
BIOCHEMISTRY

EDITED BY J.A.A. CHAMBERS & D. RICKWOOD

SERIES EDITORS: B.D. HAMES D. RICKWOOD

The LABFAX series

Series Editors:

B.D. HAMES Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK

D. RICKWOOD Department of Biology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

MOLECULAR BIOLOGY LABFAX CELL BIOLOGY LABFAX CELL CULTURE LABFAX BIOCHEMISTRY LABFAX Forthcoming titles VIROLOGY LABFAX PLANT MOLECULAR BIOLOGY LABFAX IMMUNOCHEMISTRY LABFAX

BIOCHEMISTRY

LABEAX

EDITED BY

1487 West 5th Avenue, Apt. 311, Columbus, OH 43212, USA

and

D. RICKWOOD

Department of Biology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

©BIOS Scientific Publishers Limited, 1993

All rights reserved by the publisher. No part of this book may be reproduced or transmitted, in any form or by any means, without permission in writing from the publisher.

First published in the United Kingdom 1993 by BIOS Scientific Publishers Limited St Thomas House, Becket Street, Oxford OX1 1SJ, UK

ISBN 0 12 167340 5

A CIP catalogue entry for this book is available from the British Library.

This Edition published jointly in the United States of America by Academic Press, Inc. and BIOS Scientific Publishers Limited.

Distributed in the United States, its territories and dependencies, and Canada exclusively by Academic Press, Inc., 1250 Sixth Avenue, San Diego, California 92101 pursuant to agreement with BIOS Scientific Publishers Limited, St Thomas House, Becket Street, Oxford OX1 1SJ, UK.

Typeset by Unicus Graphics Ltd, Horsham, UK. Printed by Information Press Ltd, Oxford, UK.

The information contained within this book was obtained by BIOS Scientific Publishers Limited from sources believed to be reliable. However, while every effort has been made to ensure its accuracy, no responsibility for loss or injury occasioned to any person acting or refraining from action as a result of the information contained herein can be accepted by the publishers, authors or editors.

PREFACE

Biochemistry continues to be one of the most important areas of research in the life sciences. Indeed, with the need to characterize the diverse range of gene products generated as a result of genetic engineering techniques, there has been a resurgence of interest in biochemistry as molecular biologists examine the changing properties of modified proteins.

There have been handbooks on biochemistry, both encyclopedic and selective. However, the former type of book tests physical fitness and patience and the selection of topics for the latter often does not reflect the current biochemical practices and techniques because the books were published some time ago. We, as editors, have attempted to assemble the most important facts in a way that reflects current biochemical techniques to provide data that biochemists will need to use in their work on an almost daily basis. The length restriction of this book has required us to be very selective in terms of which topics to include and which to exclude. We have tried to emphasize those aspects of the subject that have not been included in previous books. We hope that this will prove to be a useful data book for everyone working in the area of biochemistry.

J.A.A. Chambers D. Rickwood

HAZARD WARNING

Some of the chemicals and procedures described in this book may be associated with chemical and biological hazards. In addition, the reader should be aware of the hazards associated with the handling of animal tissue samples. While efforts have been made to indicate the hazards associated with the different reagents and procedures covered in this book, it is the ultimate responsibility of the reader to ensure that safe working practises are used.

In several chapters Chemical Abstracts Service Registry numbers have been supplied for the reagents discussed. These numbers, found in square brackets and of the general formula XXXXX-YY-Z, are assigned to a unique chemical structure regardless of name and are of particular use in the literature searches and in the recovery of information from a number of chemical and biological databases. We decided to include these numbers when it became obvious that the number of names for some of the substances listed were in the hundreds and that the numbers provided another way to help the researcher find further information.

