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PREFACE 

Recognizing the extent and importance of current investigations on 
the role of hormones in atherosclerosis and the need for critical and 
informed communication between the investigators in this general field, 
the Endocrinology Study Section of the National Institutes of Health 
appointed a subcommittee to organize a conference that would bring 
together the various disciplines involved. This committee consisted of 
Col. Marshall E. Groover, Dr. Samuel Gurin, Dr. Robert T. Hill, Dr. 
Leo T. Samuels, Dr. Jeremiah Stamler, Dr. Alfred E. Wilhelmi, and Dr. 
Gregory Pincus, chairman. Aided by a grant made to the Endocrinology 
Study Section by the National Heart Institute, the committee organized 
a meeting which lasted from March 11th to March 14th, 1958. The 
meeting was held at the Alpine Rose Lodge in Brighton, Utah, with 
the kind cooperation of Dr. Leo Samuels and his colleagues at the Uni-
versity of Utah Medical School. 

The program of the meeting herein published involved the presenta-
tion of a series of papers and the recording of the discussions of these 
papers. This program was designed to cover five major aspects of re*-
search pertinent to the problem of hormones and atherosclerosis. First 
of all, the problem of cholesterol metabolism is discussed in various as-
pects, including the nature of cholesterol biosynthesis, the hormonal in-
fluences thereon, and certain considerations of cholesterol catabolism. 
Second, the role of hormones in lipogenesis and lipid transport, par-
ticularly in relation to atheromatous lesions, is discussed. Third, avail-
able data on the influence of various hormones on experimental athero-
sclerosis are reviewed. Fourth, the much discussed problem of the inter-
relationship between blood lipids and the endocrine state in animals 
and man is presented in detail. Finally, we have a series of papers on 
clinical-biological interrelationships important to the consideration of 
endocrine influences on human atherosclerosis. With this coverage of a 
wide range of investigations, it is hoped that a thorough airing has been 
given to fundamental data and the concepts which have arisen from 
these data. 

Stated in the simplest possible terms, there is abundant evidence 
that cholesterol biosynthesis, transport, degradation, and excretion may 
come under hormonal influence. Furthermore, different endocrine sys-
tems may have different effects upon these processes. Not all of the 
endocrine influences are clear cut and vividly definable. Also, the 
fundamental concept that the nature of cholesterol metabolism in the 
mammals affects in one way or another the phenomenon of atherosclero-
sis may be questioned either in detail or in extenso. Nonetheless, hor-

xi 
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monal influences on the basic processes are definitively indicated, and a 
discussion of these influences is clearly worth while. Again, it is elemen-
tary that one may establish atherosclerotic lesions along with accom-
panying blood phenomena in experimental animals. In these conditions, 
hormones may act both prophylactically and therapeutically. How rele-
vant the results with experimental animals are to human atherosclerosis 
is certainly a matter for discussion. 

Experimental data presented here, as well as a host of observations 
in the literature, demonstrate conclusively that the sex hormones, 
thyroid hormone, and adrenocortical hormones may definitively affect 
the level of circulating blood lipids in man. Although a correlation ap-
pears to exist between these blood lipid levels and the degree of de-
velopment of atherosclerosis, a major problem is whether the hormonal 
effects on lipid levels are also effects on tissue atherosclerosis. The 
possibility of a disengagement of the factors concerned with blood levels 
from those concerned with tissue lesion development certainly requires 
exploration. 

The cardinal question for therapy in atherosclerotic disease is the 
utility of hormones as therapeutic agents. This is certainly discussed in 
detail in the latter part of this book. However, equally important is the 
problem of the role of hormones in the etiology of human disease. At-
tempts at rational therapy thus far have perhaps ignored the pro-athero-
sclerotic effect of certain endocrine states. 

It is the hope of the committee that this presentation of the discus-
sion of the foregoing problems and related matters will be welcomed for 
purposes of orientation in this complex field. In addition, we feel that 
a stimulation to further critical inquiry may be one of the fruits of the 
efforts here incorporated. We believe that you will find in these pages 
clear evidence of the devoted pursuit of investigation on the part of the 
participants in the symposium. To these participants, the committee 
is extremely grateful. 

