Advances in Optical and Electron Microscopy Volume 12

Advances in

OPTICAL and ELECTRON MICROSCOPY

This page intentionally left blank

Advances in OPTICAL and ELECTRON MICROSCOPY

Volume 12

Edited by

T. MULVEY Aston University, Birmingham, UK

AND

C. J. R. SHEPPARD

The University of Sydney, Sydney, Australia

ACADEMIC PRESS Harcourt Brace Jovanovich, Publishers London · San Diego · New York · Boston Sydney · Tokyo · Toronto

ACADEMIC PRESS LIMITED 24/28 Oval Road, LONDON NW1 7DX

U.S. Edition Published by

ACADEMIC PRESS INC. San Diego, CA 92101

Copyright © 1991 by ACADEMIC PRESS LIMITED

This book is printed on acid-free paper

All Rights Reserved

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system without permission in writing from the publisher

British Library Cataloguing in Publication Data

Advances in optical and electron microscopy. --Vol. 12 1. Microscopy 502.8 ISBN 0-12-029912-7 ISSN 0065-3012

Typeset by P&R Typesetters Ltd, Salisbury, Wilts Printed by Galliard (Printers) Ltd, Great Yarmouth, Norfolk

Contributors

- L. DUBBELDAM, Faculty of Applied Physics, Delft University of Technology, P.O. Box 5046, NL-2600 GA Delft, The Netherlands. (Present address: Space Research Organization of the Netherlands, Niels Bohrweg 2, P.O. Box 9504, 2300 RA Leiden, The Netherlands.)
- J. HARTIKAINEN, Department of Physics, University of Helsinki, Siltavuorenpenger 20 D, SF-00170 Helsinki, Finland.
- J. JAARINEN, Department of Physics, University of Helsinki, Siltavuorenpenger 20 D, SF-00170 Helsinki, Finland.
- P. KRUIT, Department of Applied Physics, Delft University of Technology, Lorentzweg 1, NL-2628 CJ Delft, The Netherlands.
- H. LICHTE, Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 12, D-7400 Tübingen, Federal Republic of Germany.
- M. LUUKKALA, Department of Physics, University of Helsinki, Siltavuorenpenger 20 D, SF-00170 Helsinki, Finland.
- G. MÖLLENSTEDT, Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 12, D-7400 Tübingen, Federal Republic of Germany.
- D. W. POHL, IBM Research Division, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.

This page intentionally left blank

Preface

Progress and innovation in optical and electron microscopy at a fundamental level still manage to surprise even experts in the field. The present volume, for example, records a world first: the complete realization, at the University of Tübingen, of Gabor's original concept, announced just over 40 years ago, of correcting the spherical aberration of an electron microscope by means of electron beam holography and thereby achieving atomic resolution, in which both the phase and the amplitude of the wave scattered by the specimen are faithfully reproduced in the image. This is indeed a milestone in the development of the microscope and the interpretation of its image. Möllenstedt's seminal contribution to this method, his invention of the electron Fresnel biprism, is set out in an accompanying paper.

Progress in scanning electron microscopy is also reported. Recently, the ability to extract and display information contained in the secondary electron emission from the specimen in an SEM or STEM has also improved. This has been greatly helped by the possibility of using a "moving axis" probe-forming lens, by means of which the effective axis of the lens may be deflected laterally by suitably placed deflecting coils; this reduces or eliminates the usual off-axis aberrations. The underlying theory and some applications are set out in the review by P. Kruit; this is complemented by L. Dubbeldam's review in which a new method for non-contact voltage measurement of integrated circuits in the SEM is highlighted. Many people believe that the light microscope is inherently limited in resolution to about a quarter of a wavelength of light. One of the most fruitful recent developments is the scanning near-field optical microscope (SNOM) in which a specimen is raster scanned in the near vicinity—within 20 nm or so—of a point source. Such a microscope, capable of a resolution of 20-50 nm is described by D. W. Pohl. The SNOM could prove very useful in connection with the development of nano-engineering structures that are now being investigated in many countries.

