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PREFACE 

This volume represents the Proceedings of a Conference on Ordinary Differential Equa-
tions held in Washington, D. C , June 14-23, 1971, and sponsored by the Mathematics Re-
search Center of the Naval Research Laboratory. 

The aim of this meeting was to stimulate research in ordinary differential equations by 
bringing together persons who were actively pursuing research in this field so they could ex-
change information and ideas. 

Approximately 90 mathematicians representing 8 nations attended the conference, 
whose program consisted of 30 formal lectures and 27 seminar presentations. In addition to 
the regular program, a number of informal talks were given. The invited formal lectures 
covered geometric and qualitative theory, analytic theory, functional differential equations, 
dynamical systems, and algebraic theory, with applications to control theory, celestial 
mechanics, and biomedicine. The seminar presentations were scheduled under 6 headings: 
functional differential equations, oscillations and dynamical systems, analytic theory, boun-
dary-value problems, stability and control, and differential equations on Banach spaces. 

It is always difficult to capture the spirit of a meeting merely by offering a collection 
of technical papers. In the present case, it is impossible. The combination of concentrated 
mathematical talent and more time than usual to think about and discuss mathematics at a 
meeting with many different colleagues proved to be a potent formula for success. 

My thanks go to all the authors whose papers appear here for the needed cooperation 
to produce this volume so relatively soon after the conference. A special word of gratitude 
goes to Dr. Paul B. Richards, Superintendent of the Mathematics and Information Sciences 
Division of NRL, who conceived of this conference and who gave unwavering support at 
every stage of the planning. Finally, no list of credits would be complete without noting, 
with appreciation, the contributions of Dr. William Gordon and Professor Philip Hsieh, who 
served with me on the Organizing Committee, the Office of Naval Research, for providing 
some financial assistance for the conference, and the staff at the Mathematics Research 
Center of NRL, who exhibited unfailing competence in a variety of tasks. 

Leonard Weiss 
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A GENERAL APPROACH TO LINEAR PROBLEMS FOR 

NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS* 

H. A. Antosiewicz 

This is a brief summary of a few recent results on the existence of 

periodic solutions of a differential equation of the form 

x = f(t,x) . 

My aim is to present these results as illustrations of a broad approach 

to various linear problems in which the desired solutions are required 

to satisfy a given set of much more general linear constraints. 

Throughout, I will stress basic ideas rather than utmost generality 

and omit all details, which may be found in the references listed at the 

end. 

1. Let me begin with the following simple result for a differential 

equation 

(1.1) x = Ax + g(t,x) , 

where A is a linear mapping in F n and g is continuous and suffi-

ciently smooth in IR χ ]Rn so that the solutions of (1.1) are uniquely 

determined by (and hence depend continuously upon) the initial condi-

tions. 

This work was done with partial support from the U.S. Army Research 
Office (Durham). 
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H. A. ANTOSIEWICZ 

(1.2) Suppose A is stable. There exist positive constants μ, ρ 

such that, if t ·-*· g(t,x) has period 1 for each x G ]Rn and 

||g(t,x)|| < μ for each t e [0,1] and ||x|| ̂  p, then (1.1) has at 

least one solution in 1R with period 1 . 

Actually, (1.2) is a special case of much more general results 

which, in their original form, are due to Poincare (cf. e.g., [1, 8, 

10]). 

(1.2) has been proved in many different ways. One method of 

proof applies Brouwer's fixed point theorem to the classical Poincaré 

mapping associated with (1.1) [1]. It hinges on the fact that there 

exists a real valued function V of class cJ in ]Rn such that 

(1.3) lim V(x) = +«> 
11x11++°° 

and, for every t G [0,1] and every x G F n with ||x|| ̂  p 

(1.4) (DV(x), Ax + g(t,x)) < 0 . 

Indeed, since A is stable by assumption, there is a positive definite 

quadratic form V(x) = (x, Px) in ]Rn for which (DV(x), Ax) = -(x,x) 

for every x e IRn. 

Another method of proof depends upon Schauder's fixed point theo-

rem and the admissibility, with respect to A, of the function space 

pair (P,P), where P is the Banach space of continuous mappings of 

IR into IRn which are periodic with period 1 [10]. For A being 

stable implies that the linear differential equation x = Ax + b(t), 

for each b e P, has precisely one solution v(b) that belongs to P; 

in fact, v i s a continuous linear mapping of P into itself. Thus, 

(1.1) has a solution Φ G P if and only if 

(1.5) Φ = v °ω(Φ) 

where ω: P -»■ P is the substitution mapping induced by g. 

