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PREFACE 

This volume constitutes the proceedings of the International Symposium 
on the Theory of Models held at the University of California, Berkeley, 
from June 25 to July 11, 1963. The Symposium was sponsored by the 
Association for Symbolic Logic in cooperation with the Division of 
Logic, Methodology and Philosophy of Science of the International 
Union of History and Philosophy of Science. 

The primary aim of the conference was to bring together from all 
countries, for review and exchange of ideas, scholars who have done 
significant work in the area of research in the foundations of mathematics 
generally known as "the theory of models." There were 160 registered 
participants from 17 countries; their names are recorded in a list at the 
end of this volume. Thirty-five scholars gave invited hour addresses and 
13 additional 20-minute talks were contributed. 

These proceedings contain 30 of the invited hour addresses as well as 
the papers of E. W. Beth (written jointly with J . J . F . Nieland), Roland 
Fraïssé, and Wolfram Schwabhäuser, who were invited to speak but were 
unable to attend the Symposium. Manuscripts for publication were not 
received from five invited speakers — Leon Henkin (Models of type 
theory), Roger C. Lyndon (Model theory and group theory), Andrzej 
Mostowski (Status of some theorems of model theory in the non-elemen-
tary case), Czeslaw Ryll-Nardzewski (Probabilities on models), and 
Alfred Tarski (Definability of recursive sets and undecidability of 
theories). In addition 4 short papers and 7 abstracts are included which 
cover all contributors except R. 0 . Gandy (^-models for analysis) and 
John McCarthy (A model for causality). The invited papers of C. C. Chang 
and E. P . Specker were written jointly with H. Jerome Keisler and 
Simon Kochen, respectively; the contributed paper of Walter Felscher 
was written jointly with Gudrun Jarfe. 

These proceedings also contain a foreword on terminology and an 
841-entry bibliography of the theory of models which grew out of a 
preliminary version prepared by Karel de Bouvère and distributed to 
participants in the Symposium. An essay preceding the bibliography 
attempts to explain what has been included under the heading "theory 
of models." 

vn 



VIII PREFACE 

For convenience in finding papers in the volume the invited addresses 
have been arranged in alphabetical order by author, followed by the 
short papers and abstracts. But as an aid to students the papers and 
abstracts have also been organized by subject matter into eight categories, 
and a list of papers thus grouped precedes the foreword on terminology. 
The eight categories suggest the range and scope of the contemporary 
theory of models. 

The Organizing Committee of the Symposium consisted of J . W. 
Addison, Alonzo Church, William Craig (Treasurer), Leon Henkin 
(Co-Chairman), S. C. Kleene, Roger C. Lyndon, Abraham Robinson, 
J . Barkley Rosser, Dana S. Scott (Secretary), Patrick Suppes, Alfred 
Tarski (Co-Chairman), and Robert L. Vaught. 

The bulk of the support for the Symposium was granted by the 
U.S. National Science Foundation. Additional aid came from the U.S. 
National Academy of Sciences — National Research Council, from the 
University of California, Berkeley, and from the sponsors. 

The editors are grateful for the help of a large number of logicians 
in the Berkeley area who read the manuscripts as they were submitted 
and suggested corrections and clarifications. Among these readers were 
E. W. Adams, R. F . Barnes, Jr., G. M. Benson, A. Cobham, A. Daigneault, 
T. E. Frayne, P. G. Hinman, M. Jean, D. L. Kreider, M. R. Krom, 
J . J . LeTourneau, J . I. Malitz, J . D. Monk, D. C. Peterson, W. N. Rein-
hardt, G. E. Reyes, R. M. Robinson, W. H. Rupley, A. L. Selman, 
J . H. Silver, P . Suppes, and B. F . Wells I I I . The editors also take this 
opportunity of acknowledging the valuable contribution made by the 
numerous participants in the Symposium who made helpful suggestions 
regarding the bibliography, and of thanking P. G. Hinman, who read 
the entire second printer's proof with care, independently of the editors. 
Finally, the editors join with all of the Symposium participants in saluting 
the outstanding dedication and service of Dana Scott, Secretary of the 
Organizing Committee, and June Lewin, Secretary of the Symposium. 