GREGORY PINCUS 

Shrewsbury, Massachusetts 
November, 1958 
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CHAPTER 1 

Biosynthesis of Cholesterol 

KONRAD BLOCH 

Department of Chemistry, Harvard University, Cambridge, Massachusetts 

If the problem of atherosclerosis were merely a matter of under-
standing the mechanism of cholesterol biogenesis, one would today 
indeed be entitled to optimism. Lately there has been considerable 
progress in the understanding of this biosynthetic process, and judging 
from the rate of advance, a knowledge of all the essential facts about 
cholesterol biogenesis now seems imminent. It will be useful to begin 
by pointing out the four major phases of cholesterol biogenesis which can 
be experimentally separated. 

The first of these is the branching reaction which involves the coupling 
of three molecules of acetyl-CoA (acetyl coenzyme A) to ß-hydroxy-ß-
methylglutaryl-CoA and its reduction to mevalonic acid (MVA). Over-
all, these reactions involve the elimination of two molecules of water 
(or CoA) and the reduction of a carboxyl function. In the second stage, 
MVA molecules are polymerized to the hydrocarbon squalene, which is 
the immediate acyclic precursor of the steroids. This over-all transforma-
tion is also reductive and entails the uptake of two hydrogen atoms and 
the elimination of twelve molecules of water and of six molecules of 
carbon dioxide. Stages 1 and 2, which cover the reactions from acetic 
acid to squalene, are thus anaerobic in nature, and it has indeed been 
shown by Bucher (3) that in isolated liver, kept under strictly anaerobic 
conditions, the transformations of acetic acid stop at the squalene stage. 
All subsequent reactions are intimately associated with the oxidative 
metabolism of the tissues because the various oxygen atoms which enter 
in the course of cholesterol synthesis have their origin in molecular 
oxygen. This is true for the cyclization of squalene, which is oxidative 
(24) and for the oxidative removal of the three branched methyl groups 
of lanosterol ( 15 ). One may estimate that the biogenesis of cholesterol 
comprises altogether 20-30 separate enzymatic steps (2) , only a few of 
which can now be studied at the enzymatic level. It is perhaps not sur-
prising that the early steps which are concerned with transformations 
of soluble intermediates have yielded more readily to enzymatic analysis 
than the conversions beyond squalene. 

The transformation of acetyl-CoA to acetoacetyl-CoA initiates the 
synthesis of both the sterols and of the higher fatty acids, but thereafter 
the two pathways diverge. Reduction to ß-hydroxybutyric acid directs 

1 



9 KONRAD BLOCH 

the 4-carbon precursors towards the higher fatty acids, while the coupling 
with a third molecule of acetyl-CoA affords the branched-chain building 
stones for terpene and steroid biogenesis ( 18 ). This separation of path-
ways applies not only to the molecular changes but also to the intra-
cellular distribution of the enzymes. Beta-hydroxybutyric acid formation 
takes place in the soluble part of the cytoplasm (11), whereas the con-
densation to hydroxymethylglutaryl-CoA is catalyzed by microsomal 
enzymes (18). Recently Rudney and his collaborators (7) have suc-
ceeded in closing the gap between hydroxymethylglutaryl-CoA and 
MVA by demonstrating the enzymatic reduction of the thioester portion 
of the dicarboxylic acid. The reductive steps of stage 1, which I men-
tioned earlier, thus refer to the conversion of a CoA ester first to the 
aldehyde stage and then to the stage of the primary alcohol. 