CONTENTS

Contributors Abbreviations	
1. BUFFERS, CHELATING AGENTS AND DENATURANTS Buffers Introduction Goods' buffers Preparation of buffers Counter ions Effects of temperature and concentration Biological compatibility and chemical reactivity pH ranges of non-zwitterionic buffers (Figure 1)	1 1 1 1 1 1 2 2
pH ranges of zwitterionic buffers (Figure 2) Components of non-zwitterionic buffers (Table 1) Zwitterionic (Goods') buffers (Table 2) Preparation of phosphate buffers Preparation of sodium phosphate buffer (Table 3) Preparation of acetate buffers Preparation of acetate buffer (Table 4) Buffered salines, balanced salts and osmotic supports Balanced salt solutions (Table 5) Chelating agents	3 5 9 9 10 10 11 11
Chelating agents: solubility and pK, values (Table 6) Chelating agents: stability constants (Table 7) Denaturing agents for proteins Mechanisms of denaturing agents Mixing denaturants Characteristics of denaturants and precipitants Solubilizing denaturants (Table 8) Precipitating denaturants (Table 9) Thiol reagents Thiol reagents (Table 10)	12 13 13 13 14 14 15 16 17 17
Detergents Detergents and surfactants (Table 11) Properties of acids, bases, salts and organic solvents Properties of acids, bases, salts and organic solvents (Table 12) Acid-base indicators (Table 13) Amino acids L-Amino acids: physical and chemical data (Table 14) Amino acid classification by solution properties of side chains (Table 15) Ammonium sulfate precipitation chart for proteins Chart for ammonium sulfate precipitation of proteins (Table 16) Saturated ammonium sulfate solutions at various temperatures (Table 17) References	17 19 22 23 29 22 31 33 33 33 34 35 35
2. RADIOISOTOPES IN BIOCHEMISTRY Definitions	37 37
Units of radioactivity Specific activity Electron volt (eV, or MeV = 10 ⁶ eV) Gray Dose equivalent man (sievert)	37 37 37 37 37 37

Radioisotopes used in biochemistry	37
Radioactive isotopes used in biochemical studies (Table 1)	38
Radioactive decay correction	39
Half-life activity corrections for selected radioisotopes (Table 2)	40
Autoradiography	39
Sensitivities of film detection methods for commonly used radioisotopes (Table 3)	41
Scintillation counting	41
Cerenkov counting	41
Counting efficiency using Cerenkov counting (Table 4)	41
Counting of finely dispersed or solvent-soluble substances	41
Structures of compounds used in scintillants (Figure 1)	42
Counting of aqueous samples	42
Gamma counting	43
Use of radioisotopes as tracers	43
Radiological protection	45
Shielding for β -particles and γ -rays	46
Shielding for β -particle emitters (Table 5)	46
Shielding for γ -ray emitters (Table 6)	46
Methods for decontaminating laboratories	46
Decontamination methods (Table 7)	47
References	48
Further reading	48

2	CUDOMATOCDADUIC		
J .	CHRUMAIUGRAPHIC	FRACTIONATION MEDIA	

Introduction	
Media for size exclusion	
Fractionation ranges of commercially available gel filtration matrices (Figure 1)	51
Carbohydrate-based column support materials for separation by size	
exclusion (Table 1)	52
Silica-based column support materials for size exclusion HPLC	
of proteins and peptides (Table 2)	55
Polymer-based column support materials for size exclusion HPLC	
of proteins and peptides (Table 3)	56
Controlled pore glass for permeation chromatography (Table 4)	57
Media for ion-exchange separations	50
Ion-exchange cellulose media: physical and chemical properties of Whatman cellulose	
media (Table 5)	58
Ion exchange: anion exchangers on polystyrene (Table 6)	59
Ion exchange: cation exchangers on polystyrene (Table 7)	61
Some commercially available column support materials for ion-exchange HPLC of	
proteins (Table 8)	62
Media for reversed-phase separations	50
List of silica-based reversed-phase column support materials (Table 9)	64
List of non-silica-based reversed-phase column support materials (Table 10)	66 50
Media for affinity chromatography	
Some characteristics of commonly used matrices for affinity chromatography (Table 11)	67
Manufacturers and suppliers of chromatography column support materials	66
References	68
Further reading	68
4. ELECTROPHORESIS OF PROTEINS AND NUCLEIC ACIDS	69
Proteins	69
Separations on denaturing gels	69
Recipe for gel preparation using the SDS-PAGE discontinuous buffer system (Table 1)	70
Separations on non-denaturing gels	69
Putters for non-donsturing discontinuous systems (Table 2)	71

