with Artificial 
Neural Networks. 

The readibility of this book was enhanced by a number of measures: 
* The invited papers are arranged in six sections. 
* The collection of References from all Contributions provides an alphabetical list 

of all references quoted in the individual contributions. 
* A separate List of General References serves newcomers in this field to find 

other recent books. 
* Separate Author and Subject Indices facilitate access to various details. 

It is hoped that this book as a rapidly published report on the 'State of the Art in 
Neural Computing' and as a reference book for future research in the highly inter­
disciplinary field of Theory and Applications of Neural Computers' will provide 
useful in the endeavour to: Transfer Concepts of Brain Function and Structure to 
Novel Neural Computers with Adaptive, Dynamical Neural Net Topologies. 

The editor wishes to thank Claudia Berge, Miriam Buck, and Sandra Winter for their 
efficient and thorough technical and managerial assistance, which was essential to 
meet tiie tight deadline for preparation of die final book manuscript. 
The subsequent expert work of tiie publisher made it possible to make this book 
available in high quality within less than four months after the NSMS symposium. 

Düsseldorf, June 1990 The Editor 
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Prolegomena to an Analysis of Form and Structure 

Eduardo R. Caianiello 

Dipartlmento Física Teórica 
University of Salerno 
Salerno, Italy 

I. INTRODUCTION 

1. - This title is naeant as an expression of realistic humility, in front of problenris 
whose extension and depth I deenn to be nr̂ uch beyond our present grasp. As an 
example, the task of understanding in full the structure of English or Japanese, and 
of making an acceptable translation from one into the other, appears of a magnitude 
comparable to that of the study of cerebral activity. This was in fact the reason 
that prompted our first researches on the subject in the early 60's (1,2): our purpose 
was to learn something about the latter by studying the "produce" of the brain, 
conceived as a biological machine (almost a heresy at that time) whose inner 
workings we had just started modeling with mathematical equations describing 
Neural Nets and their learning mechanisms. 

Our methodological approach provided several insights, which were, when possible, 
subjected to computer analyses (of texts in several languages) that well 
corresponded to our expectations, thus stimulating further researches, still under 
way. Implementation with Neural Nets is being also considered, but will not be 
discussed here. I present it, in sketchy outline but with several Improvements with 
respect to earlier studies, because I think it paradigmatic for many problems of 
interest to us. E.g., a robot may be described by specifying the "translation" it 
performs from a "sensory" to a "motor" language: a problem for which the 
appellative "prolegomena" given to these considerations seems not Inappropriate. 
They may be taken, in a generalized sense, to belong to "mathematical linguistics". 
The major difference between most approaches in this area and ours is that we 
consider the language which we happen to study as our "universe", which we treat 
as a physicist does with his: he cannot change it at will and is forbidden from 
making a priori assumptions on its laws. Likewise, we demand that what 
structures, grammars, etc. may exist in a "language" must be found by applying a 
systematic methodology, not postulated as already known. 

The major conceptual difference from eariier works is given by our refounding the 
whole approach on properties of the Kullback-Leibler entropy. Basic notions become 
more perspicuous and rigorous, some statements proposed before as heuristic 
become mathematical corrolaries. 
We name this improved version "Procrustes ΙΓ', since our previous work was called 
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2.- The "form of on object is understood os ο quolity bestowed upon it by the 
"observer" (a typical Kantian phenomenon). It includes "pattern", "image", etc. . 
"Form" is thus a "set property"; the "observer" is defined in turn through the set of 
elements stipulated by him to have the same form (e.g. according to weight, colour, 
shape, nutritional value.) . It is well known that a "set consisting of a single 
element" is a quite different object from that single element alone: the difference 
is the observer! This raises profound system-theoretical questions (think also of 
Quantum Mechanics), which will not concern us here. The operation performed by the 
observer when defining a form coincides with "abstraction", typical, in our 
approach, of learning neural nets [31. Iteration of this operation creates hierarchies 
and heterarchies of sets, or forms, or "features" (as such partial sets are often 
called when seen from a higher level). The study of this global process we call 
"Structural Analysis". Considerations which we do not report here (4) show that it 
involves usually a "Quantification" into the discrete (and finite) domain (think of 
our "seven" notes or colours as contrasted with the underlying physical continuum). 
We shall assume, as starting point, that the objects we deal with are quantified, 
either naturally or because of some preliminary pre-processing. 

