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Preface 

The purpose of this book is to present the solution of a range of ri-
gid body mechanics problems using a matrix formulation of vector alg-
ebra. The treatment has other notable features. It employs a coherent 
letter and number suffix notation and also exploits the relationship 
between the orthogonal transformation matrix and angular velocity. 
Particular emphasis is placed upon the positioning of appropriate fr-
ames of reference and specifying their relative position. 

In writing this text it has been assumed that the reader will have a 
knowledge of mathematics and mechanics normally associated with the 
first year of an Engineering Degree course. 

The plan of the book is simple. There are four chapters, Chapter 1 
Kinematics, Chapter 2 Dynamics, Chapter 3 Solution of Kinematics Pro-
blems and Chapter 4 Solution of Dynamics Problems. Chapters 1 and 2 
give a succinct statement of the essential theory formulated in terms 
of matrix algebra, while Chapters 3 and 4 give a selection of solved 
problems and problems for solution. The reader is therefore advised to 
study the problems to which reference is made at various points in the 
text as they occur. A proper approach to the solution of dynamics pr-
oblems demands that kinematic considerations have priority. It is su-
ggested, therefore, that the reader studies Chapters 1 and 3 before 
proceeding the Chapters 2 and 4. Answers to the problems for solution 
are provided, with some indication of the salient features of their 
solution in most cases. 

Coventry 1980 T. Crouch 
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Principal Symbols and Notation 

The following lists give only the principal use of the symbols for 
scalar quantities. A given symbol might be used to denote a variety 
of physical quantities. The interpretation to be given to a symbol 
will be clear from the context in which it is employed. 

Kii 

1 

a, 
r, 

a, 

ω, 

ω, 

I 

2 

nem< atics 

Scalars 

b, 
s, 

S, 

Ω 

Ω 

c, 
t 

Ύ r 

d, 

Θ, 

Vectors 

u, 

♦ l 

v, 

Φ 

w, 
Length, components of vectors 

Angles 

Components of angular velocity 

Components of angular acceleration 

Direction cosine 

With the exception of the lower case Greek letter omega, upper case 
letters written inside braces are used to designate vector quantities 
as follows: 

{R} Position and relative position 

{v} Linear velocity 

{A} Linear acceleration 

{B} Any vector 

{ω} Angular velocity 

{(I)} Angular acceleration 

These general symbols for vector quantities are qualified in two ways 
by appropriate suffixes. Thus 

Κϊι or Ken*! 
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specifies the position of the point A measured in frame 1, where Oj, 
often omitted, is the origin of frame 1, while 

specifies the position of the point B relative to the point A measured 
in frame 4. It so happens the the relative position vector is indep-
endent of the frame in which its is measured, but the number suffix is 
retained for reasons explained in the text. 

Similarly, 

W l l °r iVAO!^ and fV,Q)3 

specify the velocity of the point A relative to Οχ measured in frame 
1 and the velocity of the point P relative to the point Q measured in 
frame 3 respectively. 

Also 

K J l ° r iAAOl} a n d KcJl 
specifiy the acceleration of the point A relative to the point Οχ mea-
sured in frame 1 and the acceleration of the point D relative to the 
point C measured in frame 1 respectively. 

Numbers are also used as suffixes inside the braces to qualify posit-
ion, velocity and acceleration. Thus 

{R^i , {V^i and {A^h 

specify the position, velocity and acceleration respectively of the 
centre of mass of body 4 measured in frame 1. 

The angular velocity vector is qualified by number suffixes. Thus 

{033)2 o r ί ω 3 2 } 

specify the angular velocity of body 3 measured with respect to body 
2 or the angular velocity of body 3 relative to body 2. A similar not-
ation is used for angular acceleration. The angular velocity and acc-
eleration vectors can be further qualified by lower case superscript 
letters inside the braces. Thus 

{ ω2}1 and { ω 2 ) 1 

specify, respectively, the components of the angular velocity vector 
normal to and parallel to to some line joining points(specified in a 
particular context) fixed in body 2. Similarly, 

K A } I and KAJI 

specify, respectively, the components of the linear acceleration of B 
relative to A normal to and parallel to the line joining B and A. 

The usual modulus notation is employed to indicate the magnitude of a 
vector. Thus 
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Principal Symbols and Notation 

Ii and [ω2Ii °x I ω21 I 

are magnitudes of the corresponding vectors. In the case of the rela-
tive position vector, which is independent of the frame used for its 
measurement the number suffix is omitted. Thus the magnitude of 

KAJI = KAK = K A L 
i s w r i t t e n 

Ι Λ Α Ι · 

A vector can be described by resolving it along the axes of a partic-
ular reference frame, when it is said to be referred to that frame. 
The frame to which a vector is referred is written outside the braces 
after the first number suffix and separated from it by a solidus or 
oblique stroke.Thus 

KAJI/3 

us 

w3 

is the column matrix which describes the velocity of B relative to A, 
measured in frame 1, in frame 3. 

3 The transformation or rotation matrix 

The transformation matrix is a 3x3 orthogonal matrix of direction co-
sines written 

[ a ] . 

