

This page intentionally left blank

#p0 ,e^c ?γί
NÉ*

SAN pB * H c V ,sco LO1 HO°N

^ ^
^ο^ ,οΑ $<&°Θ òô

COPYRIGHT © 1977, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
I l l Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data

Marateck, Samuel L
FORTRAN.

Includes index.
1. Fortran (Computer program language). I. Title.

QA76.73.F25M37 001.6'424 76-45991
ISBN 0 - 1 2 - 4 7 0 4 6 0 - 3

PRINTED IN THE UNITED STATES OF AMERICA

To my parents Harold and Rita

This page intentionally left blank

Contents

Preface xiii

To the Reader xv

Introduction to Computers and Programming

1.1 General Remarks 1
1.2 The Keypunch 2
1.3 Input and Output Devices 6
1.4 Solving a Problem 8
1.5 Algorithms 10
1.6 FORTRAN, WATFOR, and WATFIV 11

Introduction to FORTRAN

2.1 General Remarks 12
2.2 The Assignment Statement 12
2.3 The END Statement 14
2.4 The Listing of the Program; the STOP Statement 14
2.5 Executing the Program 16
2.6 The WRITE and FORMAT Statements 18
2.7 The FORMAT-free PRINT Statement 24
2.8 Performing an Addition 26
2.9 Performing a Multiplication 28
2.10 Restrictions and Limitations in Using F Format 30
2.11 REAL and INTEGER Mode 32
2.12 I Format 36
2.13 The INTEGER and REAL Declaration Statements 40
2.14 Restrictions Involved in Using I Format 42
2.15 Redefining Variables 44
2.16 Debugging Programs on the FORTRAN compiler 48
2.17 Debugging Using the WATFOR/WATFIV compiler 52

VII

2

1

vii i Contents

2.18 Labeling Cards 58
2.19 Continuation Cards 58
2.20 The Formatted PRINT 60

Problems 62

Calculations and the READ Statement

3.1 Performing Calculations in FORTRAN 64
3.2 Peculiarities of REAL and INTEGER Arithmetic 70
3.3 Mixed Mode 74
3.4 The READ Statement 76
3.5 Some Programming Tips on FORMATS and DATA Cards; Repeated Field

Specifications 80
3.6 The WATFOR/WATFIV READ Statement; Doing Calculations in the

PRINT Statement 82
3.7 The GO TO Statement 88
3.8 Flow Charts 90
3.9 Rounding Numbers 92
3.10 Strings 96
3.11 Strings in WATFIV 100
3.12 Another Form of the READ Statement 102

Problems 104

Functions and the IF Statement

4.1 Library Functions 108
4.2 The Logical IF Statement 114
4.3 Relational Operators: EQ, NE, GT, LT, GE, and LE 128
4.4 Other Applications of the IF Statement 130
4.5 Writing REAL Constants in Exponential Form 144
4.6 How REAL and INTEGER Constants Are Stored 146
4.7 Printing Using E Format 148
4.8 Using X Format 150
4.9 The Arithmetic IF Statement 152

Problems 156

3

4

Contents ix

The DO Loop, the IF-THEN-ELSE and the WHILE Loop

5.1 The DO Loop 158
5.2 T Format 168
5.3 More on DO Loops 170
5.4 Summations and Products 178
5.5 Negative Increments; Reading a Variable Number of Data Cards 186
5.6 The AND, OR, and NOT Logical Operators 196
5.7 LOGICAL Constants and Format 202
5.8 The LOGICAL Declaration Statement 204
5.9 Nested DO Loops 210
5.10 Applications of the DO Loop 212
5.11 A WATFIV-S Feature: The IF-THEN-ELSE (The Block IF) 230
5.12 Another WATFIV-S Feature: The WHILE Loop 234

Problems 236

Subscripted Variables, the DATA Statement, and the Implied DO Loop

6.1 Subscripted Variables 238
6.2 The DATA Statement 254
6.3 The Computed GO TO Statement 258
6.4 INTEGER Subscripted Variables 262
6.5 Sorting 268
6.6 Satisfying Input and Output Lists 274
6.7 Implied DO Loops 280

Problems 288

Doubly Subscripted Variables and Matrix Multiplication

7.1 Doubly Subscripted Variables 290
7.2 How Array's Elements Are Stored in the Computer's Memory 316
7.3 Matrix Multiplication 320
7.4 Reading Values into Arrays 332

Problems 344

1

1

1

x Contents

8
Input/Output

8.1 Printing Using F Format 346
8.2 Reading Using F Format 348
8.3 I Format 350
8.4 E Format 352
8.5 Using Slashes in FORMAT Statements 356
8.6 Introduction to Alphanumeric Constants 362
8.7 More on the Implied DO Loop 364
8.8 Using Arrays Without Subscripts in READ and WRITE Statements 372
8.9 Repeated Groups of Field Specifications 380
8.10 The DATA Declaration Statement 390
8.11 Using G Format 394
8.12 T Format 396
8.13 Hollerith Fields 398
8.14 Control Characters 400
8.15 Using Strings in FORMATS Used with READ Statements 402
8.16 Reading Using X FORMAT 404
8.17 More on the READ and WRITE Statements; the END Option 404

Problems 406

9
Functions, Subprograms, and Subroutines

9.1 Statement Functions 408
9.2 Subprogram Functions 420
9.3 Using Arrays in Subprograms 434
9.4 Redefining Dummy Arguments in Function Subprograms 450
9.5 Subprograms Calling Other Subprograms 454
9.6 Subroutines 456
9.7 The Arguments of Subroutines and Function Subprograms 460
9.8 Differences between Subroutines and Subprogram Functions 460
9.9 Modularizing Programs 462
9.10 Using Arrays as Arguments of Subroutines 466
9.11 Plotting Histograms 472
9.12 Matrix Multiplication Using Subroutines (Optional Section) 478

Problems 486

Contents xi

io
Structured Programming

10.1 Introduction to Structured Programming 488
10.2 Program Design Aids: Pseudo Language 490
10.3 Top-Down Design and the Hierarchial Diagram 492
10.4 Top-Down Testing 496
10.5 Program Design Aids: the HIPO Diagram 518
10.6 Management-Programming Techniques 520
10.7 Internal Documentation 522
10.8 Generality, Independence, and Integrity 524