Separations on non-denaturing gels	69
Buffers for non-denaturing discontinuous systems (Table 2)	71
Recipe for gel preparation using non-denaturing continuous buffer systems (Table 3)	72
Separations of proteins by isoelectric focusing	69
Commercially available carrier ampholytes (Figure 1)	72
Recipes for isoelectric focusing gels (Table 4)	73
Two-dimensional gel electrophoresis	71
···· · ···· · ··· · · · · · · · · · ·	

49

Marker proteins	74
Standard marker proteins (Table 5)	74
Staining protein gels	74 77
Staining procedures for proteins separated on polyacrylamide gels (Table 6) Nucleic acids	74
Gels for separating nucleic acids and nucleoproteins	74
Recipes for preparation of polyacrylamide gels for the electrophoresis of nucleic acids	
(Table 7)	78
Recipes of gels used for the electrophoresis of polysomes and ribosomes (Table 8) Running buffers for the electrophoresis of nucleic acids (Table 9)	79 80
Denaturants used in denaturing gels for separating nucleic acids (Table 10)	80
Markers for nucleic acids	74
Molecular weight markers for gel electrophoresis of RNA (Table 11)	81
Sizes of the restriction fragments of pBR322 (Table 12)	82
Sizes of the restriction fragments of phage λ cl <i>ts</i> 857 (Table 13) Staining nucleic acid gels	83 74
Visualization of nucleic acids in gels (Table 14)	84
Methods manuals on electrophoresis	84
5. GENERAL CENTRIFUGATION DATA	85
Calculation of centrifugal force	85
Applications of centrifuge rotors	85
Applications of centrifuge rotors (Table 1) Calculation of <i>k</i> -factors of rotors and pelleting times	85 85
Derating rotors for use with dense solutions	86
Properties of centrifuge tubes and bottles	86
Centrifuge tube and bottle materials (Table 2)	87
Centrifuge tube and bottle care and use (Table 3)	88
Chemical resistance chart (Table 4) Sterilization and disinfection procedures	89 96
Sterilization techniques	96
Biological disinfection	96
Sterilization and disinfection procedures (Table 5)	97
Equations relating the refractive index to the density of solutions	98 98
lonic gradient media (Table 6) Non-ionic gradient media (Table 7)	99
Properties of sucrose solutions	99
Dilution of stock solutions of sucrose (Table 8)	99
6. ENZYMOLOGY	101
Introduction	101 101
Enzyme kinetics Enzyme kinetics of single substrate reactions	101
Components of the Michelis-Menten reaction (Figure 1)	102
Initiation velocity versus substrate concentration (Figure 2)	103
Lineweaver-Burke plot (Figure 3)	105
Hane-Woolf plot (Figure 4) Eadie-Hofstee plot (Figure 5)	105 106
Direct linear plot (Figure 6)	107
Alternative form of the direct linear plot (Figure 7)	108
Sigmoidal kinetics and allosteric enzymes	107
Hill plot (Figure 8)	109 111
Desitive and reactive homotropic cooperativity (Figure 9)	
Positive and negative homotropic cooperativity (Figure 9) Enzyme kinetics of bisubstrate reactions	110
Enzyme kinetics of bisubstrate reactions Types of Bi Bi reaction kinetics (Table 1)	110 112
Enzyme kinetics of bisubstrate reactions Types of Bi Bi reaction kinetics (Table 1) Product inhibition for sequential bisubstrate mechanisms (Table 2)	110 112 115
Enzyme kinetics of bisubstrate reactions Types of Bi Bi reaction kinetics (Table 1) Product inhibition for sequential bisubstrate mechanisms (Table 2) Enzyme inhibitors	110 112 115 115
Enzyme kinetics of bisubstrate reactions Types of Bi Bi reaction kinetics (Table 1) Product inhibition for sequential bisubstrate mechanisms (Table 2) Enzyme inhibitors Reversible inhibition	110 112 115 115 115
Enzyme kinetics of bisubstrate reactions Types of Bi Bi reaction kinetics (Table 1) Product inhibition for sequential bisubstrate mechanisms (Table 2) Enzyme inhibitors	110 112 115 115
Enzyme kinetics of bisubstrate reactions Types of Bi Bi reaction kinetics (Table 1) Product inhibition for sequential bisubstrate mechanisms (Table 2) Enzyme inhibitors Reversible inhibition Types of reversible inhibition (Table 3)	110 112 115 115 115 115 117