We propose to analyze structures as "nested seouences of substructures". The 
analogy with a typed linguistic text is cogent; we shall use, proceeding 
"bottom-up", the words "letter", "syllable", word",... 
This may be misleading, because it Implies an underlying "linear dimension" as for a 
typwritten text, i.e. the existence of "complete ordering" relations, which may well 
not be"naturar in the analysis, say, of pictures. In such cases we assume, for the 
purpose of the present discussion, such relations to be the result of some 
prescription, as always possible in the discrete: think of TV scanning, or of the 
saccadic eye movements of Yarbus. By so doing, we deal in fact with the most 
complex situation, that of "strings" of elements in which "order" is essential; 
suppression of order would simplify our treatment into that of "clusters", an easier 
task not treated here (it would imply a reconsideration of the "codes" discussed 
next). 

3.- We shall call henceforth "language" a given (extensively or potentially, finite or 
infinite) set of "texts" written in terms of "letters" of an "alohabet" A (e.g. English 
letters, or Kanji and Kana). Our attention will be concentrated on a single text Τ 
(the addition of more texts will enrich later our knowledge). A "code" is a 
collection of strings (code words) of letters of A. We defined (51 a code "closed" if 
"left cancellation" of a code word gives again a code word: thus, if 0^203 Is a code 

word , 8283 and a3 are also code words . 

"Procrustes" (öfter the name of the first theorist in our history) 
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II - Preliminary Remarks 

1.- Two main topics are relevant for our structural analysis: 

- frequency count; 

- search for individual structures, no matter how rare. 

We have restricted our attention only to the second, which presented the greater 
challenge and is a necessary pre-requlsite for the first; a study of texts in various 
languages, especially Italian, substantiated our conclusions. There is of course no 
doubt that both topics are important in a complete analysis of the type we propose. 

2.- Our search for structural levels has to meet two basic demands: 

- finding, proceeding bottom-up, a hierarphy of nested substructures, none excludep, 
in terms of which our texts may be fully described; 

- destroying the evident influence of higher structures on the distribution of lower 
ones. (One may read thus most of Italian literature without ever meeting the word 
"soqquadro", which denotes a situation of "total upsetting wantonly created", and is 
the only Italian word to have the sequence "qqua"; yet this string cannot be ignored 

"Natural codes" are defined as those which contain "terminal letters": in our 
analysis a subset of them, "closed natural codes" (CNC), will play a relevant role. 

"Instantaneous codes" are the subclass of "uniquely decipherable codes" for which 
the end of a code word is recognizable without exploration of the next letter. We 
defined "closed instantaneous codes" (CIC) the subclass of instantaneous codes 
which is closed under left cancellation, except that it does not contain as words 
suffixes which have code words as prefixes: thus a|a2a3a4; a3a4; a3a2; ®4 

a CIC (the suffix a2a3a4 is forbidden). CIC's contain terminal symbols also within 

their code words, and are thus wider than CNC's, in terms of which they can be 
further analyzed. 

The interest of CIC and CNC lies for us in the fact that our algorithm was proved to 
converge always to one of these two codes (applications to texts written with 
other types of codes prove this assertion; for a discussion, see ref. (51) 
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Ill - Information as Kullback-Leibler Entroou 

1 - Our purpose is not to repeat statements and proofs already available in the 
references, but rather to "distill" out of them, with greater mathematical clarity 
than was then possible, the crucial points that we deem of value for further 
investigation; the result ought to be a vast improvement, because the use of 
"conjectures" then made, turned now into legitimate mathematical statements, will 
allow great gains in computational speed. 

by our search!) 