Both of these methods admit various extensions to far more general 

settings. 

4 



ORDINARY DIFFERENTIAL EQUATIONS 

2. One such extension is the basis of Krasnoselskii's method of guiding 

functions [12, 13] for a differential equation 

(2.1) x = f(t,x) , 

where f is continuous and sufficiently smooth in ]R χ IRn so that the 

solutions are uniquely determined by the initial conditions, and 

t *-*· f(t,x) has period 1 for each x eIRn. 

(2.2) If there exist a real valued function V of class C in R 

and a constant p > 0 such that (1.3) holds and 

(2.3) (DV(x), f(t,x)) < 0 

for every t G [0,1] and every x eIRn with |x|| ï p, then (2.1) has 

at least one solution in IR with period 1 . 

Observe that the set {x G R n : V(x) ^ const.} need not be convex 

so that Brouwer's fixed point theorem cannot be applied directly, as in 

the case (1.2). Instead, the proof of (2.2) depends upon the notion of 

the degree of a mapping and the equivalent assertion to Brouwer's theorem 

that the identity mapping of the sphere in lRn is not null-homotopic. 

A similar argument has been used by Hartman [11] to prove the exist-

ence of a solution of a general functional equation 

(2.4) F(x) = 0 

where F is a continuous mapping, into ]Rn, of a compact convex subset 

K of IRn which contains the origin in its interior. 

(2.5) Let V be a real valued positive definite function of class C 

in K such that DV(x) = 0 if and only if x = 0. If, for every 
x G bdK, 

(2.6) (DV(x), F(x)) « 0 , 

then there exists at least one point x G K for which F(x) = 0. 

Hartman himself extended this result to equations in locally convex 

Hausdorff topological linear spaces and, in turn, deduced from this 

5 



H. A. ANTOSIEWICZ 

extension a general existence theorem on the solution of initial value 

problems for nonlinear ordinary differential equations in Hilbert space 

[Π]· 

3. The solution of an equation, such as (2.4), in Hilbert space can 

often be accomplished by the use of projection methods which yield solu-

tions to corresponding finite-dimensional equations (cf. [15]). Analo-

gous techniques can be employed for the construction of fixed points. 

Let H be a (real) Hilbert space with orthonormal basis (eK)* 

K £ 1, let H be the (closed) linear subspace of H spanned by 

e-, ,e2,... ,e , and denote by Pn the usual projection of H onto H . 

(3.1) Suppose f is a mapping of a closed bounded convex set K c H 

into H with these properties: 

(i) if (xn) is a sequence of points of K converging weakly 

to a point xQ G K, then (f(xn)) converges weakly to f(x0) ; 

(ii) for each integer n z 1 

Pn o f o pn(K) c Pn(K) . 

Then there exists at least one point x G K such that x = f(x). 

Indeed, the fixed point x G K is the (strong) limit of a sequence 

(xn) of projectional fixed points for which (*n>eK) = (f(xn), eK) for 

K = 1,2,....n. 

If K c H is simply a closed ball centered at the origin and f 

is defined everywhere in H, (3.2) may be satisfied by requiring that, 

for each x G U Hn , 

|(f(x), e K ) | * ακ|χ| + ßK K = l,2,...,n , 

where (ακ) » (ßj/) are sequences with 

Σοζ < 1 , Σβ^ < « . 

This last remark yields the following generalization of a classical 

result of Hammerstein [9] for the scalar differential equation 

(3.5) x" = f(t,x,x') 

6 



ORDINARY DIFFERENTIAL EQUATIONS 

where f is defined and continuous in [Ο,π] χ IR χ IR [6]. 

(3.6) Suppose there are positive constants a < 1, b such that 

(3.7) |f(t,x,y)| s a |x| + b 

holds for eyery (t,x,y) G [Ο,π] χ IR χ F. Then (3.5) has at least one 

solution φ in [Ο,π] for which 0(0) = φ(π) = 0. 

Originally, the condition (3.7) was required to hold with a < /y^. 

4. A general framework for the concept of admissibility is simple to 

formulate [4]. 

Let E, G be Banach spaces and let F be a Frechet space which 

contains G algebraically and topologically (in the sense that the topo-

logy of G is stronger than the topology induced by F on G ) . Suppose 

u: F n ■* F is an injective homomorphism, v: E ■> F a continuous linear 

mapping, and ω: G ■> E an arbitrary continuous mapping. 

