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2 , 3 
a - specific surface of packing, m /m 

2 

a - mass transfer area in unit volume of equipment, m /m 
b - mass fraction, dimensionless 

3 C - molar concentration, kmol/m 
c - heat capacity at constant pressure, J/(kg K) 

C - molar heat capacity at constant pressure, J/(kmol K) 

CF - capacity factor, m/s 
d - diameter, m 

Ρ 

p 

2 
D - multicomponent diffusion coefficient, m /s 

2 
Λ - binary diffusion coefficient, m /s 

D - generalized Stefan-Maxwell diffusion coefficient, m /s 
2 

D D - dispersion coefficient, m /s 

D - binary thermal diffusion coefficient, m /s 
Ε - enhancement factor, dimensionless 
Ε - enhancement factor for instantaneous reaction, dimensionless 

00 

Ε - point efficiency, dimensionless 
Ε - overall plate efficiency, dimensionless 
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Ε - Murphree plate efficiency, dimensionless 
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FP - flow parameter, dimensionless 

g - mass rate of gas, kg/s 2 

g - acceleration of gravity, m/s 
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Subscripts 

A, Β, C - components in multicomponent systems 
av - average 
c - at critical point 
d - dynamic quantity 
G - gas phase 
i, j , k, 1 - components in multicomponent system 
ij - pair i-j in multicomponent system 
in - inert 

w - superficial molar fluid velocity, kmol/(m s) 
X - rectangular coordinate, m 
X . 
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- mole fraction of component i in liquid phase, dimensionless 

y - rectangular coordinate, m 
- mole fraction of component i in the gas phase, dimensionless 

Ζ - rectangular coordinate, m 
Ζ - height of the equipment, m 

a 
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- heat transfer coefficient, W/(m K) 

oc 
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- gas hold-up, m Im 
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- liquid hold-up, m Im 
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- solid volumetric fraction, m Im 
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Chapter 1 

INTRODUCTION 

Since the foundation of modern industry until the present time, 
absorption of gases in liquids has been of interest to 
practitioners and theoreticians of chemical and process 
engineering. This reflects the fact that it is one of the basic 
operations in many technological processes. The fertilizer industry 
provides a good example of the role of absorption processes. 
Absorption is also very important in gas and crude oil processing. 
Many intermediate and final products in the manufacture of organic 
chemicals are obtained as a result of the absorption of gases with 
their simultaneous reaction in the liquid phase. Recently, 
environmental protection has emerged as a significant problem. One 
of the basic operations of use in the solution of these problems is 
absorption. 

The theory of absorption initially concentrated on kinetics and 
the design of absorbers for the case of physical absorption of one 
component in a liquid. Theoretical and experimental studies were 
also carried out on absorption accompanied by a simple chemical 
reaction. The culmination of these studies was the classical 
monograph by Sherwood and Pigford, "Absorption and Extraction", the 
second edition of which was published in 1952. 

In the 1960s studies on absorption accompanied by a chemical 
reaction developed. Of particular importance were the 
investigations carried out by Astarita and Danckwerts. The results 
of many of these studies found practical applications. Until now 
these studies have represented one of the most quickly developing 
branches of chemical engineering. Another branch is multicomponent 
absorption, with special reference to multicomponent diffusion, 
which was initiated by Standard and Krishna in the 1970s. The 
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results of these studies have applications in the calculation of 
absorbers and chemical reactors. 

The aim of this book is to present the modern theory of 
calculation of absorbers for binary and multicomponent physical 
absorption and absorption with simultaneous chemical reaction. The 
book consists of two parts: the theory of absorption and the 
calculation of absorbers. Part I covers basic knowledge on 
diffusion and the theory of mass transfer in binary and 
multicomponent systems. Significant stress is laid on diffusion 
theory because this forms the basis for the absorption process. In 
the next chapters the fundamentals of simultaneous mass transfer 
and chemical reaction, the theory of the desorption of gases from 
liquids and the formulation of differential mass balances are 
discussed. In fact, all of the material in part I concerns mass 
transfer in the cross section of an absorber. 

At the beginning of part II, which is devoted to the calculation 
of absorbers, the classification of absorbers and the basis for 
their calculation is discussed. The next chapters present 
calculation methods for the basic types of absorber with a detailed 
analysis of the calculation methods for packed, plate and bubble 
columns. 