Finally, J. Hartikainen and colleagues address the question of nondestructive testing by thermal wave microscopy. In this technique a modulated heating produced using laser illumination results in temperature variations which propagate through the specimen as thermal waves, thus giving spatial information concerning its thermal and acoustic properties. This is one of several modern techniques of microscopy, neither optical nor electron, which can greatly increase our understanding of a specimen's structure.

PREFACE

New forms of microscopy, or the practical realization of older forms that were not technologically feasible in the past, are a feature of the present era; the editors are committed to a policy of including reviews in this area.

> T. Mulvey C. J. R. Sheppard

Contents

Contributors	•					v
Preface	•					vii

The Invention of the Electron Fresnel Interference Biprism

G. MÖLLENSTEDT

I.	Childhood years in Bielefeld	1
II.	Gaining technical know-how as a student apprentice	2
III.	A broad education in physics with Professor Walter Kossel	2
IV.	Influence of the work of Kikuchi and convergent beam diffraction	3
V.	Electron-optical experiments with Brüche, Scherzer and Mahl .	5
VI.	Quantitative testing of the operation of the biprism	12
VII.	Measurement of the inner potential of solids	19
VIII.	Electron interference microscope in the transmission mode	21
IX.	The intensity problem in electron interferometers	21
Χ.	Atomic resolution electron holography	21

Electron Image Plane Off-axis Holography of Atomic Structures

HANNES LICHTE

I.	Introduction					25
II.	Principles of off-axis image plane electron hologr	aphy				33
	A. Taking the electron hologram	•				34
	B. Reconstruction of the electron image wave					35
III.	Performance of image plane electron holography					41
	A. Effect of restricted coherence					42
	B. Quantum noise					47
	C. Information transfer capacity					47
	D. Lateral resolution and field of view					49
	E. Artefacts in the recorded wave					52
	F. Problems of recording an electron hologram					54
IV.	Influence of the lens aberrations in the high-resol	utior	ı dor	nain		60
	A. Coherent aberrations					61
	B. Incoherent aberrations					67
V.	Reconstruction of the image wave and correction	ofa	berra	tions		69

CONTENTS

VI.	Experimental rea	lizati	ion c	of hol	ograp	ohy o	f ator	nic st	ructu	res		71
	A. Experimental	set-u	ıp									71
	B. Experimental	resu	lts									74
	C. First results	with a	atom	ic str	uctur	es of	weak	c obje	ects			74
	D. Holographic	imag	ing c	of stro	ong o	bject	s					78
	E. Numerical re	const	truct	ion, i	nclud	ling a	preli	mina	ry co	rrecti	on of	
	aberrations						-					78
VII.	Conclusion											84
VIII.	List of symbols											87
	References .		•									90

Magnetic Through-the-lens Detection in Electron Microscopy and Spectroscopy, Part 1

P. KRUIT

I.	Introduction						93
II.	Historical development of through-the-lens det	tectio	n				96
	A. High-efficiency detection of secondary elect	trons					96
	B. Quantitative voltage-contrast measurement	ts					104
	C. Spectroscopy of emitted electrons						107
III.	Historical development of the magnetic paralle	elizer	for s	nectro	osconv	·	107
	applications						113
IV.	Theory of adiabatic motion						119
	A. Introduction						119
	B. Simple perturbation approach					÷	121
	C. Northrop's perturbation method					÷	128
	D. General theory of adiabatic invariants				•	•	129
	E. Conclusions from adjabatic theory	•	•	•	•	•	130
V.	Summary	•	•	•	•	·	134
	References	·	•	•	•	·	135
		·	·	•	•	•	155

Advances in Voltage-contrast Detectors in Scanning Electron Microscopes

LUC DUBBELDAM

I.	Introduction				140
II.	Test techniques for integrated circuits				140
	A. Overview				140
	B. Techniques with secondary electrons				142