University of California, Berkeley THE EDITORS 



E V E R T W I L L E M B E T H 

1 9 0 8 - 1 9 6 4 

Because of illness Professor Beth was unable to accept the invitation to 
speak at the Symposium, but he did agree to submit a manuscript of the 
paper he would have presented. Several months after the receipt of this 
manuscript the editors received the sad news of his death on April 12, 1964. 
He was an influential and prolific writer on logic; in particular he often 
wrote on the theory of models, contributing both to its development and to 
the wider understanding of its concepts, methods, results, and significance. 
Among his many works he is especially remembered for the beautiful theorem 
in the theory of definition which bears his name. His personal charm, 
wide ranging interests in science and education, and warm-hearted friend-
liness endeared him to a very wide circle of colleagues in the field. For all 
of these reasons his collaboration in the continued development of the theory 
of models will be keenly missed. 

THE EDITORS 
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FOREWORD ON TERMINOLOGY 

In a relatively new field such as the theory of models it is not surprising 
that terminology has not yet reached a settled state. Especially for 
students and others beginning work in model theory this may prove a 
tiresome inconvenience. In an effort to make learning easier for them and 
to give this volume greater unity the editors decided to suggest to authors, 
on an experimental basis, some uniform terminology and notation. 

By promising to summarize these terminological suggestions here in 
one place at the front of the volume, we have made it possible for the 
individual authors to omit repetitious explanations of much of their own 
terminology and notation. Authors were, of course, free to diverge from 
these suggestions and in a number of cases it proved convenient for them, 
for a variety of purposes, to do so. In such cases they were asked to 
include the necessary substitute terminological explanations in their 
individual papers as usual. 

Following is a resume of the principal suggestions. 

The basic mathematical objects considered in the theory of models 
have been variously called "relational systems", "relational structures", 
"realizations", "possiblerealizations", "models", "semi-models", "pseudo-
models", "frames", etc. The term "relational structure' is suggested here. 

Structures of a given similarity type, corresponding to some language L, 
may then be referred to as "structures for L" or "L-structures". This 
terminology preserves the word "system" for its other quite different 
uses in logic and preserves the word "model" for its basic use, as in 
"a model of a sentence" or "a model of a set of sentences". "Universe'" 
is suggested for that set, associated with each structure, which has been 
alternatively called its "domain", "base", "set of individuals", "support", 
etc. 

The word "language" has been used in a wide variety of ways in model 
theory and logic. Three chief uses have been : (i) in reference to a collection 
of primitive symbols and rules of formation; (ii) in reference to (i) to-
gether with a scheme of interpretation, i.e., a specification of meaning 
to the absolute constants and of allowable kinds of interpretation to 
variables (including parameters and arbitrary constants); and (iii) in 

XIII 



XIV FOREWORD ON TERMINOLOGY 

reference to (ii) together with a scheme of deduction (e.g., axioms and 
rules of inference). I t is suggested that "language" be reserved for entities 
fitting roughly into category (ii). Other words, free of semantical or 
deductive connotations, should be used for entities fitting roughly into 
category (i); one such possibility is "grammar". For the well-formed 
formal expressions of a language the words "formula" and "term" are 
recommended, according as the expression is of the propositional or of the 
denotative type. "Sentence" is suggested for formulas without free 
occurrences of variables. 

For use as logical symbols in formal expressions of an object language, 
or as names for such symbols, the following are suggested: 

T ± — | A V - > « * V 3 — 

(where in particular T is the truth symbol, X is the falsity symbol, 
and =£= is the identity symbol). These symbols may appear either as 
above or in a lightface variation of them. 