The second is easily answered at the first two steps: 

- transition from the study of "language" to that of a single "text" Τ . 

- transition from the text Τ to the corresponding "reduced text", or vocabolary, 
W , which contains each word of Τ only once. 

The latter is paradigmatic for our procedure; the reader may compare our approach, 
for analogies and differences, with C. Shannon's celebrated analysis of English. 
Assume level " Γ to be given by the alphabet letters (because given, or as a higher 
level from some binary, or Morse, code); call level "K" that given by all the words of 
the reduced text W . Think now of two sets of B. Russell's monkeys, one with 
letter-keyboards, the other with word-keyboards: the first will reproduce all that 
we want and can of structure at level " Γ , the second at level "K". How the 
destruction of the damaging influence of higher levels comes about is quite clear in 
both cases. 

3.- Our aim is to obtain, at whatever levels may exist between "letters" and 
"words", this same result. It suffices to consider only one intermediate level 
between the two just named, that of "syllables". It is the old problem of "parsing", 
when no Indications are elicitable from the text on how to divide words into 
syllables. We can replace monkeys with semigroup theory: we demand that our 
"syllables". If written as strings of alphabet letters, generate a "submonoid" (that 
covers W ) which Is a "free submonoid" of the monoid generated by the letters. 
Our algorithms must therefore automatically, on reading the text, retrieve the 
generators of the free submonoid that is smaller than the monoid generated by 
letters and larger than that generated by words. (We have assumed just one 
Intermediate level, but the extension to whole hierarchies should be evident). 
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P(X„)= If, p(X„yf, ), p % ) = Σ„ p(X„yh) 

and the conditional probabilities 

P(yh /x« > = p( yh) ^ 

p(x„/yh)= p(x„yh)' ' P(yh>' 

form the entropies 

Η(Ϋ) = - If, p( ) log p( y^) 

Η(Ϋ / X ) = - If, p( yh / x„) log P( yh / x„) 

Hj, (Ϋ) = Σ „ p( X„ ) H( Y / Χα ) (equivocation) 

and fronn them the "nrtutual information", or "divergence", or "Kull back-Lei bier 
entropy" (all sgnonims; the last concept is the most interesting for us, as it implies 
a "measure" of how near we are to our aim): 

We onlg discuss here, as an Illustration, the paradigm "letter - syllable - word" just 
quoted. If we denote A* the monoid generated bg the alphabet A, 
we propose to find a set of syllables S such that: 

A* Z3 S * ID W* (in the strong sense, or else there Is no 
Intermediate level between A and W). 

2.- We are interested in structures, not in frequencies. We build therefore at each 
stage probability schemes of "microcanonicar type, as follows. Our search for S 
must start and stop automatically (words are assumed to have a finite maximal 
length); it proceeds, by iteration, through the construction of "intermediate 
provisional alphabets" containing letters, digrams, trigrams..., until the previous 
alphabet is identically reproduced. It constitutes the wanted S : our procedure, 
explained next, guaranties that S i s a CNC or a CIC. 

Call a string of (one or more) letters, y^ the letter next to it at right in the 

word. Call p(X^ y^ ) the probability (to be specified later) that the string y^ 

exists in W. Consider then the marginal probabilities 
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Η(Χ;Υ) = Η(Ϋ) - Ηχ(Υ) = Η(Χ) + Η(Ϋ) - Η(Χ,Ϋ) = 

= ρ(Χα ) log{p( Χα y^,) / ρ( X« ) ρ( ŷ ^ )} 

The gain in infornrtation with respect to the average information on y when X^ is 

known is: 

Κ X J = H(Y) - H(V / X^) 

3. - Proceed now as follows. 