Effects of pH on enzymes Amino acid side-chain pK_s values (Table 5)		130 130
Optimal pH of some important enzymes (Table 6) Coenzymes — structure and functions		131 130
Structure and functions of some important coenzymes (Table 7)		130
Enzyme assays		130
Summary of main enzyme assay methods (Table 8)		140
Handling and storage of enzymes and coenzymes References		141
	rences er reading	142 143
7.	HYDROLYTIC ENZYMES	145
Intro	duction	145
	Properties of selected nucleases (Table 1)	146
Inhib	ition of nucleases and proteases	145
	Deoxyribonucleases Selected nuclease inhibitors (Table 2)	145
	Ribonucleases	147 145
	Proteases	147
	Broadly specific or nonspecific proteases (Table 3)	150
	Endoproteases (Table 4)	151
	Aminopeptidases (Table 5)	154
	Carboxypeptidases (Table 6) Inhibitors of proteases (Table 7)	155 156
	Carbohydrases	147
	Carbohydrate-degrading enzymes (Table 8)	161
	rally occurring or physiological inhibitors	147
Refe	rences	164
8.	CHARACTERISTICS OF SELECTED PROTEINS	167
	Properties of apolipoproteins (Table 1)	169
	Structure of an IgG molecule (Figure 1)	179
	Properties of human immunoglobulins (Table 2) Procaryotic and eucaryotic protein synthesis factors (Table 3)	180 186
Refe	rences	190
9.	GLYCOPROTEINS AND PROTEIN GLYCOSYLATION	193
•••		
	duction	193
UCCL	rrrence of glycosylated proteins in nature Range and types of glycosylated proteins	193 193
	Occurrence of proteins in membranes (Figure 1)	194
	Examples of glycosylated proteins in nature (Table 1)	194
	Typical glycosylated proteins in the animal glycocalyx (Table 2)	196
C	Typical structural glycosylated proteins in animal membranes (Table 3)	197
Struc	ctural features of glycosylated proteins Linkage of carbohydrate to proteins	196 196
	Carbohydrate-protein linkages (Table 4)	198
	Linkage and core structures in proteoglycans (Table 5)	199
	Oligosaccharide structures	200
	Linkages between monosaccharides in eucaryotic protein oligosaccharides (Table 6)	200
	Examples of <i>N</i> -linked oligosaccharide structure (Figure 2) Core structures in <i>O</i> -linked oligosaccharides (Table 7)	201 201
	Repeating backbone carbohydrate structures in glycoproteins (Table 8)	201
	Common repeating carbohydrate units in proteoglycans (Table 9)	203
	Peripheral structures in protein-linked oligosaccharides (Table 10)	204
F ~	Post-translational modifications to glycosylated proteins (Table 11)	205 203
Enzy	mic glycosylation — synthesis of sequence Monosaccharide transport, interconversion and activation	203
	Carbohydrate transport systems in animal cell membranes (Table 12)	205
	Metabolic routes in glycoconjugate biochemistry (Figure 3)	206