Mevalonic acid, which was first isolated as the acetate-replacing 
growth factor for Lactobacillus casei (27), is now firmly established as 
an effective and presumably obligatory terpene and sterol precursor (22). 
Comparing the structure of mevalonic acid with the structural subunits 
of squalene, one is tempted to look upon mevalonic acid as an incipient 
isoprene. Elimination of two molecules of water and removal of the 
carboxyl group will afford the substituted butadiene without change in 
oxidation state, and this is, in fact, what appears to happen enzymatically. 
Working with soluble extracts of autolyzed yeast, we have shown a 
requirement for ATP ( adenosinetriphosphate ) in the early stages of the 
MVA-squalene conversion (1) . Subsequently, Tchen (23) was able to 
demonstrate that ATP interacts with MVA to form a monophosphate 
ester which is relatively stable to acid and alkali, and therefore in all 
likelihood is the ester of a primary alcohol ( MVA-5-phosphate ). The 
further transformation of MVA-monophosphate, as determined either by 
the loss of the carboxyl group (C- l ) , or by squalene formation, requires 
another reaction with ATP, affording what appears to be a diphos-
phate of MVA ( 16 ). The two phosphorylation steps may be viewed as a 
means of facilitating the two dehydration steps by elimination of phos-
phate anion rather than of OH~. Our indications are that the immedi-
ately ensuing step is the removal of the carboxyl group, possibly with 
the concurrent elimination of a phosphate residue. While we lack direct 
evidence as to the structure of additional intermediates between MVA 
and squalene, the outcome of various experiments with heavy hydrogen 
as a tracer has encouraged us to formulate the mechanism for squalene 
synthesis in considerable detail (17). 

I have pointed to the fact that the terminal carbon atom of MVA 
(C-5) is reduced, and it seemed important to us to ascertain whether 
this state of reduction persists throughout the synthesis of the poly-
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isoprenoid chain. By preparing 2-C14-5-di-T-MVA, we were in a position 
to determine whether any hydrogen bound to C-5 is lost in the course of 
squalene formation. Had the hydroxymethyl group been oxidized either 
to aldehyde or to carboxylic acid, half or all of the carbon-bound tritium 
should have been lost. Analysis of the squalene derived from the doubly 
labeled MVA showed, however, that neither was the case (1) , but that, 
in fact, all of the labeled hydrogen was retained. This result was un-
expected because in all known carbon-carbon interactions at least one 
reactant carries a carbonyl function. In squalene synthesis, on the other 
hand, we seem to be dealing with the novel case of carbon-chain forma-
tion by condensation of two active methylene groups. Our results with 
doubly-labeled MVA and independent experiments with D 2 0 have led 
us to conclude that isoprene, presumably enzyme-bound, is formed by 
decarboxylation and phosphate elimination of MVA-diphosphate. Ac-
cording to our current views, three molecules of isoprene or isoprene-
enzyme complex condense concertedly in a cation-initiated process to 
form a sesquiterpenoid intermediate (C-15). This can stabilize either 
by proton elimination to farnesene, by the uptake of O H " to nerolidol 
or thirdly, by isomerization and OH~ uptake to farnesol. In this manner, 
the structures of the naturally occurring acyclic sesquiterpenes can be 
readily rationalized. 

The hydrocarbon farnesene in turn provides an attractive structure 
for the reductive dimerization of two sesquiterpenoid units to squalene. 
This condensation also is formulated as a concerted process, a proton 
attacking one C-15 unit and a hydride ion the other (17). The mech-
anism which I have presented, while speculative, is the only one which 
accounts for two, in our opinion, significant results, one of which is the 
retention of hydrogen at C-5 of MVA and the other the limited uptake 
of deuterium (3-4 atoms) by squalene synthesized in a D 2 0 medium. 
We recognize the risk of attaching considerable weight to a few isotopic 
data, yet we feel that our scheme, even if proven wrong in detail, is 
correct in principle, and therefore useful as a working hypothesis. If 
squalene synthesis should occur largely by concerted mechanisms, many 
of the postulated intermediates are likely to elude isolation because of 
their transient nature. The same dilemma exists for the tetracyclization 
reaction by which squalene is convented to lanosterol. In their brilliant 
theoretical paper, Ruzicka and his collaborators (19) formulate the 
transformation of squalene to lanosterol as a "non-stop" reaction that is 
initiated by activated oxygen and leads to the steroid structure in a series 
of concerted electron displacements. Our studies on the enzymatic 
cyclization of squalene to lanosterol have given firm experimental sup-
port to these postulates, and we concur with the view that the tetracyclic 
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ring system is established without the stabilization of partially cyclized 
intermediates (25). The transformation of squalene to lanosterol entails 
a rearrangement of the carbon skeleton requiring an intramolecular shift-
ing of either the methyl group at C-8 to the C-13 position or a shifting 
of two methyl groups to their adjacent position (from C-8 to C-14 and 
from C-14 to C-13). This important detail in the cyclization mechanism 
has now been settled in favor of the 1,2-methyl shift alternative (13), 
confirming the prediction by Eschenmoser et al. (6) that only a 1,2-
methyl shift is consonant with a fully concerted cyclization mechanism. 