This book is a revised version of the monograph which we wrote 
in 1985 and published in Poland in 1987. However, the present 
version differs significantly from the previous one and more than 
70% of the material is revised or new. The description of 
multicomponent diffusion is limited and diffusion in electrolytes 
is omitted; no other types of absorber except for those mentioned 
above are considered. The material on simultaneous absorption with 
a chemical reaction and calculation methods for three main types of 
absorber has been extended. There is one further difference. In the 
Polish version binary systems were treated as special cases of 
multicomponent systems, while in this book some basic information 
on binary systems is given, and then multicomponent systems are 
discussed. This approach makes some repetition unavoidable; this 
approach was dictated by teaching aims. The reader is provided with 
knowledge on the nature of phenomena which can be easily explained 
on the basis (by example) of binary systems, and only in the next 
stage are mass transfer processes in multicomponent systems 
discussed. The latter description is more formalized. 

We have attempted to illustrate the presented material with a 
large number of examples, starting with simple ones for binary 
systems and ending with column calculation for multicomponent 
systems. This sometimes required applications of quite complex 
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numerical techniques. In Chapter 14 the main methods of calculation 
are discussed. 

Readers may be interested to know that, to complement the book, 
a suite of programs is available from the authors for numerical 
solution of the quoted calculation problems and for simulation of 
the processes described in the examples for different operating 
conditions. In addition, the software includes numerical procedures 
which can be used by readers in writing programs for physical or 
chemical absorption of binary or multicomponent mixtures. The 
programs and numerical procedures are written in Turbo Pascal. 
Calculation problems are described very thoroughly so that using 
the presented numerical procedures readers can write their own 
programs to solve problems similar to the examples quoted in the book. 

The amount of monographs, review papers and other publications 
on the process of absorption is enormous. Therefore we decided to 
quote them very economically. 

Acknowledgements 
The authors wish to thank Miss Joanna Janczyk for preparing the 

English version of the book. 
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Chapter 2 

GAS-LIQUID EQUILIBRIA 

The thermodynamics of gas (vapour)-liquid equilibria has been 
discussed in numerous studies and monographs [1-5], which are often 
more extensive than the present book. This chapter, 
therefore, should be treated as an introduction to the general 
description of absorption processes. More details on gas-liquid 
equilibria thermodynamics can be found in the books by Walas [1], 
Prausnitz [2, 3] and others [4, 5]. 

Before discussing the equilibrium problems, various methods for 
the determination of liquid composition will be presented briefly. 

2 .1 . EXPRESSIONS OF CONCENTRATIONS AND PROPERTIES 
OF FLUIDS 

There are two main ways of expressing the amount of mass which 
forms a determined volume of fluid. 

In the first method the mass of particular components of the 
fluid is taken into account using the notion of mass concentration 
ρ,, which expresses the mass of the i-th component per unit volume 

of solution. The sum of all mass concentrations is called the mass 
density of the solution. 

η 

Ρ = Σ P. (2-1) 
i = l 

The second method corresponds to the number (frequency) of 
molecules of specific components of the solution. It involves the 



OAS-LIQUID EQUILIBRIA 5 

c = i , c > 
The relation between mass 

concentrations is given by the equation 

P . = M C (i = l , . . . ,n) 

(2-2) 

concentrations and molar 

(2-3) 

where M. is the molecular weight of the i-th component. 

The concentration of a particular component in a multicomponent 
solution is determined by its fraction. The fraction of a component 
is the ratio of the amount of the component to the total amount of 
the solution. Depending on the method of determination of this 
ratio, various fractions are obtained. 

The mass fraction b is the ratio of the mass of the i-th 

notion of molar concentration of component C . , defined as the 

number of kilomoles of the i-th component contained in the unit 
volume of fluid. The sum of all molar concentrations of components 
is called the molar density of the solution. 

component to the mass of all components present in a given volume. 
Thus, it can be defined by means of densities. 

(2-4) 

Similarly, the mole fraction x. is the ratio of the number of 

kilomoles of the i-th component to the number of kilomoles of all 
components in the solution, that is it can be defined by means of 
molar densities. 

(2-5) 

In particular, in the case of gaseous mixtures which obey 
Dalton's law, whose components conform to the ideal gas law, the 
ratio of molar densities in equation (2-5) can be replaced by the 
ratio of the corresponding pressures. Hence, 

(2-6) 
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where Ρ denotes the pressure of component i, which would be 

exerted if it had occupied the whole volume of the solution, and Ρ 
is the static pressure of the fluid. 