	Glycosyltransferases	206
	Glycosyltransferases — examples of transfer (Table 13)	207
	Biosynthesis of an oligosaccharide (Figure 4)	209
	Structure of a dolichol-phosphate-linked oligosaccharide (Figure 5)	210
	Biosynthesis of a dolichol-linked oligosaccharide (Figure 6)	211 212
Evar	Processing pathways for N-linked oligosaccharides (Figure 7) Examples of functional roles for protein glycosylation	
	Functions of some glycosylated proteins (Table 14)	211 213
Refe	Prences	214
10	CHEMICAL AND POST-TRANSLATIONAL MODIFICATION OF	
10.	PROTEINS	215
~		
Cher	nical modification of proteins	215
	Reagents for selective chemical modification of proteins (Table 1) The specificity of reagents used to chemically modify proteins (Table 2)	216 221
Enzy	me-catalyzed covalent modification reactions	215
LIZY	Introduction	215
	Methods for identification of modified amino acids (Table 3)	233
	Influence of modification	234
	Characteristics of modification reactions	234
	Recognition sequences and donors for protein modification (Table 4)	235
	Physiological role of the modification	235
	Inhibitors of post-translational modifications (Table 5)	237 238
	Reversibility of reactions Examples of reversible post-translational modifications (Table 6)	230
	Summary	239
Refe	rences	239
11.	NUCLEIC ACIDS AND THEIR COMPONENTS	247
Nucl	eosides and nucleotides	247
	Basic structures	247
	Bases and sugars of nucleic acids (Figure 1)	248
	Unusual bases of nucleic acids (Figure 2)	249
	Base pairing in DNA (Figure 3) Nucleotides as acids	250 247
	Optical density of bases, nucleosides and nucleotides	247
	Physical properties (Table 1)	250
	Nucleotide-derived compounds	247
	Nucleotide-derived compounds (Table 2)	252
	Selected nucleotide analogs	247
	A selection of nucleotide analogs (Table 3) of selected organisms	255 251
DINA	Bacteria (Table 4)	256
	Protozoa, algae, fungi, echinoderms, arthropods and Insecta (Table 5)	257
	Chordata (Table 6)	258
	Animal viruses (Table 7)	260
	Plants (Table 8)	260
The	genetic code	251
A h h	The genetic code (Table 9) reviations of amino acids	261 261
AUUI	Amino acid abbreviations (Table 10)	261
Assa	ivs for nucleic acids	262
	Assays for DNA and RNA (Table 11)	262
Refe	rences	262
12.	LIPIDS	267
	duction	267
Struc	cture and characteristics of acyl lipids	267
	Fatty acids Selected saturated and monoenoic fatty acids (Table 1)	267 268
	Selected naturally occurring polyunsaturated fatty acids (Table 2)	269

Neutral acyl lipids — wax esters, acylglycerols and glycerol ethers	270
Structures of common wax esters and acylglycerols (Table 3)	271
Glycerophospholipids	272
Structure and distribution of membrane glycerophospholipids (Table 4)	273
Glycerophospholipids containing structural variations of phosphatidyl moiety (Table 5)	275
Glyceroglycolipids	275
Structures of major glycosylglycerolipids of higher plants and bacteria (Figure 1)	276
Sphingolipids	277
Sphingolipid structures (Figure 2)	277
Structures of some major gangliosides (Figure 3)	278
Structure and distribution of terpenoid constituents of membranes	278
Sterols	279
Structures of major membrane sterols (Figure 4)	279
Chlorophylls and carotenoids	279
Structures of plant and bacterial chlorophylls (Figure 5)	280
Structures of carotenoids of plants, algae and bacteria (Figure 6)	281
Composition and distribution of lipids in membranes	282
Composition of membrane lipids	282
Fatty acid composition of membrane lipids	282
Rat liver preparations (Table 6)	283
Sphingolipids of rat liver cells (Table 7)	283
Representative higher plants, algae and cyanobacteria (Table 8)	284
Chloroplast lipids (Table 9)	286
Selected fungi (Table 10)	287
Selected bacterial membrane systems (Table 11)	288
Structure and properties of bioactive lipids	288
Eicosanoids	288
Structures of the prostanoids (Figure 7)	289
Pathways of eicosanoid formation (Figure 8)	291
Structures of leukotrienes and hydroxyeicosatetraenoic acids (Figure 9)	292
Biological effects of leukotrienes and HETEs (Table 12)	293
Platelet activating factor	294
Biological effects of PAF (Table 13)	294
Diacytglycerol	294
Steroid hormones	297
Structures of steroid hormones and analogs (Figure 10)	296
Properties of steroid hormone systems (Table 14)	298
Structure and composition of bile acids and bile salts	300
Structure of primary and secondary bile acids and bile salts (Figure 11)	300
Chemical Abstracts Registry Numbers of lipids cited	301
References	301