Problems 528

11
The COMMON Statement and the EQUIVALENT Statement

11.1 The COMMON Declaration Statement 530
11.2 Labeled COMMON 542
11.3 BLOCK DATA Subroutine 552
11.4 More on COMMON 556
11.5 Comparison of Using Argument Lists and COMMON List 560
11.6 The EXTERNAL Statement 562
11.7 Execution-Time Dimensioning 564
11.8 The EQUIVALENCE Statement 582

Problems 588

12
Significance, Double Precision, Complex Numbers

12.1 Converting Binary Numbers to Decimal Numbers 590
12.2 Significance 592
12.3 Overflow and Underflow 594
12.4 More on Significance 596
12.5 Hexidecimal Representation 602
12.6 Double Precision 604
12.7 Newton's Method and DOUBLE PRECISION Functions 610
12.8 Complex Numbers 616

Problems

xij Contents

13
More 1

13.1
13.2

13.3
13.4
13.5
13.6
13.7

Input/Output

More on A FORMAT
CHARACTER Mode in WATFIV (and the Proposed ANS FORTRAN
Revision)
Execution-Time FORMAT
The NAME LIST Statement
The PUNCH Statement
The Scale Factor
Files
Problems

620

634
644
646
646
648
650
654

Appendix

A Object Decks 656
B Control Cards for the IBM System 360/370 656
C Control Cards for WATFIV 660
D Time Sharing 661

Subject Index 665

Preface

This book is an outgrowth of notes the author uses in a course m FORTRAN that he
teaches to undergraduates at New York University. Its purpose is to teach the student
how to program using the FORTRAN language, and it is written for students who have no
prior knowledge of computers or programming.

The design of the book has special significance and deserves special comment. The
right-hand pages contain pictorial material on programming which most students will
readily understand; this is described in detail in fcfcTo The Reader." The left-hand pages
contain the explanatory text. You will see that strict adherence to this design has resulted
in a number of partially filled pages. It has been the author's experience with a book on
BASIC, which he wrote and designed in the same way, that in many cases students who
visit the computer center and have studied only the right-hand pages, have been able
to write and run programs on their first visit. The student should, in order to understand
all facets of the programming techniques described, also read the text on the left-hand
pages.

There are other features that should help the beginning student. The author usually
introduces only one new programming concept per program. Thus many of the programs
in the book are first written as a series of smaller programs, each of which serves as a step
in understanding the entire larger program.

Easy to understand programs have been used to illustrate the various programming
techniques discussed in the book. These programs are the solutions to problems drawn
from various disciplines, and all students, whatever their major field, should understand
them without difficulty. After students have been presented these programs, they will
have the ability to read optional sections in which these same techniques are applied to
more advanced programs.

The author also includes examples of common programming mistakes made by
beginning students when they are not explicit enough in translating their thoughts into
programming instructions. The author has found this type of example to be an effective
teaching technique.

Since one of the most difficult parts of learning FORTRAN is the mastering of the
input/output statements, these statements are introduced early in the book. Their ram­
ifications are explained as the programs demand it. Thus the reader is exposed to
input/output concepts gradually. Then in Chapter 8 the author explains the input/output
capability of FORTRAN in great detail.

Sound programming techniques, including programming style and its logical exten­
sion, structured programming, aid the programmer in all stages of program writing: the

XIII

xiv Preface

design, writing, debugging, and maintenance of programs. Sound programming tech­
niques are emphasized from the beginning, and they are introduced as they are needed
and as the statements being discussed allow their use. Chapter 10 is devoted to the
application of structured programming in the design and writing of programs. Also
discussed in that chapter are top-down design, top-down testing of programs, and the
HIPO diagram.

At some point the FORTRAN programmer should understand round-off errors and
significance as they relate to the bit configuration of the computer being used. The greater
part of Chapter 12 is devoted to a discussion of these concepts, although the effect of
round-off errors is introduced early in the book.

Almost the entire book is devoted to a discussion of American National Stan­
dard (ANS) FORTRAN. Since some students will be using Standard Basic FOR­
TRAN, which has fewer instructions and which consequently can be used on machines
which have less memory, any statement that is described and is not available in Standard
Basic FORTRAN is footnoted as such.

The features of the WATFOR and WATFIV compilers are described as well as features
of WATFIV-S (the IF-THEN-ELSE and the WHILE-DO) along with their ANS analogs.
Many features of WATFOR/WATFIV/WATFIV-S have been incorporated into the proposed
ANS X3.9 FORTRAN language revision (1977), and thus even the reader who will not be
using WATFOR/WATFIV/WATFIV-S might want to take more than a casual interest in
sections describing these compilers because of their applications to the proposed ANS
compilers.

Those teachers who do not intend to use all the chapters in the book may be
interested in knowing that the last four chapters—Chapter 10 (structured programming),
Chapter 11 (The COMMON and the EQUIVALENCE statements), Chapter 12 (Sig­
nificance, DOUBLE PRECISION, and COMPLEX numbers), and Chapter 13 (More
Input/Output)—can be read in any order.

We have included in the appendices material that all readers might not have use for,
e.g., control cards for the IBM 360/370 and time sharing.

It is a pleasure to thank Professor J. T. Schwartz and Professor Max Goldstein for
their friendship, their many kindnesses and for their constant support while I was writing
this book; and H. David Abrams and Professor Carl F. R. Weiman for acting as a
sounding board for many of my ideas. It is also a pleasure to thank Jeffrey Akner and his
computer facility staff for their cooperation and Professor Robert Richardson and Profes­
sor George Basbas for granting me free time on their computer.

Tò the Reader

This book has been written on the premise that it is at times easier to learn a subject
from pictorial representations supported by text than from text supported by pictorial
representations. With this in mind, beginning with Chapter 2 we have used a double page
format for our presentation. On the left-hand page (we call it the text page) appears the
text, and on the right-hand page (we call it the picture page) appears the pictorial
representation, consisting mostly of programs and tables.