х

CONTENTS

	C. Electron-optical measurements		_				149
	D Electron and optical beam-induced current	•	•	•	-	•	150
	E Reconfiguration and mask renair		•	•	•	•	152
	F Metrology	•	•	•	•	·	154
ш	Secondary electrons	•	•	•	•	•	155
	A Secondary electron emission	•	•	•	•	•	155
	B Voltage-contrast detection	•	•	•	•	·	165
	C Time resolution	·	•	·	•	•	181
IV	Voltage-contrast detectors	•	•	•	•	•	182
V	Design of a double channel spectrometer	•	•	·	•	•	191
•.	A General design considerations	•	•	•	•	•	101
	B The column	•	•	•	•	•	10/
	C The primary system	•	•	•	•	·	105
	D The magnetic parallelizer	•	•	•	•	•	201
	E The spectrometer	•	•	•	•	•	201
VI	L. The spectrometer	•	•	•	•	·	200
¥ 1.	A General massurement set up	•	•	•	•	·	210
	A. General measurement set-up	•	•	•	•	·	210
	C. Sources on both detectors	•	•	•	•	·	219
	C. S-curves on both detectors	•	•	•	•	·	219
	D. SE-spectrum on the lower detector .	•	•	•	•	•	222
	E. Voltage contrast on both detectors .	•	•	•	•	·	222
	F. Closed leedback loop	•	•	•	•	·	224
	G. Signal/noise ratio for voltage measurement	S	•	•	•	·	227
	H. voltage-contrast isolation	•	·	•	•	·	230
VII.	Future developments	•	•	•	•	·	234
VIII.	Conclusions	•	•	•	•	·	235
IX.	List of symbols	•	•	•	•	·	237
	Acknowledgements	•	•	•	•	·	237
	References	•	•	•		•	238

Scanning Near-field Optical Microscopy (SNOM) D. W. POHL

I.	Introduction						243
	A. Microscopy environment						243
	B. SNOM principle and general	prop	erties				246
	C. Potential areas of application						247
	D. Organization of this paper						247
II.	Historical background						247
	A. SNOM proper	•					248
	B. Antennas in front of a second	med	ium				249
	C. Elastic scattering of light				•		250
	D. Transmission of small apertur	es					250
	=						

xi

CONTENTS

	E.	Scanning	tunnelli	ng r	nicros	copy	and	relate	d tec	hniqu	ies			250
	F.	Evanescer	nt wave	mic	roscop	oy ¯								250
III.	Th	eoretical b	ackgrou	ınd		•								252
	Α.	General re	emarks											252
	В.	Near field	of an i	deal	dipol	e								252
	C.	Dipole in	front o	fad	lielecti	ric or	cond	luctin	g hal	lfspac	e			254
	D.	Small met	allic par	ticle	in fro	nt of a	a diele	ectric	orco	nduct	ting h	alfspa	ce	261
	E.	Small ape	rtures											264
	F.	Pointed ti	ps as N	IF o	otical	prob	es							269
	G.	Summary	of theo	rv		1								272
IV.	Ext	perimental	work	- ,										272
	Α.	Types of S	SNO m	icros	scope									272
	B.	Basic NF	optical	exp	erime	nts								283
	Ċ.	Plasmons	and sp	ectro	osconi	c effe	cts							287
	D.	Imaging h	v SNO	M	P-					·		·		292
V.	Dis	scussion	., 51.0		÷					÷				306
	Ā.	State of th	ie art	·							•			306
	B	Outlook	ie uit	•	•	•	•	•	•	•	•	•	•	308
Acknow	wlea	gements	•	•	•	•	•	•	•	•	•	•	•	309
Referen	nces		•	:	•		•		•	•			•	309

Microscopic Thermal Wave Non-destructive Testing

JARI HARTIKAINEN, JUSSI JAARINEN AND MAURI LUUKKALA

I.	Introduction					313
II.	Thermal waves and their generation .					315
III.	The resolution of the thermal wave micr	oscope				321
IV.	Photothermal NDE techniques with per-	iodic he	ating			325
	A. General					325
	B. Photoacoustic cell					325
	C. Photothermal radiometry					327
	D. Surface displacement techniques					329
	E. Piezoelectric detection					332
	F. Optical beam deflection					332
	G. Reflectance measurements					335
	H. Other techniques					338
V.	Photothermal pulse and scanning metho	ds			•	338
	A. General					338
	B. Examples					340
	C. Laser scanning techniques					342
	D. Numerical methods					343
VI.	Experimental pulse techniques					345
	A. Traditional pulse techniques					345
	B. Flash techniques with an IR camera					347
	C. IR scanning techniques					351
VII.	Conclusion					352
	References					356
INDEX						361

xii

The Invention of the Electron Fresnel Interference Biprism*

G. MÖLLENSTEDT

Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 12, D-7400 Tübingen, Federal Republic of Germany