From equations (2-1) and (2-2) and the definitions of fractions 
the following properties of the fractions follow 

Σ b . = î i j - 1 (2-7) 
i = 1 i = 1 

From equations (2-1), (2-3) and (2-5) we have the relation 
between mass density of the solution ρ and its molar density C 

ρ = M C (2-8) 

where 
η 

M = Σ χ . M . (2-9) 
i = 1 

is the mean molecular weight. 
There is an explicit interrelationship between mass and mole 

fractions 

1 

χ M 
i b . ^ - i - (i = l , . . . ,n) (2-10) 

b . / M . 
x. = — • (i = l , . . . ,n) (2-11) 

ι η 

Σ b . / M . 
i = l 1 1 

Usually, the symbol y. is used to denote mole fractions of 

components in the gas phase and x. in the liquid phase. 

In systems with inert gas components and nonvolatile solvents it 
is convenient to use mole ratios instead of mole fractions χ and 

i 
y . . These ratios express the number of kilomoles of a particular 

component i refered to one kilomole of inert or nonvolatile solvent 
component. The symbol Y is used to denote mole ratio in the gas 

phase, X. in the liquid phase. 

Sometimes molality is used for aqueous solutions. Molality m. 
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denotes the number of kilomoles of component i per kilogram of 
water. 

When considering multicomponent solutions, besides the concept 
of such quantities as mass concentration or molar concentration of 
a component, the concept of partial quantities is used. 

Partial specific quantities ζ . concerning particular components 

i are defined by means of the partial derivative of a given 
extensive value with respect to the mass of the i-th component at a 
constant amount of other components, constant pressure and 
temperature. Quantities specific to the fluid are calculated from 
partial quantities using the formula 

η 

ζ = Σ b . z . (2-12) 
i - i 1 1 

The molar values for the whole fluid are calculated from partial 
molar quantities according to the formula 

η 

Ζ = V χ Ζ (2-13) 
1 1 

1 = 1 

2.2· MODEL OF THE INTERFACIAL REGION 

Absorption is a diffusional operation in which some components 
of the gas phase are absorbed by the liquid. Before discussing the 
law governing mass transfer, it is useful to consider interfacial 
equilibria, and first of all a model of the interfacial region. 

The region separating two fluid phases is called the interfacial 
region. (It should not however be confused with hydrodynamic films 
in transfer theories.) Physically, each phase is not a continuous 
medium and, therefore, the phase boundary is not a surface in the 
geometrical sense. In fact, the interfacial region is a thin layer 
of thickness equal to at least several molecular diameters. Unlike 
the main bulk of the liquid, this region often reveals 
non-Newtonian Theological properties, due to which it can influence 
the behaviour of a two-phase system as a whole. 

There are several simplified models of the interfacial region: 
surface discontinuity, singular surface, stratum zone and others. 
For the calculation of mass transfer in which the change of the 
transfer mechanism due to surface tension effects (e.g. Marangoni's 
phenomena) can be neglected, the simplest model, the so-called 
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model of surface discontinuity, appears to be satisfactory (Fig. 
2-1). In this model the interfacial region is replaced by a 
hypothetical surface, called the interface, which has no physical 
properties (e.g. it has no surface tension). This surface cannot 
accumulate mass, energy and momentum in any form, and consequently 
the continuity conditions for mass and energy (eventually momentum) 

* 

Gas 

Fig. 2-1. Model of interface 

fluxes are satisfied on it. The indeterminancy of the system 
properties at the interface causes their step-wise changes in 
transition from one phase to another. In the case of components 
present in both phases of a gas-liquid system, the discontinuous 
change of their concentrations is determined by the conditions of 
absorption equilibrium. 

2.3. THERMODYNAMICS OF GAS-LIQUID EQUILIBRIA 

For multicomponent mixtures consisting of η components at a 
temperature Τ and pressure P, the gas-liquid equilibrium is known 
if the quantitative relationship between the gas and liquid 
composition is strictly determined. The existence of an equilibrium 
in this system can be written using the formulae 

(2-14) 

(2-15) 

(2-16) 

where f.Q is the fugacity of component i in the gas phase and f 

is the fugacity of component i in the liquid phase. 
The condition necessary for equilibrium in a gas-liquid 
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f = φ y Ρ 
iG i G

7
i 

(i = l , . . . ,n) (2-17) 

The fugacity coefficient φ, depends on temperature, pressure and 
iG 

gas composition. For gases obeying the ideal gas law, the fugacity 
coefficient is equal to 1, 

φ - 1 
iG 

(i = l , .- . ,n) (2-18) 

For nonpolar mixtures it may usually be assumed that for pressures 

not exceeding 2 x l 0 6 Pa the fugacity coefficient is close to unity. 
In general, the fugacity coefficient is connected to the volumetric 
properties of a gas by the following relation 

00 

in * i Q = 
RT 

ap Ί 
de I 

- RT 
i ' T , V , c . # c . 

o' j 

ο 

d
V

 l n CRT 

(i = l , . - , n ) 

Similarly, for the liquid phase the following equation holds. 

where V Q is the volume of the gas phase 

f., - f . x . P 
i L iL ι 

(i = l , . . . ,n) 

(2-19) 

(2-20) 

The relation describing the liquid fugacity coefficient φ^ is the 

same as equation (2-19), the only change being substitution of 
subscript G by L. 

multicomponent system is that temperatures and pressures, as well 
as the fugacities of particular components, be equal in the two 
phases. 