Each picture page was written to be as self-contained as possible, so that the reader,
if he so desires, may read that page first and absorb the essence of the contents of the
entire double page before going on to read the text. The text page consists of a very
thorough discussion of the programming techniques presented on the picture page. It
refers to parts of the programs and tables on the picture page; when reference is made on
the text page to a given line of print on the picture page, that line—whenever it is feasible
to do so—is reproduced in the text to promote readability. Students who have a previous
background in programming languages and others who understand the picture page
completely may find that in some chapters they can skip the text (left-hand) pages and
concentrate on the picture pages.

The following techniques are used as aids in making the picture page self-contained:
1. As many as possible of the ideas discussed in the text are illustrated in the

programs and tables. The captions beneath these capsulate much of what is said in the
text.

2. Words underlined in the captions describe lines underlined in the figures. To
illustrate this, part of Fig. 2.2a is reproduced below.

VAR1 =11.4
VAR2 = 20.2
STOP
END

Figure 2.2a. In the program the
number 11.4 is assigned to the vari­
able VAR1 and 20.2 to VAR2 in the
assignment statement.

The statements VAR1 =11.4 and VAR2 = 20.2 are underlined to show that they are

xv

xvi To the Reader

described by the words underlined in the caption. Thus they are both assignment state­
ments.

3. To the right of most programs appears a table that describes what effect certain
statements in the program have on the computer's memory. For instance, the following
table describes the effect that VAR1 =11.4 has on the memory:

DESCRIPTION VAR1
VAR1=11.4 11.4

We see from the table that this statement caused the number 11.4 to be associated with
VAR1 in the computer's memory. The line-by-line analysis afforded by these tables
should aid the reader in understanding the program.

1
Introduction to Computers
and Programming

1.1. General Remarks

If you wished to categorize the times we live in, in terms of the technological
advance that most affects our lives, you would call our age the age of the computer; the
computer is all encompassing. For instance, in business some of the uses of computers
are for billing, check writing, and inventory control; every large organization uses
computers to process its records. In another realm—science and engineering—there are
two spectacular examples of the use of computers: (1) The multitude of calculations that
enabled the space program to put a man on the moon were done by computers. (2) The
pictures taken on Mars by the Viking lander were reconstructed on earth by computers.

In order to solve a problem, the computer follows a set of instructions called a
program. The people who write these programs are called, appropriately, programmers.
The form that the instructions in the program take depends on the programming language
used. It is the purpose of this book to teach you to program in FORTRAN. The name
FORTRAN is taken from FORmula TRANslation. FORTRAN was developed in the
1950s; as the name implies, it was devised as a language for solving mathematical and
mathematics-related problems. FORTRAN is used today to solve problems in mathemat­
ics, the physical sciences and engineering, the social sciences and linguistics, and other
related fields.

The type of computer used in an overwhelming number of applications solves
problems and processes information by manipulating digits; hence, this type of computer
is called a digital computer. A FORTRAN program is run on a digital computer.

So that you may understand the relation of FORTRAN to the computer, we first
briefly describe computers. One way of picturing a computer is as a maze of on-off
electrical switches connected by wires. Thus you might imagine that if a programmer
wished to instruct a computer to do something, he would have to feed it a program
composed of a series of on-off types of instructions. As a matter of fact, the first programs
were written like this. The type of language that uses this form of instruction is called
machine language. In its most primitive form, a program written in machine language
consists of strings of O's and l's, where a zero represents an open switch, and a one

1

2 1. introduction to Computers and Programming

represents a closed switch. As you can surmise from this brief description, learning to
write programs in machine language can be very difficult. Moreover, even once you
master it, writing in machine language can be very tedious. For this reason, computer
languages closer in form to the spoken word—in our case, English—and to algebra, have
been devised. The most widely used of these languages is FORTRAN. Computer lan­
guages closer to the machine are called low level languages. An example of a low level
language is machine language. Computer languages similar in form to how we express
ourselves, either by the spoken word or by mathematical symbols, are called high level
languages. FORTRAN is a high level language.

A program written in FORTRAN cannot be directly understood by the computer; it
must first be translated into machine language. A special program does this. It is called a
compiler, and is already present in the machine when we feed the computer our program.
Once a program has been translated, we say that it has been compiled. The original
FORTRAN program is called the source program, and the translated program is called
the object program.

FORTRAN has grammatical rules that must be followed by the programmer. These
rules are similar to those in English that govern the sequence of words in a sentence, the
punctuation, and the spelling—we shall learn these rules in later chapters. Before the
compiler translates your program, it checks whether you have written your program
instructions according to the grammatical rules. If you make grammatical errors in
writing an instruction, don't worry; the compiler has been written so that it will inform
you of these. Programmers refer to grammatical errors as compilation errors or compile-
time errors. Your program must be free of compile-time errors before the compiler will
translate your program.

We now describe the main components of the computer. Essentially, the computer
consists of an input unit, a memory unit, a logical unit (or arithmetic unit), an output
unit, and a control unit. Our program is communicated to the computer through the input
unit. All the mathematics and decisions in the program are done in the logical unit. The
program itself and the numbers it processes are stored in the memory unit. The computer
communicates the results of our program to us through the output unit. The control unit
directs the activities of the other four units. The control unit and the logical unit are
referred to collectively as the central processing unit (abbreviated as CPU). The word
hardware is used to describe the physical components of the computer, such as these
units, whereas the word software is used to describe the programs. We shall use the word
system to describe the programs, such as the compiler, that process the programs you
write.

1.2. The Keypunch

The first, and still the most widely used, means of communicating a program to the
computer is to punch the program instructions on a card. The device we use to do this is
called a keypunch. In Fig. 1.1 we show a typical keypunch; and in Fig. Ì.2, the keypunch
keyboard.

1. Introduction to Computers and Programming 3

Figure 1.1. The IBM 029 keypunch. (Cour­
tesy of IBM.)

ti
•»S? *VXÎ J* m
Sii' " i f ^ Ν ' Τ y

CtfAft

φ-Έ*

Figure 1.2. The IBM 029 keypunch keyboard.
(Courtesy of IBM.)

4 1. Introduction to Computers and Programming

In order to operate a keypunch, we must first place a batch of computer cards in the
hopper—which is on the right of the keypunch. There is a clamp that will press the cards
against the front of the hopper. When we press the FEED button, one card will be
released from the hopper into the window directly beneath the hopper. If we press the
FEED buttton again, a second card will be released from the hopper, and the first card
will be properly positioned in the window so that we can start punching the card. An
alternative approach for readying a card so that we can punch it is to press the FEED
button and then the REG button.