Enzymatic studies on this interesting reaction, the system which we 
have referred to as the squalene-oxidocyclase system, have continued but 
have on the whole been disappointing. We appear to be facing here a 
problem familiar to students of steroid biogenesis and steroid trans-
formations, namely, the fact that these enzymes are intimately associ-
ated with the microsomal particles. In our laboratory, efforts to solu-
bilize either the cydizing system or the enzymes concerned with the 
demethylation of lanosterol to cholesterol have so far remained without 
success. For the case of squalene cyclization by liver microsomes, we 
have established a requirement for molecular oxygen—this being the 
source of the 3-hydroxy group—for a soluble enzyme which has been 
fractionated to some extent and may be a triphosphopyridine nucleotide 
(TPNH) oxidase, and finally for a heat-stable, but so far elusive, co-
factor ( 4 ). Here, as in other cases of enzymatic oxygenation, the mecha-
nism of oxygen activation remains obscure. It is worth noting that in 
animal tissues the squalene molecule cyclizes exclusively to lanosterol, 
i.e., in an asymmetric manner. In plants, the same acyclic precursor 
undergoes cyclizations in much greater variety, viz., to pentacyclic triter-
penes, symmetrical tetracyclic products, and to sterols as well. 

Lanosterol is a short-lived intermediate and rapidly undergoes oxi-
dative demethylation to cholestane derivatives, at least in liver. That 
the removal of the methyl groups at carbon atoms 4 and 14 is oxidative 
follows from the fact that these substituents are attached to quaternary 
carbon atoms. Therefore, structural considerations alone require an 
initial attack by oxygen. In line with this contention, we find that 
lanosterol is metabolically inert under anaerobic conditions and further-
more that there is stepwise methyl group oxidation by way of hydroxy-
methyl compounds, aldehydes, and carboxylic acid with eventual loss 
of C 0 2 to the corresponding nor- compounds (15). Last year we iso-
lated and described an intermediate in the lanosterol-cholesterol conver-
sion to which the partial structure of a 14-norlanostadienol was as-
signed (8) . By synthesizing the appropriate reference compounds, we 
have now been able to identify this C-29-sterol as A8'2 4-4,4-dimethyl-
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cholestadienol (9) . Thus, the double bonds remain in the 8-9 position 
during the first demethylation step. The elimination of the two methyl 
groups remaining at C-4 also involves successive oxidations, i.e., first an 
attack upon one methyl group, leading upon its removal to 4-mono-
methyl cholestane derivatives, observations in line with recent reports 
on the occurrence of 4a-methyl sterols in various natural sources (5, 14, 
26). Studying the demethylation of lanosterol, we noted that some of the 
intermediates had the properties of ketones. We therefore prepared 
various sterols labeled with Τ (tritium) in the 3a position in order to 
localize the stage at which the 3-hydroxy group is oxidized. On en-
zymatic conversion of 3ct-T-lanosterol or of 3a-T-14-norlanosterol to 
cholesterol the tritium was quantitatively lost. On the other hand, 
labeled hydrogen was fully retained during the conversion of 3a-T-
zymosterol to cholesterol, and it therefore follows that the 3-hydroxy 
-> 3-keto transformation takes place after the first of the three methyl 
groups has been removed from lanosterol. A confirmatory result is that 
4,4-dimethyl-A8'24-cholestadiene-3-one is a precursor of cholesterol, 
while lanostadienone is not (12). If 4-carboxy sterols are intermedi-
ates, as we suspect, then the presence of a keto group at the 3 position, 
β to the carboxy group, can be looked upon as a means of facilitating 
decarboxylation. It can be argued, on the other hand, that the methyl 
group at C-14 is too distant from the 3-oxygen function, and hence 
that in this case the necessary activation is provided by the 8-9-double 
bond. 