For the fundamental notion of semantical (or model-theoretic) con-
sequence " | = " is suggested (over, e.g., "\\-" or "If-"). The recommended 
usage is suggested by the following examples. Let Σ be a set of formulas, 
<p be a formula, 3ί be a structure, and J f be a class of structures. Then 
"|=<p" means "φ is (logically) valid", "Σ\=φ" means "φ is a semantical 
consequence of Σ", (ί\=%φ" means "φ is valid in 31", and "\=χ φ" means 
"φ is valid in all structures of Jf". For deductive (or proof-theoretic) 
consequence "|— " is recommended. 

As names for and as variables ranging over certain kinds of objects, 
letters from the following fonts of type are recommended: 

(1) elements of the universe of a structure = lower case italic letters 

(2) relations and operations of a structure = capital italic letters 

(3) structures = capital German letters 

(4) the universe of a structure = the corresponding capital italic letter 

(5) classes of structures = capital script letters 

(6) symbols in an object language for elements of the universe of a 
structure = lower case Tamalpais (i.e. Gill lightface) letters 

(7) symbols in an object language for relations and operations of a 
structure = capital Tamalpais (i.e. Gill lightface) letters 

(8) formulas of an object language = lower case Greek letters 

(9) sets of formulas of an object language = capital Greek letters 



FOREWORD ON TERMINOLOGY XV 

It is not intended that these fonts be used exclusively for these purposes, 
of course. For example, lower case Greek letters might also be used for 
ordinal numbers. If a lower case italic letter denotes a certain object 
then the corresponding Tamalpais (Gill lightface) letter may sometimes 
be used without further explanation to denote a name for that object. 

THE EDITORS 
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INVITED PAPERS pp. 1-401 

Symposium on the Theory of Models ; North-Holland Publ. Co., Amsterdam (1965) 

THE METHOD OF ALTERNATING CHAINS * 

J. W. ADDISON 

University of California, Berkeley, California, U.S.A, 

0. Introduction. A common construction occurring in contributions 
to the theory of models (see, for example, A. Robinson [56e], Chang [59], 
Keisler [60], Addison [62], Krom [63, Dissertation, Chapter V]) is the 
development of an alternating chain of structures, i.e. of a sequence of 
structures lying alternately in each of two given classes of structures. 
Although not always originally formulated in these terms, it has turned 
out that a substantial number of t'ie applications of these chains can 
be formulated in terms of separability (or interpolability) tests. We begin 
by illustrating these ideas with a simple, concrete example. 

Consider a pure first-order predicate language J5f with equality with 
exactly one parameter —the binary predicate parameter F. Suppose one 
wondered how "t ight" the familiar implication 3a\/bFab|= VbBaFab is, 
or equivalently, how "close togethe-" the class si of models of gaybFab 
and the class 88 of models of —Λ/bgaFab are. One measure of this could 
be given in terms of how complicated a sentence φ of 3? must be in order 
to be interpolable between 3aVbFab and VbBaFab (in the sense that 
3aVbFab |= φ |= Vb3aFab), or how complicated a class ^ must be in order 
to separate si from 3$ (in the sense that si C ^ and ^ Π & = 0). For 
example, can such a *% be both V20 and Λ20 (in the terminology of 
Addison [62a])? By constructing (as is easily done) an alternating chain 
(&η'·η eo>> such that for any n in ω @2n e j / , ©2n+i e ^ , and @w+i is 
an extension of @Λ, one shows that this is impossible. For assume the 
contrary, let % be the common union of {@2»ineœ} and of {@2»+i : n e ω}, 
and recall that Λ20 classes are closed under unions of extension-chains. 
Then %e<g (since' @2n e si C # e Λ2°) and 2 G ^ ^ (since @2w+i e 
e SS C ~ <g e Λ2°), a contradiction. 

* This research was supported in part by the U.S. National Science Foundation 
under Grant GP-1842. 
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2 J. W. ADDISON 

This example illustrates the fact that a useful test for the insepara-
bility of two disjoint classes se, 3ft of structures by an V2° C\ A2° class 
is the existence of an extension-chain of length ω alternating from se to 3ft.x 

Does this alternating chain test constitute a general method for de-
termining the (V20 Π Λ2°)-inseparability of disjoint classes of structures? 
In the important case where the classes are elementary (or even Vjj) 
it turns out that it does indeed. 