It is used to change the frame to which a vector is referred. If, for 
example, a vector {B}n is referred to frame 1, then the transformation 
matrix which changes the reference frame to frame 2 is 

[ * l ] 2 

Thus 
{ B } n / 2 = U i l 2 { B } n / 1 

The transformation matrix can be regarded as the matrix which specif-
ies a rotation, or sequence of rotations, which a frame undergoes to 
align it with another. If, for example, frame 1 is to be aligned with 
frame 2, then the rotation matrix would be written 

[ 12 h · 

If this alignment is achieved by a sequence of simple rotations about 
a single axis of appropriately positioned intermediate frames 3 and 4, 
then this operation would be specified by the product of rotation 
matrices 

[ l2 h = I *3 li[ Zk ]3[ £2 ]k . 
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Dynamics 

1 Scalars 

A, B, C, D, E, 
F, I , J

 Terms in the i n e r t i a matr ix 

k
 Spring r a t e , constant 

m
 Mass 

T
 Kinetic energy 

V
 Potential energy 

g
 Magnitude of gravitational acceleration 

W
 Work 

The general symbols can be qualified by appropriate suffixes. 

1 can take the suffixes xx, xy, xz etc. to denote the axes involved. 
A, B, C etc. can take number suffixes to denote the reference frame. 

m can take a suffix P to indicate that it refers to a particle, or a 
number suffix to indicate the body to which it refers. 

T can take a suffix P to indicate that it refers to a particle, or a 
number suffix to indicate the body to which it refers. It can be fur-
ther qualified to indicate that the energy is evaluated at some part-
icular position. Thus, for example 

is the rotational kinetic energy in body 4 when in some position def-
ined by the angle a. V can be qualified in a similar manner. 

W can take suffix statements such as A+B->C to specify the path tr-
aced out by the point of application of the force involved. 

2 Vectors 

Upper case letters written inside braces are used to designate vector 
quantities as follows: 

{F} Force 

{G} Linear momentum 

{H} Angular momentum (Angular momentum) 

{L} Couple moment 

{M} Force moment 

{w} Weight 

{v} Vector operator del 

The general symbols for vector quantities are qualified in two ways by 
appropriate suffixes and also by superscripts. 

In the case of the force vector, number suffixes inside the braces are 
used to specify a contact force between two bodies. As, for example, 
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{F23} 

which is the force on body 2 due to body 3. Similarly, 

{L23} 

is the couple on body 2 due to body 3. Also 

{F2} 

is the external force on body 2. It might be, for example, 

{F2} = {F23} + {F21+} + {F25} + 

where 3, 4 and 5 are bodies which exert a force on body 2. A similar 
notation can be used in respect of couples. Components of{F} and {L} 
can be singled out by writing an appropriate superscript inside the 
braces, as for example, 

{Fx} and {Ly} 

o r 

{Fn} and {Lp} 

where the superscripts n and p refer to components parallel to some 
reference direction. 

A number suffix is used outside the braces to specify the frame to wh-
ich the vector is referred. Thus 

{F34}3 

is the column matrix which describes the force on body 3 due to body 
4 which is referred to frame 3. The {L} can be similarly subscripted. 

In the case of linear momentum a number suffix inside the braces spe-
cifies the body concerned and the first number suffix outside the br-
aces specifies the frame in which the momentum is measured. This frame 
will invariably be an inertial reference frame which, in this text, is 
always designated 1. It is always included by way of emphasis. The se-
cond number suffix outside the braces, written after a solidus, spec-
ifies the frame to which the vector is referred. Thus 

{£3}ιΛ 

is the column matrix which describes the linear momentum of body 3, 
measured with respect to frame 1, the vector being referred to frame 4. 

In the case of angular momentum of a body about its centre of mass, a 
number suffix inside the braces specifies the body concerned and the 
number suffixes outside the braces have the same significance as in 
the case of linear momentum. Thus 

{Η3}ΐΛ 

is the column matrix which describes the angular momentum of body 3 
about its centre of mass, measured with respect to frame 1, the vec-
tor being referred to frame 4. If the angular momentum about a point 
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other than the cen t re of mass i s to be spec i f i ed , point Q say, then 
t h i s i s wr i t t en 

{H3oliA · 

In the case of the moment vector, a single letter suffix is used to 
specify the point about which moments are taken and a single number 
suffix outside the braces specifies the frame to which both force and 
position vectors are referred. Thus 

{MA}3 

is the column matrix which describes the moment of a force, or system 
of forces and couples about A, the vector being referred to frame 3. 

In the case of the weight vector, a number suffix specifies the body 
to which it refers and a single number suffix outside the braces sp-
ecifies the frame to which the vector is referred. Hence 

{w4}2 

is the column matrix which describes the weight of body 4, the vector 
being referred to frame 2. 

3 The inertia matrix 

The inertia matrix is a 3x3 symmetric matrix written 

I I] 

Number suffixes are used in the same way as for vectors. Thus 

[I3]3/3 

describes the inertia of body 3, measured with respect to frame 3 and 
referred to frame 3. Unless expressly stated otherwise, the centre of 
of mass of body 3 will be at the origin of frame 3. Similarly, 

describes the inertia of body 3, measured with respect to frame 4 and 
referred to frame 5. 