Zymosterol has the same relatively rare A8 > 2 4-double bond system as 
lanosterol, and it has therefore been logically regarded as the first fully 
demethylated cholesterol precursor. Zymosterol can be readily isolated 
from yeast and though the evidence that it is a normal constituent of 
animal tissues is not yet very strong, this sterol shows the metabolic 
activity expected from a normal cholesterol precursor (10, 20). The final 
structural alteration beyond zymosterol (assuming this to be an obliga-
tory intermediate) cannot be formulated with any assurance except 
that the occurrence and metabolic activity of desmosterol, A5 , 2 4-choles-
tadienol (21), strongly point to the reduction of the side chain double 
bond as the last step in cholesterol biogenesis. It is worth noting that 
the over-all change from zymosterol to cholesterol, though it furnishes 
a more reduced product, nevertheless is dependent on molecular oxy-
gen (10). As a mechanism for relocating the nuclear double bond 
from the 8-9 to the 5-6 position, a simple isomerization is therefore 
ruled out. The requirement for oxygen conceivably reflects the intro-
duction of an additional hydroxy group in ring B, most likely in allylic 
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position, in which case the 5-6 double bond would be newly introduced 
and established by elimination of water. 
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CHAPTER 2 

Some Aspects of the Biosynthesis of Cholesterol 
from Mevalonic Acid 

G. POPJAK 

Medical Research Council, Experimental Radiopathology Research Unit, 
Hammersmith Hospital, London, England 

This report is the result of the joint effort of our team consisting of 
J. W. Cornforth, Rita H. Cornforth, Irene Youhotsky Gore, L. Gosselin, 
G. Popjâk, and A. de Waard. Detailed accounts of most of the experi-
ments are contained in two papers to be published shortly in the Bio-
chemical Journal (3, 9) . Summaries of the results have already ap-
peared (2, 6, 8) . 

When two years ago we completed our studies on the distribution 
of acetate carbons in the ring structure of cholesterol biosynthesized 
from C1 4-acetate (4) , we could assign every carbon atom in the sterol 
to either the methyl or the carboxyl carbon of acetate [formula ( I ) ] . 
The pattern shown in formula ( I ) was in complete accord with the 
Woodward-Bloch hypothesis of cyclization of squalene to sterol. 

m m m m 
^ ^ Ν < 

m I m 
c m e 

m l I I 

/ N ^ \ / C m 

I I 
.m .m. m 

HO^ ^ c ^ 
( I ) 

In spite of a great deal of experimental work trying to implicate 
branched chain C-6 and C-5 acids, such as 3-hydroxy-3-methylglutarate 
(HMG), 3-methylglutaconate, iso-valerate, 3-hydroxyiso-valerate, 3-
methylcrotonate (dimethylacrylate), as the source of isoprenoid units 
used in the biosynthesis of squalene and sterol, no definite proof to this 
effect could be obtained. The situation was, however, changed very 
dramatically with the discovery of mevalonic acid (10) and identifica-
tion of its structure as 3-hydroxy-3-methylpentano-5-lactone (13, 14). 
As you are all aware, the similarity of the structure of mevalonic acid 
(MVA) to that of HMG prompted Tavormina et al (11) to test this 
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new substance as a precursor of cholesterol. Their discovery that 
DL-2-C 1 4-MVA was utilized for the biosynthesis of cholesterol in liver 
homogenates with an efficiency of about 40% made it very probable that 
at last the direct source of isoprenoid units had been found. We thought 
that a proof of this could be obtained in the surest way by ascertaining 
first whether squalene was also synthesized from M V A and if so, by 
determining the arrangement of the MVA-carbons in squalene. 