SteB.1): 

a) Construct a histogram having as abscissae and ordinates the letters of A; set 
in it a " Γ whenever the digram X^ y^ exists in W, no matter how many times, a "0" 

otherwise (here, X^ is a single letter of A); 

b) Call D the total number of Ts in histogram (we treat only the case D < 
here, denoting with A also the number of letters of A); set 

P(x„yh) = 

1 / D If X„ ŷ , cD c 

if X„yh£D 

c) Compute ? (X„ ) for all values on abscissa; if 

I (X„ ) < Η(Χ;Ϋ) take all monograms X^ as letters of first 

provisional alphabet; 

if 

? (X„ ) > Η(Χ;Ϋ) remove X^ from letteral alphabet A , complete 

first provisional alphabet with all such digrams. 

SlfilL2): 
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Steo 3) etc.: Iterate. 

End: When iteration reproduces previous alphabet. This is taken as that of 
wanted syllables. Wanted structure is found. 

The main point is now easily understood. Looking at the Kullback-Leibler entropy, 
we see that it vanishes when p(X^ ŷ , ) = p(X,j)p(yh ) : the wanted "syllabic" 

alphabet is reached when none of the symbols that have been constructed with our 
procedure yields information on the next letter, as expressed by the factorization 
of the probability. This situation is "ideal", because any text we examine can only be 
finite; one can however (thus destroying the constraints posed by word-structure 
on syllable-finding) easily replace the "word level" with one in which "all" syllables 
are assumed freely adjoinable This, again, acts like a thermodynamic limit, and 
simplifies computation greatly. It also implies that p(y^) is taken not as the 

marginal probability of y^ ("last" letter of a string), but of g^ as any letter of the 

alphabet (assumed equiprobable). In earlier works we found, empirically, this to be 
Indeed the best choice. 

3.- Discussion. 
We have thus built a sequence of "vocabularies", each listing the structures of a 
level.. This is only a first start, which however indicates several problems that can 
be studied next with in ways not only heuristic. They are mentioned in ref.(5-8]. Our 
specific aim demanded the exclusion of direct "frequency counts" (but information 
on the frequency of a symbol among those of higher levels might be usefully 
obtained). Such counts will be of course of major importance for other parts of the 
structural analysis we propose, of which only the mere beginnings are here 
reported. 
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The Truck Backer-Upper: 
An Example of Self-Learning in Neural Networks 

Derrick Nguyen and Bernard Widrow 

Information Systems Laboratory 
Department of Electrical Engineering 
Stanford University 
Stanford, CA 94305 

Neural networks can be used to solve highly nonlinear control problems. A two-layer 
neural network containing 26 adaptive neural elements has learned to back up a computer 
simulated trailer truck to a loading dock, even when initially "jackknifed." It is not yet 
known how to design a controller to perform this steering task. Nevertheless, the neural 
net was able to learn of its own accord to do this, regardless of initial conditions. 
Experience gained with the truck backer upper should be applicable to a wide variety of 
nonlinear control problems that appear in power systems. 

1 In troduc t ion 

The control of severely nonlinear systems has for the most part escaped the attention of control 
theorists and practitioners. This paper addresses the issue from the point of view of utilizing 
self-learning techniques to achieve nonlinear controller design. T h e methodology shows promise 
for applications to control problems that are so complex that analytical design techniques either 
do not exist or will not exist for some time to come. Neural networks can be used to implement 
highly nonlinear controllers whose weights or internal parameters can be chosen or determined by 
a self-learning process. 

Backing a trailer truck to a loading dock is a difficult exercise for all but the most skilled truck 
drivers. Anyone who has tried to back up a house trailer or a boat trailer will realize this. Normal 
driving instincts lead to erroneous movements . A great deal of practice is required to develop the 
requisite skills. 