After this preliminary procedure has been carried out, each time we press a key that
has a symbol on it not only will that symbol be printed on the top of the card, but, more
important, one or more rectangular holes corresponding to the symbol will be punched in
the same column in which the symbol is printed. The printing on the card is of no
consequence to the computer; only the holes are important. As we punch symbols on the
card, the card will be advanced farther and farther into the middle window. In Fig. 1.3 we
show some symbols that can be punched on a card and the holes that correspond to these
symbols. As we see, a card is subdivided into 80 columns.

ABCDEFGHIJKLMNQPQRSTUVWXYZ 123456789Ö = , . 0 * / + - "
l l l l l l l l l I I I

mun i i i i
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 | | | | | | | | 0 0 0 O O O O 0 O O | 0 O | O | O O | O O O O O O O O 0 0 O O 0 0 O 0 0 O 0 0 O O O 0 O 0 0 C 0 0 0 0 0 0 0
1 2 3 4 S I 7 I 9 18 1112 13 M IS l i 17 19 19 20 21 22 23 24 25 2$ 27 21 21 30 31 32 33 34 35 36 37 313140 4142 4344454*47 »149 50 SI 52 53 54 55 59 5/59 59 60 91921314 95 99(7 8199 70 71 72 73 74 75 76 77 7179 99

|1 1 111 1

2 1 2 2 2 2 2

3 3 1 3 3 3 3

4 4 4 1 4 4 4

5 5 5 515 5

6 6 6 6 6 1 6

7 / 7 7 7 7 1

8 8 8 8 8 8 8

9 9 9 9 9 9 9
1 2 3 4 5 9 7

1 1 | 1 1 1 1 1 1 1 1 1 1 I 11 I I 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 ! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1

2 2 2 I 2 2 2 2 2 2 2 I 2 2 2 2 2 2 2 2 2 I 2 2 2 2 2 2

3 3 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3

4 4 4 4 4 | 4 4 4 4 4 4 4 | 4 4 4 4 4 4 4 4 4 | 4 4 4 4

5 5 5 5 5 5 I 5 5 5 5 5 5 5 I 5 5 5 5 5 5 5 5 5 I 5 5 5

6 6 6 6 6 6 6 | 6 6 6 6 6 6 6 | 6 6 6 6 6 6 6 6 6 | 6 6

7 7 7 7 7 7 7 7 I 7 7 7 7 7 7 7 I 7 7 7 7 7 7 7 7 7 I 7

2 2 2 2 2 2 2 2 2 2 2

3 3 1 1 1 3 3 3 3 3 3

4 4 4 4 4 1 1 1 4 4 4

5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6

7 7 77 7 7 7 7 7 7 7

I 8 8 8 88 8 8 8 l 8 8 8 8 8 8 8 l 8 8 8 8 8 88 8 8l8 8 8 l l l l l l 8 8 8

9 l 9 9 9 9 9 9 9 9 l 9 9 9 9 9 9 9 l 9 9 9 9 9 9 9 9 9 1 9 99 9 9 9 9 9 9 9 9
1 9 10 11 H U M ISM Π «19202122 23 24 25 29 2729293031 3233Ì43S3S 37 3· 39 40 41 4243444S4S 47

Figure 1.3. The characters punched on a card, and the ho]

2

3

444

5

6

7

111111

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5

6 6 6 6 6 6

7 7 7 7 7 7

8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 S 9 9 9 9 9 9 9 9 9 9 9 9 9 9
4150 51 WS354H9957M 9909 « β β · 4 » 9 · · 7 U M 70 71727374757*777179»

es that correspond to these characters.

The keypunch keyboard differs somewhat from a typewriter keyboard. For instance,
although you can type lower-case letters—for example, a—on a typewriter, you cannot
type them on a keypunch; when you depress the keypunch key marked A, a capital letter
A is punched on the card.

Some keys have two symbols on them, for instance,

1. Introduction to Computers and Programming 5

In order to punch the upper symbol on such a key, you must simultaneously depress the
key and the NUM key.

After you have finished punching all the information you want on the card, you press
the REL key. This transfers the card from the middle window to the left window. Then, if
the card is not automatically ejected into the hopper above this window, press REG.

Above the middle window is a drum that rotates as the card is punched. By placing a
specially punched card—called a control card—on this drum and then pressing the lever
below the drum to the left, you can, for instance, instruct the keypunch to automatically
make the card that you are punching skip to certain columns. If the control card is
completely blank, then when you press a key that has two symbols on it, the upper
symbol will be punched on the card. The keypunch is then said to be in numeric mode.

We now describe the function of the other keys.
ALPHA: If the keypunch is in numeric mode, then, when a given key and the

ALPHA key are depressed simultaneously, the lower symbol on the key will be punched.
DUP: This allows you to duplicate the punching from the card in the middle window

onto the card in the right-hand window.
BACKSPACE: This moves the card one column to the right, allowing you, for

instance, to punch a symbol in a column that you accidentally skipped. The
BACKSPACE key is below the middle window.

MULT PCH: This key allows you to punch more than one character in a column. If
you simultaneously depress this key and a second key, the card will not advance to the
left, and the symbol on the second key will be punched on the card in the same column in
which you punched the last symbol.

SKIP: If you are using an appropriate control card, then when this key is depressed
the keypunch advances the card to a predetermined column.

We shall explain the function of symbols that are neither numeric nor alphabetic as
we encounter them in the book. In the rest of the book, we shall refer to the symbols on
the keyboard as characters. There are six levers (or toggle switches) above the keyboard.
Under normal conditions, the five leftmost levers should be in the u ON" position. The
rightmost lever is used to clear the cards from all the windows and place them in the left
hopper.

6 1. Introduction to Computers and Programming

1.3. Input and Output Devices

Once all the instructions constituting a program are punched on cards, we can submit
the deck of cards so that they can be processed by the computer. We take the deck of
cards consisting of the program and the data and submit it to the computer center where it
is read into a card reader. In Fig. 1.4 we show a card reader. As the card reader reads
each card, it examines the holes in each column and thus determines which characters we
have punched on each card. It transmits this information to the central processing unit,
where the compiler determines what instruction we have punched on the card.