The existence of an extension-chain of length ω alternating from se 
to 3ft assures, of course, the existence of longer and longer extension-
chains of finite length, or, equivalently (by reversing these chains), of 
longer and longer finite substructure-chains. For elementary se, :jft a 
compactness argument can be used to show that the converse is also 
true. Therefore an alternate necessary and sufficient condition for the 
(V2° C\ A2°)-inseparability of elementary classes se', 3ft is the existence of 
longer and longer finite substructure-chains alternating from se to 3d. 

In the special case where the two disjoint classes are complementary, 
separability tests reduce to classification tests — in the above situation, 
for example, we see that a necessary and sufficient condition for an 
elementary class to be V2

0 Π Λ2° is the existence of a finite bound on 
the lengths of substructure chains alternating from the class to its 
complement. Thus, for example, a sequence of longer and longer finite 
substructure-chains alternating in and out of the class of models of 
3aVbFab assures us that this sentence is not logically equivalent to an 
Λ2° sentence of „Sf. And such simple facts as these, although often expected, 
are often not trivial to prove. Thus alternating chain tests are in part 
a contribution to one of the oldest and most central problems of logic — 
that of determining whether or not a given definition can be "simplified". 

The alternate separability test mentioned above naturally suggests 
the question whether there is any simple grammatical significance to 
the existence or nonexistence of alternating substructure-chains of a 
given finite length. This question leads to the discovery of a new 
"hierarchy" which, rather unexpectedly, appears to share a number of 
properties with some of the well-known hierarchies studied in descriptive 
set theory, recursive function theory, and the theory of models. By the 
classification test this hierarchy fills up the class of V2° Π Λ2° sets and 
thereby sheds light on the structure of this class. 

These findings have been accompanied by the discovery that as early 
1 For a still better, practical understanding of the method of alternating chains 

see Footnote 2. 



THE METHOD OF ALTERNATING CHAINS 3 

as 1914 HausdorfF (see [14]) had studied a cousin of this hierarchy in 
descriptive set theory and had developed a method of residues that 
bears a close analogy to the method of alternating chains. Although his 
method of residues yields only classification tests, it can be generalized 
(cf. Addison [62]) to give separability tests as well. 

In the present paper we initiate a general study of the class of 
difference hierarchies, which includes the hierarchy of V20 Π Λ20 sets 
mentioned above, Hausdorff 's hierarchy, and a variety of other hierarchies 
in the theory of models, descriptive set theory, and recursive function 
theory. Included in the study is a generalized method of alternating chains 
which applies to a large number of the examples. 

This method has been a powerful heuristic tool in the study of difference 
hierarchies. Not only has it provided the only known proofs of some 
results about particular hierarchies, but it has suggested general theorems 
about difference hierarchies which have subsequently been established 
by purely Boolean-algebraic methods. 

For simplicity, in the present paper we restrict our study to hierarchies 
of length < ω ; however, many of the results do extend to the transfinite. 
We plan a separate publication on these extensions, which present special 
problems outside the algebraic spirit of the present paper. 

In the present paper we focus attention on general methods useful 
for studying the structure of difference hierarchies, reserving for later 
the application of these methods to particular hierarchies. We begin 
by outlining in axiomatic form some of the important structural properties 
of hierarchies. 

1. An axiomatic approach to hierarchies. The word "hierarchy" is 
usually used informally in mathematical discussions, so it no doubt 
suggests more or less structure to different people. We adopt here a 
reasonably broad definition and then introduce descriptive adjectives 
to cover additional structural properties that are often present. 