The problem of determining points x G lRn and z G G such that 

(4.1) z = u(x) + v « ω(ζ) , 

is central to nearly all questions in the qualitative thoory of differen-

tial equations. Evidently, it has a solution only if there is a point 

x elRn and a point y G E such that u(x) + v(y) € G. Thus, it is 

natural to include among sufficient conditions for the solution of (4.1) 

the requirement that, for each y G E, there exist at least one point 

x GlRn for which u(x) + v(y) G G. This is the general notion of ad-

missibility, of the pair of Banach spaces (E,G), relative to the pair 

of mappings (u,v) [4]. 

If (E,G) is admissible, there exists a constant μ > 0 such that 

for each y G E there is a point x G ]Rn for which u(x) + v(y) G G 

and 

(4.2) y||u(x) + v(y)|| * |y|| . 

Moreover, if XQ = {x G]R
n: u(x) G G} and IRn = XQ Θ X1, there is a 

linear mapping s: E -*- X, such that vQ = u ° s + v is a linear mapping 

of E into G which is continuous. 

7 
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Thus, if (E,G) is admissible, it is sufficient to find, for a 

given point x0 G XQ, a point z G G such that 

(4.3) z = u0(x0) + v0 o ω(ζ) 

where uQ is the restriction of u to XQ. This can be done, by use 

of Banach's fixed point theorem when ω is lipschitzian, and by use 

of Schauder's principle when v has additional properties (cf. e.g., 

[4, 5, 10, 14]). 

In the latter case, vQ can often be represented as the product 

of two suitable (continuous linear) mappings vQ = v-j ° v«, where v-j 

maps an auxiliary space H into G and v2 maps E into H. This 

device is particularly effective when xQ is taken to be 0 G XQ in 

(4.3) or when vQ, in fact, is identical with v (and hence (4.1) 

reduces to (1.5)). For, in that case, instead of determining a solu-

tion Φ belonging to G for which 

(4.4) 0 = v, o M o ω(0) 

one first finds a point Ψ belonging to H such that 

(4.5) Ψ = v2 o ω o ν](Ψ) 

and then obtains the solution of (4.4) as Φ = ν-|(Ψ) G G. 

This method may be used to obtain the following improvement on 

(3.6) (cf. e.g., [12]). 

(4.6) Suppose there are positive constants a < 1, b such that f 

in (3.5) satisfies 

(4.7) x · f(t,x,y) < ax2 + b 

at eyery (t,x,y) G [Ο,π] χ ]R x]R. Then (3.5) has at least one solu-

tion Φ in [Ο,π] for which 0(0) = 0(π) = 0. 

Other illustrations of the use of (4.3) are given in [5] (cf. e.g., 

[2, 3, 4, 7]). 

8 
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DIFFERENTIAL RELATIONS 

D. Bushaw 

1. Introduction 

In the early 1930*s geometry, and more recently control theory, 

have drawn attention to conditions of the form 

(1) y1 € f(x,y) , 

where f is defined on 1R χ lRn and has as values subsets of Rn. A 

solution of (1) is usually defined as an absolutely continuous function 

0: I -*IRn (where I is some real interval) such that 

(2) 0'(x) e f(x,0(x)) 

almost everywhere on I. A classical solution of (1) is required to be 

continuously different!able (the derivative being interpreted as the 

appropriate one-sided derivative at endpoints, if any, of I ) and to 

satisfy (2) for all x G I. Much is known about the existence and other 

qualitative properties of solutions and classical solutions of (1) under 

certain assumptions - typically involving continuity, compactness, and 

convexity - on the function f (see references). 

The point of departure for this paper is a simple reinterpretation 

of (l)-(2). The condition (2) is equivalent to 

(3) (x,0(x), 0'(x)) e F , 

11 
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where 
F = {(x,y,z) e R x]Rn xlRn: z e f(x,y)} , 

and we may thus define solutions, or classical solutions, of the 

"differential relation" 

(4) U9y9y
l) e F 

just as before, with (3) in place of (2). In the absence of any 

special assumptions on f, the set F in (3) or (4) may be a per-

fectly arbitrary subset of R χ R n χ Rn (or, as we shall say hence-

forth, of R 2 n + 1 ). 

For simplicity, we shall consider only classical solutions of 

(4). 

Let V denote the set of all continuously differentiate func-

tions 0: I + Rn, where I is some interval (connected subset of 

F having at least two points) which may vary with Φ and which, 

accordingly, will usually be denoted by L· . We define a map W 
9n-4-l 

from V into the collection of all subsets of IR by 

(5) W(0) = {(χ,Φ(χ),Φ'(χ)): x e Ιφ] . 