Introduction	305
Structures and characteristics of monomeric carbohydrates	305
Classification of monosaccharides	305
Classification of monosaccharides (Table 1)	306
Distribution and properties of some monosaccharides	306
Origin and properties of some monosaccharides (Table 2)	307
Stereoisomerism	309
Formation of the hemiacetal forms of p-glucose (Figure 1)	310
Oligosaccharides	310
Classification	310
Classification of simple oligosaccharides (Table 3)	311
Distribution and properties	310
Structures of some common disaccharides (Figure 2)	311
Structures and characteristics of polysaccharides	312
Classification	312
Classes of common polysaccharides (Table 4)	312
Plant polysaccharides	313
Examples of common polysaccharides (Figure 3)	314
Bacterial polysaccharides	313

13. CARBOHYDRATES AND SUGARS

305

Animal polysaccharides DNA, RNA, nucleosides and nucleotides	313 313
Other saccharide derivatives Further reading	315 315
14. SAFETY AND THE DISPOSAL OF TOXIC AND INFECTIOUS	
MATERIALS	317
Protection from chemical hazards	317
Risk and safety classification systems Hazard symbols (Table 1)	317 317
UN Chemical Hazard Classification (Table 2)	318
European Commission Risk and Safety Phrases (Table 3)	319
Disposal of toxic and infectious materials Disposal of toxic materials	322 322
Toxic materials: effects and methods of disposal (Table 4)	323
Disposal of biohazardous materials	329
Pressure-temperature relationships for autoclaves (Table 5) Effectiveness of disinfectants against infectious agents (Table 6)	329 329
References	330
15. SOURCES OF FURTHER BIOCHEMICAL DATA	331
Reference books	331
Reference books Databases	331 331
Reference books	331
Reference books Databases Nucleic acid sequence databases	331 331 342
Reference books Databases Nucleic acid sequence databases Contact addresses	331 331 342 343
Reference books Databases Nucleic acid sequence databases Contact addresses 16. ATOMIC WEIGHTS AND MATHEMATICAL FORMULAE Atomic weights Atomic weights (Table 1)	331 331 342 343 345 345 345
Reference books Databases Nucleic acid sequence databases Contact addresses 16. ATOMIC WEIGHTS AND MATHEMATICAL FORMULAE Atomic weights Atomic weights (Table 1) Mathematical formulae	331 331 342 343 345 345 345 345 347
Reference books Databases Nucleic acid sequence databases Contact addresses 16. ATOMIC WEIGHTS AND MATHEMATICAL FORMULAE Atomic weights Atomic weights (Table 1)	331 331 342 343 345 345 345
Reference books Databases Nucleic acid sequence databases Contact addresses 16. ATOMIC WEIGHTS AND MATHEMATICAL FORMULAE Atomic weights Atomic weights Atomic weights (Table 1) Mathematical formulae Lengths, areas and volumes in some common geometric figures Inter-relations of sides and angles in a plane triangle Trigonometrical data	331 331 342 343 345 345 345 345 347 347 349 350
Reference books Databases Nucleic acid sequence databases Contact addresses 16. ATOMIC WEIGHTS AND MATHEMATICAL FORMULAE Atomic weights Atomic weights Atomic weights (Table 1) Mathematical formulae Lengths, areas and volumes in some common geometric figures Inter-relations of sides and angles in a plane triangle Trigonometrical data Mathematical series	331 331 342 343 345 345 345 345 347 347 349 350 352
Reference books Databases Nucleic acid sequence databases Contact addresses 16. ATOMIC WEIGHTS AND MATHEMATICAL FORMULAE Atomic weights Atomic weights (Table 1) Mathematical formulae Lengths, areas and volumes in some common geometric figures Inter-relations of sides and angles in a plane triangle Trigonometrical data Mathematical series Mathematical constants Standard equations	331 331 342 343 345 345 345 345 345 345 347 349 350 352 353 353
Reference books Databases Nucleic acid sequence databases Contact addresses 16. ATOMIC WEIGHTS AND MATHEMATICAL FORMULAE Atomic weights Atomic weights (Table 1) Mathematical formulae Lengths, areas and volumes in some common geometric figures Inter-relations of sides and angles in a plane triangle Trigonometrical data Mathematical series Mathematical constants	331 331 342 343 345 345 345 345 345 345 347 349 350 352 353