Childhood years in Bielefeld		1
Gaining technical know-how as a student apprentice	•	2
A broad education in physics with Professor Walter Kossel .		2
Influence of the work of Kikuchi and convergent beam diffraction		3
Electron-optical experiments with Brüche, Scherzer and Mahl		5
Quantitative testing of the operation of the biprism		12
Measurement of the inner potential of solids		19
Electron interference microscope in the transmission mode		21
The intensity problem in electron interferometers		21
Atomic resolution electron holography		21
	Childhood years in Bielefeld	Childhood years in Bielefeld

I. CHILDHOOD YEARS IN BIELEFELD

In order to describe how I happened on the idea of realizing interference with electron waves by means of an electron optical biprism, I must, by way of introduction, say a few words about my early physics education. I should begin with the remark that I had the good fortune to matriculate in the Oberrealschule Helmholtz at Bielefeld. As the name Helmholtz may already suggest, the physical sciences held a prominent place there. In particular, Dr Lippert, my physics teacher, gave me a splendid grounding in the fundamentals of physics. Although he was suffering from cancer, he instructed us with unbelievable care and attention. He seemed, in particular, to have a very soft spot for me. On Saturday afternoons, I would go to his house, where he immediately brought me into the family circle; afterwards we went through the details of the current lessons. You can well understand the deep sadness we students felt at the death of our physics teacher. I have to thank him for my special liking for physics. On 2 March 1932 I passed the Matriculation examination; the commendation states "Gottfried Möllenstedt wants to be an engineer".

* Translated by T. Mulvey.

ADVANCES IN OPTICAL AND ELECTRON MICROSCOPY VOL. 12 ISBN 0-12-029912-7 Copyright © 1991 Academic Press Limited All rights of reproduction in any form reserved.

II. GAINING TECHNICAL KNOW-HOW AS A STUDENT APPRENTICE

At first I wanted to study aircraft construction. That meant that practical apprenticeship of several months was necessary. I worked in the Anker Works and in the Adler Works in Bielefeld from April to December in 1932, in the section locksmith's shop, the planing shop, the milling and grinding shops, the carpentry shop, hardening shop, the smithy and iron foundry. In the summer semester of 1933 I began the study of marine and aircraft technology in Danzig. Applying myself to constructional methods, materials science, machine drawing and hull-shape drawing gave me much pleasure as well as constituting a sound preparation for the technology of experimental physics. However, I soon came to the conclusion that it was the field of experimental physics that would give the best chance of carrying out actual experiments. So, on the advice of a member of the staff who was an *Assistent*, i.e. one who assisted the Professor, I transferred in May 1934 to the Faculty of Mathematics and Physics in the Kossel Institute.

III. A BROAD EDUCATION IN PHYSICS WITH PROFESSOR WALTER KOSSEL

Here I learned what experimental physics is all about and how one carries out research. I had the good fortune soon to be appointed as an Assistent myself and to experience the full sweep of physics. To be sure, the Institute was not large, but work was going on in the most varied of research fields. I was fascinated by the X-ray interference patterns from lattice sources. These Kossel lines were to become well known throughout the world. The Borrmann anomalous transparency for X-rays in single crystals arose out of these X-ray investigations. Single crystal pulling and the growth of solid bodies, i.e. solid state physics, formed the principal research area of the Institut. With total love and devotion, Kossel (Fig. 1) carried out electron diffraction experiments at voltages of 30-800 kV with, at that time, home-made high-voltage generators. The physics of thin films and electron microscopy was held in high esteem and vigorously promoted by Kossel and his research student, Georg Hass. The best education, however, for me was my role as technician in the great experimental lectures given by Kossel. These held sway over all other events in the Institute at that time. I emphasize these aspects of my multi-faceted learning phase as being particularly important for my ability to do independent research. If one wants to invent and develop something new, one must have observed and experienced how a productive and inspired researcher draws out new concepts. Walter Kossel is to be numbered among the great physicists of his time.