Equations (2-14) to (2-16) describe the equilibrium not only in 
a gas-liquid system but also in vapour-liquid system. The 
absorption equilibrium (the gas-liquid system) occurs when the 
critical temperature of at least one component of the 
multicomponent mixture is lower than the temperature of the system. 
Otherwise, a distillation equilibrium exist. 

The fugacity of component i in a gas mixture depends on the gas 
composition, temperature and pressure. To make the fugacity 
dependent on the mixture composition the fugacity coefficient is 
introduced. For the gas phase the following relation holds 
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To use equation (2-19) to calculate the fugacity coefficient it 
is necessary to know the equation of state for a given phase. Every 
book on thermodynamics gives many such equations; they will 
therefore not be quoted here. 

In the case of the liquid phase, besides equation (2-20) there 
is another method of describing the fugacity of an individual 
component f using the concept of an activity coefficient and the 

fugacity of component i in some standard state. It is assumed in 
the literature that calculations for nonpolar systems is different 
from that for electrolytes and systems undergoing chemical 
reaction. Below, we shall discuss a method for nonpolar systems. 

The fugacity of component i in the liquid phase is given by the 
relation 

f = y.x.f* (i = l , . . . ,n) (2-21) 
iL ι ι iL 

where y. is the activity coefficient of component i in the mixture 

and f° is the fugacity of component i in some standard state. 

i L Usually the standard state is taken as a pure liquid component i at 
the same temperature. 

f° T = f° (i = l , . . . ,n) (2-22) 

i L L 

It should be kept in mind that the product y .x . is equal to the 

activity of component i in the mixture. 

a. = y .x . (i = Ι, . , . ,η) (2-23) 

1 1 1 

The fugacity of a pure liquid component i at temperature Τ and 
pressure Ρ is equal to 

(2-24) 

where Ρ is the vapour pressure of component i at temperature T, 

φ is the fugacity coefficient of pure component i and V is the 
Li Li 

molar volume of pure component i. 
The fugacity coefficient φ depends on temperature and pressure. 

Li 

However, for a nonassociated liquid it is close to unity. The 
exponential term in the last equation is called the Poynting 
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factor. Only for very high pressures, when the compressibility of a 
liquid should be taken into account, does the Poynting factor 
differ significantly from unity. In most cases of absorption it can 
be neglected and assumed to equal 1. 

Substituting equations (2-24), (2-22) into (2-21) we have 

Pr V 

f i L - y i X i P i V X P J ~ R T DP (I
 -

 1
- -

N ) ( 2
-

2 5
> 

Ρ 
1 

In such an approach the burden of the calculation lies with 
calculation of activity coefficients y . . There are many equations 

which allow us to determine this value, the most important ones 
being the Wilson, NRTL and UNIQUAC equations, and many others. As 
with the equation of state, they will not be discussed here and the 
reader may find them in the literature quoted. 

Upon substitution of equation (2-17) and (2-25) into equation 
(2-16) the most general equation describing the gas-liquid 
equilibrium is obtained. 

f P . y . P ν 
y .P = ^ 1 x.exp J dP (i = l , . . . ,n) (2-26) 

io 1 ρ 
i 

This equation may be simplified in many ways. As mentioned 

earlier, for pressures below 2 χ 10 6 Pa the Poynting factor is close 
to unity. Also under these conditions it can be assumed that the 
gas phase behaves like an ideal gas. So equation (2-26) simplifies 
to the form 

y .P = P . y . x . (i = Ι , . , . ,η) (2-27) 
1 1 1 1 

or 
p . = P . y . x . (i = l , . . . ,n) (2-28) 

1 1 1 1 

The latter relation is often written as follows 

p . = He .x . (i = Ι , . , . ,η) (2-29) 
1 1 1 

where He. is the Henry constant equal to 

He. = P.y. (i = l , . . . ,n) (2-30) 
1 1 1 
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Component Temperature, Κ 

273 . . 15 288 , .15 303 , . 15 318.15 

Η 
2 

58. 6 66. 9 73. 8 76.9 

Ν 
2 

53 . 6 74. 8 93. 6 110.5 

CO 35 . 6 49 .6 62 .8 73.8 

CO 
2 

0 . 74 1 .24 1 .87 2 . 60 

H S 
2 

0 . 27 0 .43 0 .62 0.82 

CH 
4 

22 .7 34 . 1 45 .5 55.7 

C H 
2 6 

12 . 7 22 .9 34 .7 46.9 

In general, for moderate temperatures, gas solubilities decrease 
with an increase in temperature. Only in the region of the critical 
solvent temperature does the solubility increase. This is 
illustrated in Figure 2-2. 