Once the program is compiled, unless we do not wish it, the instructions in the
program will be printed. If we include the proper instructions, the results of the program
will also be printed. The printing is done on the output device called aline printer. In Fig.
1.5 we show a line printer.

One device that can be used as both an input and output device is called a magnetic
tape drive; it is shown in Fig. 1.6. It is very much like a tape recorder, but instead of
recording voice patterns, it records arithmetic data in binary on magnetic tape. We can
write information on a magnetic tape and then at some later time read the information as
well.

The last device we discuss is called a disk. It is a metal disk on which we store
arithmetic information in binary on concentric rings on the disk. We can both read
information from a disk and write information on the disk. It is thus another example of
devices that can be used both as input and as output devices. A disk unit is shown in Fig.
1.7.

Figure 1.4. The IBM 3505 card reader. (Cour­
tesy of IBM.)

1. Introduction to Computers and Programming 7

Figure 1.5. The IBM 3211 line printer. (Cour­
tesy of IBM.)

Figure 1.6. The IBM 3420 magnetic tape unit. Figure 1.7. The IBM 3350 disk storage unit.
(Courtesy of IBM.) (Courtesy of IBM.)

8 1. Introduction to Computers and Programming

1.4. Solving a Problem

We now describe the solution of a problem that will give us a further insight into
computers and programming. The problem is to determine the regional distribution of
people standing in line in a certain city. That is, we wish to determine how many people
come from the north, south, east, and west sides of the city.

We begin by drawing on a piece of paper four boxes, which we label N, S, E, and W,
as shown in Fig. 1.8a. These letters represent north, south, east, and west, respectively.
We shall place in the appropriate box a number indicating the number of people we have
encountered from the north, south, east, and west sides of the city, as we question the
people in line.

The composition of the line is shown in Fig. 1.8a. The fact that the first letter on the
line is a W means that the first person comes from the west; the same type of corre­
spondence is applied to the rest of the line. The arrow indicates which person we are
questioning. Before reading the next paragraph, please study all of Fig. 1.8.

We first place a zero in each of the four boxes, as shown in Fig. 1.8a. This indicates
that we have not as yet encountered anyone from any section of the city. We ask the first
person in line which part of the city he is from. We are told "the west." We record this by
adding 1 to the 0 that is in the box marked W, obtaining 1. In order to record this
result, we erase the zero that was originally in this box and replace it by the digit 1. The
box for the west now contains 1, and the other three boxes still contain 0, as shown in Fig.
1.8b. We ask the second person where he is from; he answers, "the north." We thus add
1 to the 0 that is in the box marked N, obtaining 1. To record this, we erase the 0 in this
box and replace it by a 1, as shown in Fig. 1.8c. We see here that the rest of the boxes still
contain the numbers they contained in Fig. 1.8b. We ask the third person where he is
from; he answers "the west." We now add 1 to the 1 already in the box marked W,
obtaining 2. We then erase 1, the previous entry in the box, and replace it with 2, as
shown in Fig. 1.8d. We continue to the end of the line, applying this same procedure to
each person we question. After the last person has told us where he is from and the
information has been recorded, the boxes contain the numbers shown in Fig. 1.8e.

If this problem is to be programmed, the process we just described is called running
or executing the program. When the program is run on a computer, the function of the
boxes—that is, to contain or "store" the numbers—is played by the computer's memory
locations. Like the boxes, a memory location can store only one number at a time;
moreover, when the computer places a number in a memory location, it automatically
erases the location's previous contents—that is, the number that was previously stored
there. The placing of zeros in all the boxes at the beginning of the problem and the
addition of l's to the correct boxes is done by the computer's logical unit. The people
standing in line are called the data or input to the program. We type on the keypunch both
the program that solves the problem and the data for the program. After the program is
done—if we so instruct—the computer prints the results of the program on the line
printer. The control unit supervises the activities of all the units (except, of course, the
keypunch) as they process this problem.

Indeed, all the power of the computer is not exhibited in our example. For instance,
the computer can multiply many numbers together and get the results almost im­
mediately. It can do a multitude of complex calculations that man, without the aid of a
computer, would hesitate to undertake. In the following chapters we shall give many
examples of what computers can do.

1. Introduction to Computers and Programming 9

SOLVING A PROBLEM

Problem: Determining the regional dis­
tribution of people standing in line in a certain
city. The letter N denotes north, S denotes
south, E denotes east, W denotes west. The
arrow indicates which person is being ques­
tioned.

ÌW N

N

W

0 0 0 0
w

w Figure 1.8a. Composition of the line and the
contents of the boxes before questioning be­
gins. The arrow is at left of line, indicating that
questioning has not begun.

W N

E HD
N S

t
W N

N S

W

E

W

E

S S

m
w

s s
m
w

w

w

Figure 1.8b. We add l to the box for west after
questioning the first person.

Figure 1.8c. We add 1 to the box for north
after questioning the second person.

i
W N W

N S E W

W Figure 1.8d. We add l to the box for west after
questioning the third person. It now contains
2.

W N W S

m in m DG
N S E W

W j Figure 1.8e. The contents of all boxes after we
have questioned each person in the line.

10 1. Introduction to Computers and Programming

1.5. Algorithms

If we wanted to instruct someone how to conduct the survey discussed in Section
l .4, we would have to write a set of instructions for him to follow. In mathematics, a set
of instructions written to solve a problem is called an algorithm. Assuming that the boxes
have been already drawn, the algorithm for performing the survey is:

1. Place a zero in each box.
2. Ask a person which part of the city he is from.
3. Add 1 to the proper box.
4. If the person is the last one in line, stop the survey; otherwise repeat instruc­

tion 2.
Instruction 3 always follows instruction 2; and instruction 4 always follows instruc­

tion 3.
The sequence of how the instructions are performed for the first three people in line

and the results of performing these instructions are as follows:

Result
0 0 0 0
N E S W
We are told W
0 0 0 1
N E S W
Not the last person, so perform instruction 2
We are told N
1 0 0 1

Instruction
1

2
3

4
2
3

4
2
3 _ _ _

N E S W
4 Not the last person, so perform instruction 2

This process is continued up to and including the last person in line. Since he is from the
west, a 1 is added to the box marked "W". The algorithm then terminates as directed in
instruction 4.

