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Preface 

It is well known that real thin films of metals, semiconductors and 
insulators are in general far from homogeneous due to their internal 
microstructure which is strongly dependent on the preparatory conditions. 
Consequently the optical properties of the films were seldom reproducible 
until recently. To cite just one example, Professor Abeles in his extensive 
review article in this Series on the "Optical Properties of Metallic Films" 
[Physics of Thin Films 6, 151-204 (1971)] confined his attention only to the 
theoretical aspects and did not discuss the experimental results since "they 
are more subject to revision and modification in the near future" [ibid p. 
152]. Further, the assumptions invoked in the interpretation of the experi-
mental data, as for example whether the film is homogeneous or not, etc., 
also play a dominant role in the final results. This is brought out very clearly 
in the results of the Round Robin Experiments conducted by the Optical 
Society of America [Appl. Opt. 23, 3571-3596 (1984)] in which seven 
laboratories from around the world were asked to determine the optical 
constants of Rh metal and S c 20 3 using nominally same thin films. It is 
interesting to observe from Tables 17 and 18 of this article that, in the case 
of Rh film all the workers assumed the Rh film to be homogeneous, whereas 
in the case of S c 20 3 film only three of the seven groups assumed it to be 
inhomogeneous. Further even in those three cases, they had to invoke an 
arbitrary assumption that the inhomogeneity in the film varies linearly with 
thickness. It is now evident that the assumptions in both the cases are not 
justified, since (i) the microroughness of the surface was totally ignored and 
(ii) microstructure and hence the void distribution in the film is seldom 
linearly dependent on the thickness. 

Almost similar statements can be made to the case of surfaces as well. 
Real surfaces are in fact quite different from the ideally perfect surface which 
corresponds to the plane surface terminating an ideally perfect semi-infinite 
solid. Even if we ignore the cleavage steps, tear lines, dislocations and 
damaged regions or the imperfections introduced during the preparatory 
stage as well as the contaminant overlayer if any on the surface, the abrupt 
termination of the solid and the presence of the so-called dangling bonds on 
the outermost layer can cause the symmetry as well as the physical and 
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chemical properties of this layer to be different from those of the bulk 
specimen. 

During the last five to ten years two major breakthroughs have been 
made in the development of two optical techniques to characterize in real 
time and in situ the films and surfaces respectively. With the first one-Real 
Time Spectroscopic Ellipsometry (RTSE), we can now nondestructively and 
noninvasively determine the spectra of the relative changes in both ampli-
tude and the very sensitive "phase" of the reflected light as a function of 
photon energy in a few milliseconds and thus measure and store such a 
library of spectra collected during entire film growth in real-time as well. 
With such a wealth of data we are now able to perform detailed regression 
analysis of these spectral data first at successive intervals of time and later 
also globally with the entire data, to finally obtain statistically meaningful 
results. In other words we are now for the first time able to obtain 
meaningful and reproducible results on (i) the morphological and/or the 
microstructural features of the inhomogeneities in the film and (ii) the true 
optical functions of film-materials. The second optical technique Reflectance 
Anisotropy (RA) can also nondestructively and noninvasively probe the 
surface of the growing crystal, to follow (a) the minute variations in the 
crystallographic symmetry of the growing surface layer during epitaxial film 
growth and thus (b) in its optical properties. Hence it is now appropriate 
for us to collect a review of these new optical techniques and the summary 
of the results obtained thus far, so that the scientists and engineers at large 
can benefit from this collection of reviews from the pioneers who developed 
these techniques. At the same time it will also enable us to (i) assess whether 
the full potentialities of these techniques have been realized or not, (ii) 
determine their limitations and deficiencies of these techniques and (iii) also 
point out the areas that need further work and/or development. The present 
volume in this series on the Physics of Thin Films aims to address these 
issues. 

The first article by Drévillon and Yakovlev provides a critical evaluation 
of the extensive literature on "reflectance anisotropy" (RA) technique, a field 
in which Drévillon is one of the pioneers. This is a normal incidence optical 
probe that uses the reduced symmetry of the surface layer to enhance the 
typically low sensitivity of reflectance measurements to surface phenomena. 
Unlike the various electron beam based surface analytical techniques, R A is 
not limited to ultra high vacuum (uhv) environment and hence has been 
used successfully to study the growth processes of III-V semiconductors in 
various deposition conditions ranging from Molecular Beam Epitaxy 
(MBE) requiring uhv conditions, to metallorganic chemical vapor deposi-
tion (MOCVD) under atmospheric pressure H 2 environment. It is shown 
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that in all these cases RA spectroscopy can follow the changes in the various 
surface reconstructions and also obtain real-time control of the chemical 
cycles of atomic layer epitaxy (ALE). Further in the case of low pressure 
MOCVD, RA transient measurements were utilized to control the deposi-
tion parameters to optimize the quality of the heterojunctions in GalnP/ 
GaAs superlattice structures. 