This page intentionally left blank

CONTRIBUTORS

A.S. BALL

Department of Biology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

D. BILLINGTON

School of Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

T.A. BROWN

Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester M60 1QD, UK

J.A.A. CHAMBERS

1487 West 5th Avenue, Apt. 311, Columbus, OH 43212, USA

A.P. CORFIELD

Department of Medicine Laboratories, Bristol Royal Infirmary, Bristol BS2 8HW, UK

R.E. FEENEY

Department of Food Science and Technology, University of California, Davis, CA, USA

J.M. GRAHAM

Merseyside Innovation Centre, 131 Mount Pleasant, Liverpool L3 5TF, UK

B.L. MARTIN

Department of Biochemistry and Biophysics, Iowa State University of Science and Technology, 1210 Molecular Biology Building, Ames, IA 50011, USA

G.E. MEANS

Department of Biochemistry, 484 West 12th Avenue, Ohio State University, Columbus, OH 43210-1292, USA

D. PATEL

Department of Biology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

J. QIU

Beatson CRC Laboratories, Garscube Estate, Bearsden, Glasgow G61 1BD, UK

D. RICKWOOD

Department of Biology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK

T.J. WALTON

Biochemistry Research Group, School of Biological Sciences, University College of Swansea, Singleton Park, Swansea SA2 8PP, UK

ABBREVIATIONS

AA	amino acid
Aces	$N-(2-\arctan)$ acid
ADP	adenosine diphosphate
AMP	adenosine monophosphate
APMSF	amidino-phenylmethylsulfonyl fluoride
APS	adenosine phosphosulfate
Asn	asparagine
ATP	adenosine triphosphate
ATPase	adenosine triphosphatase
Bes	N, N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid
Bicine	N,N-bis(2-hydroxyethyl)glycine
Bis-Tris	bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane
butyl PBD	2-(4'-t-butylphenyl)-5-(4"-biphenylyl)-1,3,4-oxadiazole
cAMP	cyclic adenosine 3',5'-monophosphate
Caps	3-(cyclohexylamino)-1-propanesulfonic acid
CAT	chloramphenicol acetyl transferase
CDP	cytosine diphosphate
Cer-gal	monogalactosylcerebroside
Cer-glu	glucosyl cerebroside
CHĂPS	3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate
CHAPSO	3-[(3-cholamidopropyl)-dimethylammonio]-2-hydroxy-1-propanesulfonate
Ches	2-(cyclohexylamino)-ethanesulfonic acid
CMC	critical micellar concentration
СМР	cytosine monophosphate
CPB	cetylpyridinium bromide
CPI	carboxypeptidase inhibitor
CTAB	cetyltrimethylammonium bromide
CTP	cytosine triphosphate
DABA	diaminobenzoic acid
DAGs	diacylglycerols
DAPI	4,6,diamidino-2-phenylindole
DGDG	digalactosyldiacylglycerol
DHA	docosahexaenoic acid
DHFA	dihydrofolate
DMAPN	3, dimethylaminopropionitrile
DMF	dimethylformamide
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
Dol	dolichol
DOPA	3,4-dihydroxyphenylalanine
DPG	diphosphatidylglycerol (cardiolipin)
DTNB	5,5'-dithiobis (2-nitrobenzoic acid)