A computer program is simply an algorithm written in a language the compiler can
understand. If the algorithm on which the program is based is incorrect, the program will
produce incorrect results.

N E S W
Not the last person, so perform instruction 2
We are told W
1 0 0 2

1. Introduction to Computers and Programming 11

1.6. FORTRAN, WATFOR, and WATFIV

The FORTRAN language has gone through several stages. The current stage, called
FORTRAN IV, incorporates practically all the features of the preceding stages. Most of
the computer manufacturers have their own version of the FORTRAN IV compiler in use
on their computers; in fact, it is possible to have more than one version of the FORTRAN
compiler used on a given computer. All these versions are similar except perhaps for
some auxiliary features.

What most compilers have in common are the programming instructions incorpo­
rated in what is called ANS (American National Standards) Standard FORTRAN. If you
wish to write a program that can be used on most compilers, you should write your
instructions so that they conform to ANS Standard FORTRAN. When a program can be
used by many compilers, we say that it is transportable. We have devoted almost this
entire book to a discussion of ANS Standard FORTRAN.

Another compiler, ANS Standard Basic FORTRAN, was written with the smaller
computers in mind. Many of the features of Standard FORTRAN are not included in
Standard Basic FORTRAN. We note this in footnotes to the text.

A compiler developed in Canada at the University of Waterloo simplifies some of the
features of FORTRAN that beginners find difficult—notably the instructions that accept
data from the card reader and prepare results for the line printer. This compiler is called
WATFOR. The name is taken from WATerloo FORtran. A more flexible version of
WATFOR is called WATFIV (WATerloo Fortran IV). We describe both WATFOR and
WATFIV.

All the instructions in ANS Standard FORTRAN were incorporated into WATFOR.
And all the instructions in WATFOR were incorporated into WATFIV.

A new compiler called WATFIV-S incorporates the features of WATFIV; moreover,
what is important is that it enables you to write your programs in a more elegant way
using what is called structured programming. We describe structured programming
features of WATFIV-S in appropriate places in this book. As of January 1977 one of these
features* has been incorporated into the proposed ANS FORTRAN revision.

The reader might wish to take more than a casual interest in the parts of the book that
discuss WATFOR/WATFIV and the other non-Standard features because they have been
incorporated into the proposed ANS FORTRAN revision.

* This feature is the IF-THEN-ELSE statement.

2
Introduction to FORTRAN

2.1. General Remarks

A FORTRAN program is a series of statements that are instructions to the computer.
Each statement is keypunched on a separate card.

In Fig. 2. la, we see a simple FORTRAN program written on a sheet of paper called a
coding form. This sheet will indicate to the person who keypunches the program, in
which columns to keypunch the different characters that comprise the statements in the
program. The first line of this particular program is a comment. If a C is keypunched in
column 1 of a program card, the computer will not process the card any further, but will
simply print what is on that card when it prints the statements in the program. Comment
cards are important in that they may aid someone reading the program to understand the
program; however, they are completely overlooked by the compiler. Thus a workable
FORTRAN program can be written without comment cards.

The rest of the lines represent FORTRAN statements that are processed. These are,
of course, the statements that are of primary importance in a program. (They will be
discussed in this chapter and other chapters of the book.) These statements may be
keypunched anywhere between columns 7 and 72 on the card; however, under normal
circumstances we begin simple statements in column 7 as shown in Fig. 2.1b. Figure 2.1b
indicates how the program of Fig. 2.1a would appear when keypunched on cards.

2.2. The Assignment Statement

In order to store a number in a location in the computer's memory, we give these
locations names, which are called variables, and assign numbers to them in the program.
In the program of Fig. 2.1a, the assignment of the numbers to variables is made by a
statement that includes an equals sign. It is called an Assignment statement. In the
assignment statements in this program, VAR1 and VAR2are the variables. In the first line
of the program, we assign the number 11.4 to VAR1 by keypunching

V A * 1 = 1 1 . 4

12

I t

paqsiuij si uieaSojd 3ΐμ \νψ J9jid
-moo aqi sjoiujsui Justuses QN3

 9
M1 P

J
^

D

uituSoad 3ψ uo
 4

3Aisnpui £/, pire /, uuinioo
U93MJ9q 3J3qMÄU^ psipund 9JB pJBO }U9UIlUOD
3ψ inq siusiuarejs nv 'spj^o uo psipundAsif
MOU ^Γ^ Sy jo unoj guipoo sqi uo
psjßaddi? jsjij reqi ui^jSojd sqx -qrz a-inSy

SA3qumu
uwnjoo 3ψ

n » ii u u u »i win u u n n u n si « CJ 2! ιιηκκ is is ss κ es κ is β; o i» i» ι> s» n u it i> ·> it it it n st κ et it it it « » a n u n u u a u n n u n s. n ti mi ιι ι ι 11 9| s » t ι, ι
o o o o o o o olo o o o o o o o o o o o o o o o o] o o o o ' o'ooooooo o o o o o o "1 o o o o y o o ' ooooooooooooo olio o o M
ηβκιςκςςκκ« κκ»ι»»»»»ο z> »*\» ^ it tf et st κ " at Tot a κ u x s§»z e u u οζ$ι II pf si ςι f]i tiQzi ||ft « T)'|'| ς

Naiv»iixN3ai ±J1IAI3±V±L NXdldJd
1H3I43JLE1S JJOMSISSS iD 3Sfl DKilhDHS waDaad 31dN

i« s; it ti si 5i n u\u II u a n a n si »3 » 29 u n » « is n s; κ es ÎÎ IS IS i» I» (» i» s» » t» » i» i» it ic it it st κ et 2t it it u n n κ S2 n ti u u n n n u n si H ti H ιι ιι ι ι 119 s » c ι (ι
0 0 0 0 0 0 0 0|0 Ί0Ι0 0 0 0i0

ir (Suai

<»κ K is x x K K K KK M H » » & n H n » » ü K ii XX ft tin \i OÎ u K iz K si K u u \i <z a i\ i\ t\ s\ n ti ÎI II m 6 » i"] s ς » t a