Besides Henry's law in the form of equation (2-29), other forms 
are encountered in the literature. For instance, 

Equation (2-29) shows that the higher the Henry constant, the lower 
the solubility of the gas in the liquid. 

If the liquid phase is also an ideal solution, equation (2-27) 
is reduced to Raoult's law 

y .P = P .x . (i = l , . . . ,n) (2-31) 
1 1 1 

Usually, in absorption systems the nonideality of the liquid phase 
cannot be neglected and the basic relationship describing the 
absorption equilibrium is equation (2-29). The Henry constant is a 
function of temperature. Table 2-1 presents the dependence of the 
Henry constant on temperature for several gases soluble in water. 

g 
Table 2-1. Henry constant for a few gases (gas-water systems), [He. X 10 Pa] 

(2-32) 

(2-33) 

(2-34) 

Hence, attention should always be paid to the form of this law so 
as to avoid mistakes in calculations. There are simple converters 
of one Henry constant to another. 
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50 100 150 200 250 

Τ (°C) 

Fig. 2-2. Henry*s constant for H^S and CO^ in water vs. temperature 

Two more problems should be mentioned 
- the solubility of gases in a mixture of two different solvents 
- the solubility of gases in an electrolyte solution. 
In the case of a mixture of η solvents it may be assumed as a crude 
rule that the Henry constant for component A is given by the 
equation 

Equilibria in electrolyte solutions are called ionic equilibria. 
General properties and laws of phase equilibria presented for 
nonpolar systems also hold in the case of equilibria in which ions 
are present [6, 7, 8]. The specificity of ionic equilibria is 
connected mainly with the thermodynamic interpretation of the 
activity of electrolyte ions in the solution. As a result, slightly 
different equations describing the activity coefficient in 
electrolyte solutions from those determining this coefficient in 
nonpolar solutions are obtained. Electrolyte solutions are normally 
classified as "weak electrolytes" and "strong electrolytes". Gas 
molecules on their passage to the liquid solution react chemically 
with solution molecules and as a result ions are formed. Such a 
chemical reaction is called dissociation. Dissociation may only be 
partial (as a result "weak electrolytes" are formed) or total (when 
"strong electrolytes" are produced). The "weak electrolytes" are 
normally gases such as NH , CO , SO or H S dissolved in various, 

η 
In Η 

Λ , m i x 
(2-35) 
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usually aqueous, solvents. An example of a strong electrolyte is 
hydrogen chloride dissolved in water (hydrochloric acid). For weak 
electrolytes the phase equilibrium equations must be completed with 
additional relationships which cover mass balance of the weak 
electrolyte in the liquid phase, a dissociation equilibrium 
equation and the electroneutrality principle of the solution. In 
the description of phase equilibrium in electrolyte solutions by 
Henry's law, the Henry constant can be determined on the basis of 
the equations presented by van Krevelen and Hoftijzer [9], The 
following relations hold here 

He. 
1ο*ιο " W ^ - h I <2-36> 

i 
where I is the ionic strength calculated from the formula 

He. is the Henry constant of gas in the electrolyte solution, 

He. is the Henry constant of gas in water, 

C. is the concentration of ions of valency z. 

and 

where h + , h and h Q are the contributions of positive and negative 

ions present and the gas. The values of h can be found in various 
publications [10, 11]. 

Example 2-A. On the basis of the phase equilibrium equations and 
relations following from the theory of weak electrolytes, Edwards 
et al. [12, 13] described analytically the liquid-gas equilibrium 
for solutions containing one or more volatile electrolytes: 
ammonia, carbon dioxide, hydrogen sulfide, sulfur dioxide, and 
hydrogen cyanide. Using the equilibrium equations given by these 
authors, calculate the pressures of ammonia (1), and water vapour 
(2) in the gas phase over a solution of ammonia. The system is 

under a pressure Ρ = 1.013 χ 10 5 Pa at temperature Τ = 293.15 Κ, 
313.15 Κ, 323.15 Κ. The composition of the liquid phase is such 

(2-37)

(2-38)