By a family of sets we mean a function to a class of sets. "Hierarchy' ' 
is most often used in the literature in reference to a special kind of 
family of sets —namely a family of sets (or classes) of sets. The inclusion 
relation on the classes of sets induces a partial order on the domain (or 
index set) of the hierarchy, and in most cases this is a partial well order 
if not indeed a well order. Balancing brevity against generality we 
include a restriction to well order in our definition. Since the use of a 
family of classes in place of a class of classes is simply a matter of notational 



4 J. W. ADDISON 

convenience, we can without any real loss of generality restrict the 
domains of hierarchies to be ordinal numbers (i.e. to be initial segments 
of ordinal numbers). 

D e f i n i t i o n 1.0. For any § 
ίρ is a prehierarchy if and only if ίρ is a function, the domain of § is 

an ordinal, the range of § is a class of classes of sets, and: 

H i . ίρ is nondecreasing, i.e. for any μ, ν in the domain of $ if μ<ν, 
then φ(μ) C <ρ(ι>). 

Let ξ> be a prehierarchy with domain μ. We call the union of the 
union of the range of Ç) its universe and denote it by " | φ | " , a n ( i w e 

refer to § as a μ-prehierarchy over |ξ)|. We will usually use the subscript 
functional notation, writing "ίρν" in place of "ξ)(ν)". We call the union 
of the range of § its scope and denote it by "ξ)(μ)". More generally, for 
any ordinal v in μ + 1 we write "φ( ν )" as an abbreviation for " (J {ίρρ : ρ ev}". 
For any v in μ we say that Jp is stationary at v if and only if fQv = fQ(v). 

In general a prehierarchy cannot be recaptured from its range, but 
if it is one-to-one this can be done. Into the definition of hierarchy we 
put a slightly stronger property. 

D e f i n i t i o n 1.1. For any ίρ 
§ is a hierarchy if and only if § is a prehierarchy and: 

H2. § is never stationary {i.e. for any v in the domain of ίρ: ίρ„ Φ §(ν)). 

Sometimes in the literature prehierarchies which are stationary only 
at limit ordinals (i.e. one-to-one prehierarchies) or only beyond a certain 
ordinal have been called "hierarchies", but it seems slightly advantageous 
to adopt the terminology chosen here. 

A fundamental operation on hierarchies is dualization (which we 
denote by " - " ) . For any μ-prehierarchy § by the dual § ~ of ίρ we mean 
<{)§\~Α:Αε$,}:*Εμ>. 

Beyond the fundamental axioms H l , H2 there are a variety of special 
principles directly or indirectly involving dualization to which we wish 
to draw attention. 

D e f i n i t i o n 1.2. For any ordinal μ and any μ-prehierarchy ξτ. 
H3. § is balanced if and only if for any v in μ § ( V ) U | ) ~ C ^ n §~ ; 
H4. § is selfdual if and only if for any v in μ ξ)„ = § 7 ; 
H4' . § is lateral if and only if for any v in μ $QV Φ $£~ ; 
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H5. ίρ is separable if and only if for any v in μ ίρ„ has the first separation 
property with respect to |lp| (i.e. for any disjoint sets A, B in $$9 

there exists a set G in $QV Π ÎQ~ such that A ÇC and G Π J5 = 0); 
H5. ' !Q is inseparable if and only if for any v in μ ξ)„ does not have the 

first separation property ; 

H6. ip is reducible if and only if for any v in μ $&v has the reduction 
property (i.e. for any sets A, B in !QV there exist sets Α', Β' in ίρ, 
such that A' n f i ' = 0, A' ÇA, Β' C B, and A' U JB' = A U B); 

H6' . ίρ is irreducible if and only if for any v in μ ξ)ν does not have the 
reduction property ; 

H7. φ is perfect if and only if for any v in μ 

H7' . ξ) is coarse if and only if for any v in μ 

é W
 U 0(7) * Ör Π 07 · 

Note that 'lateral', 'inseparable', and 'irreducible' are distinct from 
'nonselfdual', 'nonseparable', and 'nonreducible', respectively. 

We dualize each of these properties by use of the prefix "co". For 
example, we say φ is coseparable if and only if Jp- is separable. 