The second article authored by Collins and his students provides an 
excellent review of the experimental details, the physics involved and a 
summary of the results obtained on the growth of technologically important 
tetrahedrally-bonded films [such as hydrogenated amorphous silicon (a-
Si:H), and silicon carbon alloys (a -S^-^C^H)] using the Real Time 
Spectroscopic Ellipsometry (RTSE), a technique pioneered by Collins. It is 
evident that single wavelength ellipsometry and/or reflectance and absorp-
tance spectroscopy, even with real-time measurements cannot untangle the 
numerous processes that take part simultaneously during the film growth, 
such as (i) evolving microstructure (i.e., void volume fraction), (ii) changes in 
the chemical composition (particularly in the case of alloys), (iii) changes in 
the crystal structure (particularly in the case of thin metal films) and (iv) 
surface roughening (or smoothening) effect. On the other hand RTSE is 
shown to untangle all this and thus provides insights into the monolayer 
scale surface processes that control the ultimate properties of the material. 
As a direct result of these studies by RTSE with on line control of the 
deposition parameters it was possible to control the surface smoothening 
and obtain improved photoresponse and electronic performance of both 
these amorphous materials. Similar RTSE studies on the nucleation and 
growth of diamond films by heated-filament (1950°C) assisted CVD, (i.e., 
even under the most adverse conditions for any real-time optical studies), 
have enabled them to identify and overcome numerous problems such as 
tungsten contamination from the filament at the diamond/substrate interface 
etc., and grow excellent diamond films by on-line monitoring and control. 

The third article by Hien, An and Collins deals with an important 
problem both from the physics and technological points of view, namely the 
optical properties of thin metallic films, a satisfactory understanding of 
which has eluded physicists for well over a century. The development of 
RTSE has enabled Collins and his group to follow the evolution of the 
optical function of Aluminum film as a continuous function of thickness 
throughout the nucleation, coalescence and bulk film regimes. Detailed 
analyses of their extensive data reveal that at the very early stages of the film 
growth, the film is composed of partially coalesced disordered particles with 
a constant electron mean free path λ of 7.5 + 2 Â even when the film 
thickness is over the percolation threshold of 4 5 - 5 0 Â . The above value of 
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λ is found to be the same irrespective of the method of film preparation, or 
rate of film deposition or the size of the particle. As the film thickness 
increases to 55-60 Â, there is an abrupt transition when λ increases by an 
order of magnitude indicating conversion of the defective particles into high 
quality single-crystalline grains extending through the thickness of the film. 
For thicknesses above the transition, λ is found to increase gradually with 
thickness as would be expected for electron scattering at grain boundaries. 
All the published optical and electrical data in the literature on aluminum, 
can now be explained for the first time with this picture. 

The fourth article in this volume by Chindaudom and Vedam deals with 
the nondestructive characterization of inhomogeneous transparent optical 
coatings on transparent substrates with the help of Spectroscopic Ellip-
sometry (SE). It is shown that the spectral variation of Δ, the relative change 
in "phase" in the reflected light, contains information on the inhomogenei-
ties in the thin film, while the corresponding spectral variation of Ψ contains 
information on the optical function of the film material. Hence circularly 
polarized light was used as the incident beam in a rotating analyzer type SE 
system, which in turn made it possible to measure the spectral variation of 
Δ to a high degree of accuracy, even though Δ itself was close to 0°. 
Examination of a number of different fluoride and oxide optical coatings 
(deposited by electron-beam-evaporation) on vitreous silica substrate reveal 
that all these optical coatings were inhomogeneous due to the presence of 
microrough surface layer and/or a voided interface between substrate and 
film or inhomogeneous distribution of voids throughout the bulk of the film. 
Besides depth-profiling the film, SE characterization studies yield also the 
optical function i.e., the refractive index and its dispersion with wavelength, 
of the film material. Such data were not available in the literature for some 
of these materials. 

The fifth article in this volume authored by Trolier-McKinstry and her 
colleagues discusses the characterization of transparent ferroelectric thin 
films by SE, as well as in situ annealing the as-deposited films. All 
ferroelectric thin films (lead based perovskite films deposited by rf magnet-
ron sputtering, multi-ion-beam sputtering and sol-gel spin-on techniques) 
studied, display some level of inhomogeneity in the form of low density 
regions distributed through the thickness of the film and/or surface rough-
ness. It is shown that many of the apparent size effects reported for 
ferroelectric thin films are probably associated with either poor crystallinity 
or defective microstructure, rather than intrinsic changes in the ferroelectric 
properties with film thickness. Results of SE studies on in situ annealing of 
deposited ferroelectric films are also discussed. 

The sixth and final article by Parikh and Allara deals with a long 



PREFACE xv 

outstanding problem in SE that has not been addressed satisfactorily until 
now, i.e., spectro-ellipsometry of anisotropic materials in its most generaliz-
ed approach. This includes the material under consideration as optically 
biaxial, and optically absorbing; and it can be in the form of thin film or act 
as substrate with lossy overlayers which may or may not be anisotropic. The 
experimental variables considered are variable angles of incidence, 
wavelength range varying from 350 nm to 850 nm. Such a problem may 
appear too esoteric; but it is not far from the case of uniaxial Langmuir-
Blodgett films on optically biaxial SbSI substrate. In fact Parikh and Allara 
have alluded to many such examples in which the effects of anisotropy do 
arise and play dominant role in ellipsometric measurements. Parikh and 
Allara have constructed the algorithms for the generalized approach men-
tioned above, tested the validity of the calculations with the few selected 
experimental observations and then consider some hypothetical models to 
generate the spectra of the ellipsometric parameters (Δ, Ψ) in three dimen-
sional [wavelength, angle of incidence, and Δ (or Ψ)] space to gain physical 
insight into the variety of possible anisotropic effects. 
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