DTT	dithiothreitol
$\varepsilon_{\rm max}$	extinction coefficient (molar)
EACA	ε -amino caproic acid
EDTA	ethylenediaminetetraacetic acid
EFA	essential fatty acid
EGF	epidermal growth factor
EGTA	ethyleneglycol-bis(β -aminoethylether) N, N, N', N' -tetraacetic acid
EPA	eicosapentaenoic acid
EtOH	ethanol
FAD	flavin adenine dinucleotide
FMN	flavin mononucleotide
FMPI	N_2 -(N-phosphono-L-phenylalanyl)-L-arginine
Fuc	fructose
GABA	γ-aminobutyric acid
Gal	D-galactose
GalNAc	N-acetyl-D-galactosamine
GDP	guanosine diphosphate
GLA	y-linolenic acid
Glc	D-glucose
GlcN	D-glucosamine
GlcNAc	N-acetyl-D-glucosamine
GlcUA	D-glucuronic acid
GM-CSF	granulocyte-macrophage colony-stimulating factor
GMP	guanosine monophosphate
GPI	glycosyl phosphatidylinositol
GSH	glutathione
GTP	guanosine triphosphate
HDL	high-density lipoprotein
Hepes	4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
Hepps	4-(2-hydroxyethyl)piperazine-1-propanesulfonic acid
HETEs	hydroxyeicosatetraenoic acids
HiPIP	high-potential iron-sulfur protein
HIV	human immunodeficiency virus
HLB	hydrophile-lipophile balance
HMG	high-mobility group proteins
HMG-CoA	hydroxymethylglutarate-CoA
HPLC	high-pressure liquid chromatography
Hyl	hydroxy-L-lysine
ICAMs	intercellular adhesion molecules
IDL	intermediate-density lipoproteins
IdUA	L-iduronic acid
IEF	isoelectric focusing
II I	interleukin
Ins	1D-myo-inositol
λ_{\max}	maximum wavelength
LDL	low-density lipoprotein
LiDS	lithium dodecyl sulfate
	leukotriene 5,6,15-L-trihydroxy 7,9,11,13-eicosateraenoic acid
LXA MAGa	
MAGs Man	monoacylglycerols D-mannose
Man ManNAc	
MannAc	N-acetyl-D-mannosamine

MAP	microtubule-associated protein
MeOH	methanol
Mes	2-morpholinoethanesulfonic acid monohydrate
MGDG	monogalactosyldiacylglycerol
MGP	matrix γ -carboxyl glutamic acid protein
Mops	3-morpholinopropanesulfonic acid
NAD	nicotinamide adenine dinucleotide
NADP	nicotinamide adenine dinucleotide phosphate
NANA	N-acetylneuraminic acid (NeuAc)
NDP	nucleotide diphosphate
NEFA	non-esterified fatty acid
NeuAc	N-acetylneuraminic acid (NANA)
Neu5Gc	N-glycolylneuraminic acid
NHS	N-hydroxysuccinimidyl
Р	phosphate
PA	phosphatidic acid
PAF	platelet activating factor
PAGE	polyacrylamide gel electrophoresis
PAPS	adenosine-3'-phospho-5'-phosphosulfate
PAS	<i>p</i> -aminosalicylic acid
PBD	2-phenyl-5-(4-biphenylyl)-1,3,4-oxadiazole
PC	phosphatidylcholine
PCA	perchloric acid
PCMB	<i>p</i> -chloromercuribenzoate
PCNA	proliferating cell nuclear antigen
PE	phosphatidylethanolamine
PG	phosphatidylglycerol
PGs	prostaglandins
PI	phosphatidylinositol
Pipes	piperazine-1,4-bis(2-ethanesulfonic acid)
PŔC	protein kinase C
PKI	protein kinase inhibitor
PMA	phorbol myristate acetate
PMSF	phenylmethylsulfonylfluoride
POPOP	1,4-di-(2-(5-phenyloxazolyl))-benzene
PPO	2,5-diphenyloxazole
PS	phosphatidylserine
psi	lb/in ²
PtdIns	phosphatidylinositol
PtdIns(4)P	phosphatidyl-myo-inositol 4-phosphate
	phosphatidyl-myo-inositol 4,5-bisphosphate
PUFA	polyunsaturated fatty acid
RNA	ribonucleic acid
SAM	S-adenosylmethionine
SDS	sodium dodecyl sulfate
Ser	L-serine
SLS	sodium lauryl sulfate (SDS)
SM	sphingomyelin
SQDG	sulfoquinovosyldiacylglycerol
SRS-A	slow release substances of anaphylaxis
TAGs	triacylglycerols
Taps	<i>N</i> -[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid
F	······································