The range of this map, W(P), will be denoted by W. 

With these notations, a classical solution of (4) may be defined 

simply as a Φ e V such that W(0) c F. 

In fact, the map from W into the collection of subsets of 

R x Rn induced by the projection (x,y,z) -»■ (x,y) is an inverse for 

W, which accordingly is one-one. Thus without real loss we may think 

wholly in terms of subsets of IR n and regard as solutions of (4) -

the word "classical" will be omitted henceforth - those w ^ W which 

are contained in F. 

The situation may now be described as follows. We have a collec-

tion W of subsets of R n which is universal in the sense that it 

depends on no differential equation or differential relation, but in 

fact only on n ; we have a subset F of IR n whose definition 

involves no differentiation; and the problem is to learn something 

about those members of W that lie in F. This problem subsumes the 

study of all "generalized differential equations" (1), and in particular 

12 
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of all real ordinary differential equations. Moreover, the pattern 

could be extended to problems where Rn is replaced by some more 

general space. 

The rest of this paper will consist of some rudimentary and 

fragmentary observations based on this viewpoint. 

2. The Collection W 

It is useful to have a geometrical-relational characterization of 

the collection W. Such a characterization may be based on the concept 
p „ I "I 

of a wedge. Let PQ = ( X Q ^ O ^ O
^
 G

 ^
 (specifically, XQ G IR and 

yQ,ZQ eiRn ), and let ε > 0. The corresponding forward and backward 

wedges are: 

νε(ρο) = U x >y> z ) : x o < x < χο+ε> ly-yo"( x"xo ) zol < ε Ι χ - χ ο Ι > 
and |z-z0| < ε} υ {PQ} , 

V ~ ( P 0 ) = U x > y > z ) : χ ο - ε < χ < χο» ly-yo" ( x _ x o ) z o l < ε Ι χ - χ ο Ι 
and |z-z0| < ε} υ {PQ} . 

PROPOSITION 1. A subset w of lR2n+1 belongs to 0/ if and only if 

it is the graph of a function Φ: Iw~^IR
n x R n , where Iw is a real 

interval, which satisfies: for every xQ G Iw and ε > 0, there 

exists a 6 > 0 such that 

(χ,Φ(χ)) G ν"(χ0,Φ(χ0)) υ ν^(χ0,Φ(χ0)) 

for all x e Jy n [x0-<5, X Q + 6 ] . 

The proof is elementary, and is based directly on the definition 

of W. The concluding condition in Proposition 1 is a continuity con-

dition; the sets Ve(PQ) = V^( P Q ) U V^(PQ) form a basic system of neighbor-

hoods at each PQ G]R
2 n + 1, and thus define a topology Ty on IR n . 

The above condition is that the map x -»■ (χ,Φ(χ)) be continuous rela-

tive to the usual topology on IR and the topology Tw on IR 

Note that this is not equivalent to the continuity, in some sense, 

of Φ ; the topology T.. is not a product topology. In fact, this 
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topology is rather unpleasant: it is not locally compact, for example, 

and a translation of ]R2n+' is continuous relative to this topology if 

and only if its z-component vanishes. 

Topologies Tv + and Tv- may be defined analogously in terms of 

the sets V+(P0) and V^(P0). 

For a given n, W is an extremely rich cover of 1R n , as one 

would expect. For example, if P̂  = (x^y^z,) and Pp = (x2,y2,z2) 

are any two points of R 2 n + 1 with x, f x2, there exists a w£ftl 

such that {Ρ-ι,Ρο} c w ; it may be found by choosing carefully the 

coefficients (in !Rn ) in 0(x) = x°a + x^b + xc + d and taking 

w = W(0). 

Furthermore, it follows directly from the definitions that the 

restriction of every w e W to any subinterval of Iw again belongs 

to 0/; and that if w-j ,w2 G W and agree on IWj n I W 2 f 0, then 

w-j u w2 G W. 

3. Initial Value Problems 

For given F c F n and PQ = (Χπ5Υη»ζ0) G F, two questions 

naturally arise: 

The strong initial value problem. Does there exist a welil 

such that PQ G w c F? 

The weak initial value problem. Do there exist z G Rn and 

W G ( D such that (^η^η^η) G w c F? 

Plainly, when F is functional (i.e., the sets f(x,y) in (1) 

are singletons) there is no difference between the problems; so the 

distinction is rarely made. The following discussion will be limited 

mainly to the strong problem. 