FIG. 1 Walter Kossel, 1888-1956.

IV. INFLUENCE OF THE WORK OF KIKUCHI AND CONVERGENT BEAM DIFFRACTION

As a preparatory phase to my later discovery of electron biprism interference, I must include my diploma work in convergent beam electron diffraction. The wonderful electron diffraction patterns of Seichi Kikuchi are, of course, now well known. A parallel monochromatic electron beam that penetrates a single crystal several hundred nanometres thick or is reflected at the surface of a single crystal produces on a photographic plate bright and dark lines characteristic of the single crystal and frequently bounded by bright and dark bands. The explanation of these phenomena occupied a central position in the theoretical activity of the Danzig Institute. It would be no exaggeration to say that no name was uttered so frequently in the Danzig Institute as that of the Japanese physicist Kikuchi (Fig. 2). Now it is well known that the Kikuchi patterns are a statistical result of the interaction of electrons with the single crystal. One day, Kossel commissioned me to take up this field as

FIG. 2 Seichi Kikuchi and Gottfried Möllenstedt in Tokyo in 1961.

a diploma investigation, in order to clarify the fundamental physical processes involved. I used an extremely thin single crystal, which I could irradiate with a convergent electron beam formed by electron optical means (Fig. 3). The technical details of how my diploma investigation was carried out cannot be discussed here. However, I must emphasize that I learnt as much from this experiment as I did from the theory! As a researcher, I learnt how Kossel

FIG. 3 Electron diffraction. (a) Kikuchi method. (b) Convergent beam method of Kossel and Möllenstedt.

went about things. Peer intently, and learn the existing state of knowledge. And then ask oneself "How can we go on further to new results?" These were to be provided later by the convergent beam method (Fig. 4).

But now, to come to the discovery of electron biprism interference. Already in the Kossel Institute there had been much discussion about the interaction of waves with matter. The concept of "coherence length"; for example, was already playing a role in the years around 1938. The book "Theory and Practice of Electron Diffraction" by the English physicists G. P. Thomson and W. Cochrane had been discussed in minute detail. From light optics I knew all about interferometry from the Danzig experiments. However, no one dared think about interferometry with electron waves at this time.

At about the time (1952) that I took up the Chair of Applied Physics at the University of Tübingen, there came the news of Marton's idea of arranging several crystals in series so as to split and then reunite a monochromatic electron beam, as shown in Fig. 5. The overlapping wave trains are coherent. The experiments were carried out by Arol Simpson at the National Bureau of Standards. They were fiendishly tedious and, as it turned out later, lacked reproducibility. We realized in Tübingen, on the basis of my experience with electron beams and single crystals, that this kind of interferometry could never provide a solution for electron beam interferometry.

V. ELECTRON-OPTICAL EXPERIMENTS WITH BRÜCHE, SCHERZER AND MAHL

Now I come to the moment of inspiration for the idea of using an electron biprism for electron beam interferometry. From 1949 until 1952, I worked in the Süddeutsche Laboratorien in Mosbach-Baden where I had been appointed by Professor Brüche as a Section Leader after I had given up working as an independent manufacturer of simplified electron microscopes. At Mosbach, I worked with electrostatic microscopes of the type AEG/Zeiss/ EM7 shown in Fig. 6. I was able to produce dark-field images in the Zeiss EM7 by fixing a fine tungsten wire over the hole in the objective aperture mounted in the back focal plane of the objective lens. In this way, one could record, in a single micrograph, as shown in Fig. 7, both the bright-field and the dark-field image. After a prolonged period of operation, however, this novel aperture arrangement gave rise to imperfections in the final image. As a consequence of the electron bombardment of the aperture, a now wellknown "contamination" layer was formed on its surface. This led to electrical charging-up effects at the wire. The most remarkable effect was that one frequently got "double" images, as may be seen in Fig. 8. Figure 9 shows a light micrograph, taken in a reflection optical microscope, of the $5 \,\mu m$

FIG. 4 Convergent beam electron diffraction pattern of Muscovite taken at 50 kV. Target diameter 120 nm.