We localize each of these properties by use of the preposition "a t " . 
For example, for any v in μ we say § is separable at v if and only if ξ)„ 
has the first separation property with respect to |ip|. 

Certain obvious relations hold between these properties. For example, 
balanced = cobalanced, selfdual = coselfdual, lateral = colateral, and 
perfect = coperfect. Every selfdual or perfect prehierarchy is balanced 
and every reducible prehierarchy is coseparable. 

2. Difference hierarchies. The hierarchy of V2° Π Λ2° sets, suggested 
by finite alternating chains and mentioned at the end of Section 0, 
turns out to belong to a wide class of hierarchies based on a common 
principle of generation. Since one of the fundamental operations involved 
in the generation of these hierarchies is set-theoretic difference, denoted 
by " ~ " , we call such hierarchies "difference hierarchies". 

Difference hierarchies are naturally defined in terms of the algebraic 
operation of "iterated difference", which we denote by " P " , regard as 
a function on the class of finite sequences of sets, and define recursively 
(according to the length of the sequence) as follows: 
(0) Ρ<4 , :«6θ> = 0; 
(1) F<-4«:i e w + l > = 4 0 ~ V(Ai+1:ien}. 
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D e f i n i t i o n 2 .0 . For any class 0t of sets: 

3)(«) = ( { P i : 4 : n - > J } : n 6 û ) ) . 

Equivalently, Φ(^?) is the set family on ω defined recursively by: 
(i) 55(,#)o = {0}; (ii) <S)(3t)n+i = {A~B:Aeœ, B e $ ( # ) „ } . 

We usually write " ® n ( ^ ) " in place of "%(3l)n\ and follow an analogous 
convention in similar situations later. For any set X and any function 
.F we denote by "<?X" the class of all subsets of X and by "@F" the 
domain of F. If XC2F, we denote {F{x):xeX} by "F*(X)". For 
any n in ω a set sequence 4̂ on ?i is called decreasing (nonincreasing) if 
and only if for any -i-f-1 in n AiD Ai+i (AiDAi+i). 

T h e o r e m 2 . 1 . For any set 1 and any subclass 8% of 2P\ : 
(i) if 0 G ; l , then 2)(^) is an ω-prehierarchy ; 

(ii) i'/ 0. 1 e f , /Aen- 3)(^) Î5 a balanced ω-prehierarchy. 

Proof , (i) We prove 3) ( n ) (^)ÇÎJ) n (J ) by induction. Basis: n = 0 
or w= 1. 3)(O)(«) = 0 C Φο(^?) = Φ(ΐ)(^) = {0} £ # = Φι (#) . Induction step: 
n = Jc + 2. Let 4£5)(*+2)(*). By the hypothesis of the induction 
®<*+2)(^) = ®*+i(^), so .4 E2)A:+I (^ ) . Hence .4 = 5 ~ C for some 5 in 
^ and (7 in Φ*(^). So by the hypothesis of the induction C e Φ*+ι(^?), 
so A G 3)Ä+2(.«). 

(ii) By (i) 3)( f l)(âP)Ç55n(f). From this it also follows that 
® ( ; , ( « ) Ç ® ; ( A ) . From 3 W # ) C ®,;(^) will follow φ(~ («) Ç φ η ( # ) , 
so it suffices to prove Φ(?^(^?) C 3)~(^) . We do this by induction on n. 
Basis: n = 0. 5)(O)(^) = 0 C 3 ) o " W · Induction step: w = i + l . Let 
i e î ( W ) ( 4 By (i) Φ<*+ΐ)(^) = Φ*(^), so i G ^ ( f ) . Hence, since 
l e a ? , 1 ~ J. G Φ*+ι(0), so ^ G Φ^+ 1(«). 

Let J? be a class of sets containing 0. Let r be the greatest ordinal 
in f»-rl such that %(3?)\v is a hierarchy. We call v the dimension of 
φ(ω)(.^?) o v e r h a n d we call Ί)(3#)\ν the difference hierarchy generated by &. 