N0UV0UUN3CII
ÌN3IAI31V1S NVUldOd

»Ή-ΙΜ Il « Il 11 11 SI >1 tl II M H ti n SJ n ts 29 il H «Î t; iî is ss « tç 2s ις n ι> i? i» 9> ?» »» e» it i» o» st it it it «t κ et it it it u u LI K U ti u u u »i n n n n s: n ti u u m e ι
0 0 0 0 0 0 0 0|0 10 0 0 0 0 " 10]0 0 0 OJO

NJWJi*lS

w

> K K iS 9S SS »Ç fS X IS (K 6> 8> » » S» »» t» li I» » & K li 9f Qt K ft X If 0f 62 82 LI « « « ß ZZ 12 K Gl fl il 91 91 M fl 21

N0U.V3MI1N3C»

JJ_
1N3IAI31V1S NVdlüOd

•Qg'sa^ H (1 11 11 11 ςΐ »! Cl il II 11 H 19 19 99 fl »3 CS i! 19 C9 l> IS 15 K K t', £5 2! IÇ 85 1» C» I» 9» t» » t» 2» l> 0» It It It It St >t Ct It It K U tl U 92 U tl U II U U il II 11 II 51 »I tl 21 II il i 1 l |9|5 » ! i(I I

o o o o G o o olo o o o oooooooooooo oo' loio o o ο,ϋΐ
} βς »ς a κ ςς κ ts 2s ις ος a t* » 9» ç» ^ » 2> 1» » 6τ if it 9f st κ ft zt it ot 62 82 a x 92 « tz 22 12 02 6i ti n 91 si M ti 21 01 6 8 ί 9 S t f 2

NOUVajIlNMI
1N3IAI31V1S NVdltìOd

dois C9 tl 11 U 91 SI 11 t;|2l 11 11 I9 » l3 99 S-i »9 Cl 29 19 CJ IS IS IS SS SS »S tS 25 IS IS i> I» It it 5> »> t> 2» I» I» It It It It St »t Ct It It It i2 12 12 12 S2 »2 C2 22 12 92 il II II 91 SI »I tl 21 II 01 i I 1 |9|S M II

o o o o o o olo ololo o o do

simR

09 6S 85 IS 9S SS K fS ZS IS OS 6» 8» 2» 9» S» » ft- 2t Ifr ft 6Y 8f LÎ 9f Sf ft K Zf If Of 62 82 /Z 9Z SZ tZ fZ U \l 02 61 81 il 91 SI H fi ZI li 01 6 8 i : S »

N0l.LV3UU.N3ai
1N3IAI31V1S NVdldOd

ata

NVUOOUd 31dlAIIS V ΟΝΙΗΟΝΠαλ3Ή

pj^D UI9UIUIO0 B p^H^D SI
ji 3DU3H tu^aSojd 3qj jnoq^ sjuauiuioo z\UMi
o} J3iuui^jSojd 3qj Äq pasn isnf si }\ aajnd
-moo 3qj Aq p3ss30Ojd jou si ju3ui3reis \νψ
'\ uuirqoo ui sj^3dd^3 ^ u^q^V sju3iu3jHjs JO
SJSISUOO UlßjSOJd y UIJOJ SuipOD ^ UO U3UUM

l'I 1 1 1 1 1 1 1 1

.......... ... - - - - - - .. ^
, , , — ,J0S^

' ' ' ' ' ' ' ' >Υ·ΟΪ=ΎΜ/\
' ' ' $·π*ϊίν/\ 11

 Wß'HMl'SW JO ?W WWQH? tW'0oW yUHl\
11 0/ S9 09 ÇÇ OS it O* SC OC 5Σ 02 il 01 L1

1N3W3ÌV1S NVaiaOd

iff o)\ S 1
"M 838wnN
JlN3W31VlS|

09 tl

UOIj03(J!|U3p|

<0 860d

^ # UJJOJ PJOQ

μθυη^

DigdojQ

suoipnjjsui 6u!M3un^

8|oa| J8iuoioj6ojd

uuojbojd

waod ONiaoD Nvaiaod

lAIUOd ONiaOO V NO lAIVUOOUd BldlAIIS V ONI1IUM

£1 NVdldOJ oi uononpojwi z

Figure 2.1a. A simple FORTRAN program

http://N0l.LV3UU.N3ai

14 2. Introduction to FORTRAN

Thus we have instructed the computer to place the number 11.4 in the memory location
named VAR1. In a similar way, we next assign the number 20.2 to VAR2 by typing

VAR?=20 .?

Another way of describing what has happened in these two statements is to say that the
VAR1 has the value 11.4 and VAR2 the value 20.2.

We instruct the computer to compile and then execute (run) the program by typing
certain instructions on cards that are not part of the program. These cards are called
control cards, and in general they are used to instruct the compiler how to process our
program. Since different compilers require different types of control cards, we will,
throughout the text, simply describe a given program and then the results of executing it.
In the Appendix however, we describe how to write control cards for two systems:
FORTRAN IV on the IBM system 360/370; and WATFIV on the IBM system 360/370.

2.3. The END Statement

Sometime after we have submitted our deck of cards to the computer, the computer
operator will run our program. The compiler first checks each statement in our program
for grammatical errors until it reaches the END statement. The END statement indicates
to the compiler that we have finished writing the program, i.e., that no more cards will
follow. The END statement must appear as the last statement in any FORTRAN program.

2.4. The Listing of the Program; the STOP Statement

As the compiler checks each statement for errors it prints or lists the statement on
the line printer. In Fig. 2.2a we see a listing of the program. The program is listed exactly
as we keypunched it on the program cards. Since the first card in the program is a
comment card, the compiler (after it detects the C in column 1 of the card) simply prints
the contents of the card and does no checking; however, the computer does check the
other statements in the program of Fig. 2.2a. If a statement has an error in it, the compiler
will indicate that it has found an error by printing an error message. Since none of the
statements contain errors, the computer prints no error messages.

When the computer performs the task that a program statement has instructed it to
perform, the computer is said to execute the statement. We will soon see how the computer
executes the statements in the program.