From Proposition 1, it is clear that the strong problem has a 

solution at PQ only if PQ is a cluster point of F relative to 

the topology Xy. (Thus an F at every point of which the strong 

problem has a solution is perfect relative to this topology.) Similarly, 

if a w G W starts at PQ G F, then PQ is a cluster point relative 

to Tv+. The converse, as crude examples show, is false. 

Clearly, the strong problem will have a solution at a point 

PQ = (xQ>y09
zo) lf tnere exists a continuous function ψ from some 
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neighborhood of (XQJYQ) into F n whose graph lies in F and which 

satisfies zQ = ψ(χ0,γ0): for such a ψ, Peano's classical existence 

theorem establishes the existence of a φ e V such that 0'(x) =ψ(χ,0(χ)) 

and 0(χο) = yQ ; and then W(0) is a solution of the problem. One of 

Filippov's existence theorems for classical solutions works by giving 

sufficient conditions for the existence of such a ψ, and another 

adapts Peano's proof to a different set of conditions. Both are very 

general, but somewhat unsatisfactory because they derive conclusions 

that are essentially local in character (in ]R2n+1 ) from assumptions 

that are not. 

A sufficient condition for existence which is vastly more primitive, 

but more natural as far as it goes, is the following. 

PROPOSITION 2. If PQ 6 F, while r e K n and ε > 0 are such that 

(6) {(x,y,z): 0 < x-xQ < ε, |y-yQ-(x-x0)z0| < ε|χ-χ0|, 

|z-z0-(x-xQ)r| < ε|χ-χ0|} c.F , 

then there exists a solution of the strong problem that starts at PQ. 

Such a solution is W(0), where Φ is defined on a suitable 

interval by 

*(χ) = y0
 + (χ-χο)ζο + \ ( x " x o) 2 r · 

Not every member of W starting at a point PQ begins in such a 

pyramid (6), however. This is shown by the example defined by n = 1, 

0(0) = 0, 0(x) = x 5 / 2 sin(l/x) for x > 0. 

It does follow from Proposition 2 (and also from several preceding 

remarks) that at any interior point PQ of F, there are a great many 

solutions of the strong initial value problem. Thus the problem can be 

interesting only on the border F n 3F of F - interesting in the 

sense that there is any danger of nonexistence of solutions, or any 

possibility of their uniqueness. Both Proposition 2 and the Peano 

approach may be applicable at such points. 
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4. An Example 

Let us choose n = 1 and take F to be the set of all (x,y,z) 

satisfying the conditions 

y sin x - z cos x = 0 , 

y2 + z2 s 1 . 

Geometrically, F may be described as a twisted ribbon along the 

x-axis. This set has no interior, but at points where |y| < |cos x| 

the Peano theorem may be applied and the strong problem has a (unique) 

solution both ways. Points where |y| = |cos x| and 0 < x < π/2 

(mod π) are isolated points of F relative to the topology Tv+, so 

no solutions of the strong problem start at such points. (It is easy 

to show, although it does not follow immediately from anything in this 

paper, that certain solutions end at such points.) Similarly, solu-

tions start but do not end at points where |y| = |cos x| and 

-π/2 < x < 0 (mod π ) . It may be seen in various ways that there are 

no solutions at points (k7r, ±1, 0 ) . This leaves the points where 

x = π/2 (mod π ) . The section of F perpendicular to the x-axis for 

such x are segments where y = 0, |z| £ 1. Simple geometrical 

arguments show that all such points are isolated points of F relative 

to Tv except those where z = 0. Thus any solution W(0) such that 

(say) π/2 G Ιφ must satisfy not only φ(π/2) = 0 but 0'(π/2) = 0; 

and this is a conclusion that may not be obvious from the statement of 

the problem. (Of course there exists such a solution, namely the x-axis.) 

5. Conclusion 

The brief and elementary discussion offered here is intended 

merely to suggest a way of looking at ordinary differential equations 

and generalized differential equations that seems to have been used 

little, if at all, although in some ways it is natural enough. In at 

least one way it is decidedly unnatural: for problems usually repre-

sented geometrically in n or n + 1 dimensions, it uses a representa-

tion in 2n+1 dimensions. This alone would be ample to account for 
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its being a viewpoint toward which workers in the field would not have 

gravitated. 

Nevertheless, it has some promise as an angle of attack in dealing 

with the fundamental theory of ordinary differential equations and 

their generalizations, such problems as approximation, stability and 

other kinds of limiting behavior, control problems, and perhaps more 

subtle matters like the existence and structure of periodic solutions. 

If nothing else, it provides another way of feeding and guiding the 

intuition about these matters. 
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