When watching a truck driver backing toward a loading dock, one often observes the driver backing, 
going forward, backing again, going forward, etc . , and finally backing to the desired position along 
the dock. T h e forward and backward movements help to position the trailer for successful backing 
up to the dock. A more difficult backing up sequence would only allow backing, with no forward 
movements permitted. The specific problem treated in this paper is that of the design by self-
learning of a nonlinear controller to control the steering of a trailer truck while backing up to a 
loading dock from an arbitrary initial position. Only backing up is allowed. Computer simulation 
of the truck and its controller has demonstrated workability, although no mathematical proof yet 
exists. The experimental controller contains 26 adaptive A D A L I N E units [1] and exhibits exquisite 
backing up control. The trailer truck can be initially "jackknifed** and aimed in many different 
directions, toward and away from the dock, but as long as there is sufficient clearance, the controller 
appears to be capable of finding a solution. 

Figure 1 shows a computer-screen image of the truck, the trailer, and the loading dock. The critical 
state variables representing the position of the truck and that of the loading dock are Bcabi the angle 
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Neural-Net 
Controller 

signal^ 

Trailer Truck 
Kinematics 

Stat 

state 

Figure 2: Overview Diagram 

of the truck, χ cab and 2/ca6, the cartesian position of the yoke, Xtraiitr and y trailers the cartesian 
position of the rear of the center of the trailer, and χ dock and y dockt the cartesian position of the 
center of the loading dock. Definition of the state variables is illustrated in Figure 1. 

The truck backs up until it hits the dock, then stops. The goal is t o cause the back of the trailer 
to be parallel to the loading dock, and to have the point {x trailer ·, y trailer) be aligned as closely as 
possible with point {x dock, y dock)- The controller will learn to achieve this objective. 

2 Training 

The approach to self-learning control that has been successfully used with the truck backer-upper 
involves a two-stage learning process. The first stage involves the training of a neural network to 
be an emulator of the truck and traUer kinematics. The second stage involves the training of a 
neural-network controller to control the emulator. A similar approach has been used by Widrow 
[2, 3] and by Jordan [4]. Once the controller knows how to control the emulator, it is then able t o 
control the actual trailer truck. Figure 2 gives an overview, showing how the present s tate vector 
statek is fed to the controller which in turn provides a steering signalk between - 1 (hard right) 
and H-l (hard left) t o the truck. The time index is k. £ a c h t ime cycle, the truck backs up by a 
fixed small distance. The next state is determined by the present s tate and the steering signal, 
which is fixed during the cycle. 

Figure 3 shows a block diagram of the process used to train the emulator. T h e truck backs up 
randomly, going through many cycles with randomly selected steering signals. By this process, the 
emulator "gets the feel" of how the trailer and truck behave. The emulator, chosen as a t w o layer 
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Figure 4: State transition flow diagram 

neural network, learns to generate the next positional s tate vector when given the present s tate 
vector and the steering signal. This is done for a wide variety of positional states and steering 
angles. The two-layer emulator is adapted by means of the back-propagation algorithm [5, 6, 7]. 
The first layer had six present s tate inputs plus the present steering signal input. This layer 
contained forty five hidden adaptive A D A L I N E units producing six next-state predictions. Once 
the emulator is trained, it can then be used to train the controller. 

Refer t o Figure 4. The identical blocks labeled C represent the controller. The identical blocks 
labeled Τ represent the truck and trailer emulator. Suppose that the truck is engaged in backing 
up. Let C be chosen randomly and be initially fixed. T h e initial s tate vector θο is fed t o C, which 
produces the steering signal output which sets the steering angle of the truck. The backing up 
cycle proceeds with the truck and trailer soon arriving at the next state si. Wi th C remaining 
fixed, the backing up process continues from cycle to cycle until the truck hits something and stops. 
The final s tate S K is compared with the desired final s tate ( the rear of the trailer parallel t o the 
dock with proper positional alignment) to obtain the final s tate error vector €Κ' This error vector 
contains three elements (which are the errors of interest) , Xtraiier, y trailer and Btraiier, and is used 
to adapt the controller C. 

The method of adapting the controller C is illustrated in Figure 5. The final s tate error vector €κ 
is used t o adapt the blocks labeled C, which are maintained identical t o each other throughout the 