After the compiler has checked the FORTRAN program for errors and has found
none, it translates the program ultimately into machine language (each FORTRAN
statement is translated typically into many machine language instructions). The computer
will then execute the translated program, beginning with the machine language equivalent
of the first noncomment card in our program and then executing the machine language
equivalent of each successive card until it reaches the STOP statement. The computer
follows this order unless we specifically instruct it in the program to follow a different
order; we will describe how to change this order later in the book. The STOP statement
instructs the computer to terminate the program.

2. Introduction to FORTRAN 15

USING THE ASSIGNMENT STATEMENT

Γ A SlMPLt PROGRAM SHOWING DSF OF ASSIGNMENT STATtMENT
V A R 1 = 1 1 . 4
VAR?=^0.?
STOP
f'MO

Figure 2.2a. In the program the number 11.4
is assigned to the variable VAR1 and 20.2 to
VAR2 in the assignment statements.

16 2. Introduction to FORTRAN

On most compilers, if you do not include a STOP statement in the program, the
compiler will insert one directly before the END statement when it translates the pro­
gram.

2.5. Executing the Program

We now follow the execution of the program in Fig. 2.2a with the help of the Table
for Fig. 2.2a. This table shows the values of the variables as each card of the program is
executed—the table is meant to be used as a learning aid; it is not part of the program.

Card Description VARI VAR2

1st Comment NOT EXECUTED
2nd VAR1=11.4 11.4 Undef
3rd VAR2=20.2 11.4 20.2

We see from the table that the first card—the comment card—is not executed. When
the second card is executed, the value associated with VAR1 in the computer's memory is
11.4; however, VAR2 has not yet been assigned a number. In such a case, we say that
VAR2 is undefined. This is reflected in the table by the entry Undef. When a variable
(such as VAR1 here) has been assigned a number, we say that it has been defined. When
the third card is executed, we see from the third line of the table that the value associated
with VAR2 is 20.2.

Once a variable is assigned a given number, it retains that assignment until the end of
the program unless we assign it a new number. Thus, we see from the third line of the
table for Fig. 2.2a that when the third card is executed, the computer remembers that 11.4
was assigned to VAR1.

When the computer encounters the STOP statement, it finishes execution. It usually
signifies this by printing some message on the line printer, such as EXECUTION COM­
PLETE, or some computer memory bookkeeping about the run of the program.

The results of the execution are shown in Fig. 2.2b. We note to our disappointment
that the computer has printed nothing in Fig. 2.2b except some computer memory
bookkeeping information indicating that the computer has finished execution.*

CORF USAGF OHJEfT XODF= 19? BYTtS*

Nothing else was printed because the computer executed the two assignment statements,
encountered the STOP statement, and stopped. Since we did not include a statement in
the program instructing the computer to communicate the assignments to us, it did not do
so. In the next section, we remedy this situation.

* This is only the beginning of the bookkeeping information as printed by the WATFIV compiler.

2. Introduction to FORTRAN 17

EXECUTING THE PROGRAM

C A SIMPLE PROGRAM SHOWING USF OF ASSIGNMENT STATEMENT
VAP1 = 11 .<♦
VAP2=20·?
STOP
t NO

Figure 2.2a. This figure is reproduced for the
reader's convenience.

Card Description VARI VAR2

1st Comment NOT EXECUTED
2nd VAR1 =11 .4 11.4 Undef
3rd VAR2= 20.2 11.4 20.2

Table for Fig. 2.2a. The status of the variable
in Fig. 2.2a given by card number during
execution. A comment card is never executed.
In the first assignment statement, the value of
VAR2 has not yet been defined. When the
second assignment statement is executed, the
computer remembers that 11.4 was assigned
to VAR1.

COPE USAGF OBJECT CODE* 19? BYTfcSt
Figure 2.2b. The results of running the pro­
gram of Fig. 2.2a. Since we did not include in
the program, a statement instructing the com­
puter to print the results, it did not. It simply
prints some bookkeeping information indicat­
ing that it has finished executing our program.
The STOP statement instructs the computer
to terminate the program.

18 2. Introduction to FORTRAN

2.6. The WRITE and FORMAT Statements

We now rewrite the program of Fig. 2.2a and add a statement instructing the
computer to print the numbers that have been assigned to VAR1 and VAR2. To do this on
a FORTRAN system or a WATFOR/WATFIV system, we add to the program the
statement

WRITE(6flO) VARltVAR2

as shown in Fig. 2.3a. The first number—here 6—in the WRITE statement refers to the
output unit we want information printed on; the 6 is the number most commonly
designated at computer centers to represent the line printer. The 10 refers to the state­
ment that describes the form (or format) in which we want our results to be printed.
Appropriately enough, this type of statement is called a FORMAT statement. In order to
make it possible for a statement (here a FORMAT statement) to be referred to by another
statement (here the WRITE statement), the "referred to" statement must have a state­
ment number—also called a label. We have chosen 10 to be the FORMAT'S statement
number:

10 FORMATUXt F10#3t F9t4)

However, we could have chosen any integer between 1 and 99999. The statement number
must be punched anywhere in the first 5 columns of the program card, as we have shown
in Fig. 2.3b for the FORMAT statement. We punch these numbers, however, starting in
column 2 in order to improve readability; we have not printed them starting in column 1,
since we want the person reading the program to be able to immediately distinguish
between statement numbers and the C in the comment statements.

The terms appearing between the parentheses in the FORMAT are called field
specifications. Here, 1X is the first field specification; F10.3, the second; and F9.4, the
third. When 1X appears at the extreme left of the FORMAT, as it does here, it instructs
the line printer to vertically advance the page one line before the line printer starts
printing. The 1X is said to be used for "carriage control." The F10.3 and F9.4 each
describe a group of columns on a line to be printed on the line printer. These groups of
columns are called fields. F10.3 describes the first field appearing on the left of the line
printed; F9.4 describes the second field from the left. Each of the two field specifications
beginning with the letter F refer to one of the variables in the associated WRITE
statement:

W P l T E (6 t l 0) VAN l tVAR?
10 FORMATUXt F 1 0 . 3 * l "9 # 4)

Since F10.3 immediately follows 1X, it refers to the first variable in the WRITE statement,
i.e., VAR1. Since F9.4is the second field specification to follow the 1X, it refers to VAR2,
the second variable in the WRITE statement. The F in both of these field specifications
indicates that the numbers that will be printed each have a decimal point in them; these