To develop an understanding of difference hierarchies it is useful to 
study some of the algebraic properties of V. As Hausdorff noted it is 
convenient for this purpose to introduce a closely related algebraic 
operation —"alternating series"—which we denote by " © " , also regard 
as a function on the class of finite sequences of sets, and define recursively 
as follows: 
(2) 0 < 4 i : i e O > = 0; 
(3) @<Ai'i e 2n+\y = ®{Ai\i G 2/ι> U A2n', 

(4) ©{Av.i G 2η + 2> = © 0 4 ί : ί G 2n+ 1> ~ A2n+i. 



THE METHOD OF ALTERNATING CHAINS 7 

In the following sequence of lemmas we develop (following in par t 
the work of Hausdorif [14]) some of the basic algebraic facts about V and ©. 

L e m m a 2 .2 . For any set X, any n in ω. and any set sequence A onn: 

(i) V(XnAi:ien} = Xn F < 4 , : i e w > ; 

/••x ^ , A ΛΓ · v \ ®(Ai\i en} ~X if n is even, (n) @<Ai vX-,eny^ ^<Ai:. ε η ^ χ >fn .s oM 

Proof , (i) By induction on n. Basis: n = 0. 0 = X Π 0. Induction 
step: n = k+l. X Π V(Ani e k+ 1> = X Π (^40~ V(Ai+1:iek}) 
= (X Π Ao) ~ (X Π V(Ai+i : i e k}) = [by the hypothesis of the induction] 
(X n Ao) ~ F<X n Λ · + ι : i e k ) = V(X nAf.iek+l}. 

(ii) By induction on w. Basis : n = 0. 0 = 0 ~ X. Induction step : n = k + 1 . 
Case 1: & is even. ®(Ai U X:i e k+l} = @(Ai U X:iek} U (4* U X) 
= [by the hypothesis of the induction] (®\Ai :i e ^ ) ^ I ) U (Ak U X) 
= ®(Ai:iek} KJ A/cV X = @(Ai:iek+iy V X. Case 2: & is odd. 
©<4< U X:iek+l) = @(Ai U X : i G k} ~ (4* U X ) = [ b y the hypothe-
sis of the induction] (©(Ai'.i G k) U X) ~ (4* U X) 
= (©(Ai:i G fc> ~ il*) ~ X = ®<,4,:i G fc+ 1> — X. 

L e m m a 2 . 3 . For any positive n in OJ and any set sequence A on n: 

(i) V(Ai : i en) = V(AQ n At \ien)\ 

(ii) ®(Ai:ien} = ®(AiU An-i:ien). 

Proof , (i) V(A0 Π ^ i : i G 7 i > - [ b y Lemma 2.2(i)] .40 Π F ^ i i e r a ) 
= ^40 Π (^4o~ F<-4f+i:i G w - l » = i 0 ^ F<^4i+r.i G W — 1> = V(Aiii en}, 

(ii) Case 1: n is even. ©<-4* U An-i:i G n> = [by Lemma 2.2(ii)] 
®(Af : i G w> ~ 4 n - i = (©<Λ· : i G n - 1> ~ ^4w_i) ~ An-i = ®(At : i e n). 
Case 2: n is odd. ®{Ai U An-i\i e n}= [by Lemma 2.2(h)] 
0 < i î - : i e w > U 4 » - i = ( ® < - 4 < : i e n - l > U 4 n _i ) U An-1 = @(Ai:i en}. 

L e m m a 2.4. For any n in ω and any nonincreasing set sequence 
A on w -f 1 : 

®(Ai:ien+iy=A0~ ©<^U+i : ί εη} . 

P r o o f . By induction on n. Basis: n = 0. 0 U Α0 = Α0 = Α0 ~ 0. 
Induction step: n = k+l. Case 1 : k is even. ©<\4*:i e k + 2} 
= @(At:i G k+ 1) ^ ' Ak+i= [by the hypothesis of the induction] 