The news of the discovery of Tavormina et al. (11) reached us 
in England early in November of 1956, but since the methods for the 
synthesis of MVA were not published at that time, we had to develop 
these for ourselves. Dr. and Mrs. Cornforth worked out the synthesis 

W j 
C H 3| 

C = CH CH2 — CR, — C 
χ 

:ICH — CH., — 
I 

CH, 

I 
H 0 2C — CH2 -L CH., — CO 

Ε 
H 0 2C — CH 3 

(y) 

CHI3 

( w,w' ) 

( w,w' ) 
CH, 

I 
CO..H 

CH, 

H 0 2C - j CH 2 

Γ 
CO, 

(w) 

Τ 
CH, 

I 
C 0 2H 

(*) 

SCHEME 1. Degradation of squalene into acetone and levulinic acid and into 
further fragments. Only the first two isoprenoid units from one-half of the squalene 
molecule are shown. 

not only of MVA, but of all the anhydro compounds derivable from it; 
they were all labeled with C 1 4 in position 2 and MVA in position 1 
also. The anhydro compounds were made in order to test some of our 
ideas on the possible transformations of MVA during the biosynthetic 
reactions; I will discuss briefly the experiments with these substances 
at the end of my communication. We have been able to confirm the 
results of Tavormina and associates (11) without any difficulty and to 
show that liver homogenates under anaerobic conditions synthesized 
only squalene from 2-C1 4-MVA. Moreover, the efficiency of squalene 
synthesis from MVA anaerobically was as great as the synthesis of 
cholesterol aerobically. This result was very satisfying because it sup-
ported fully the view that squalene was an intermediate in sterol bio-
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synthesis, and it also enabled us to prepare a large batch of C1 4-squalene 
for chemical degradation. 

We degraded the sample of squalene biosynthesized from 2-C1 4-MVA 
by ozonolysis as described previously (5) . Acetone, levulinic acid, and 
succinic acid are the principal products of ozonolysis of squalene; of 
these only acetone and levulinic acid can be relied upon as arising 
from carbon atoms predicted by theory. The levulinic acid contains all 
five types of carbon atoms of the isoprenoid units of squalene, and con-
sequently its carbon-by-carbon degradation gives an answer as to the 
arrangement of isotopic carbon in squalene (Scheme 1). 

TABLE I 
DISTRIBUTION OF C

1 4
 IN SQUALENE BIOSYNTHESIZED FROM 2 - C

1 4
- M E V A L O N I C ACID 

Specific activity 
of total carbon Molar 
counts/min. at specific 

Compounds and fragments infinite thickness activity
0 

analyzed (A) (A X n) 
Squalene 788 ± 39 3940 X 6 

Acetone (w -f χ -f w')
b 

Methyl carbons (w, w') 1967 ± 98 1967) 
2080}

 4 0 47 
Acetic acid (to + x; w' + x) 1040 ± 52 

1967) 
2080}

 4 0 47 

Levulinic acid (w
f
 -f x -f- w + ζ + y) : 

4-Aminopentanoic acid 777 ± 39 3890 
Acetic acidd) (z -f y) 0 0 
Propionic acid (w' + χ -f w) 1323 ± 66 3975 
COOH of propionic acid (w) 3880 ± 194 3880 
Acetic acid(2) (w

f
 + x) 0 0 

a
 This was obtained by multiplying the values in Column A by the number (n) 

of carbon atoms contained in the compound analyzed. The molar specific activity 
of squalene is given as a multiple of 6 since squalene contains 6 isoprenoid units. 

b
 The letters in parentheses indicate the carbon atoms of isoprenoid units (cf., 

Scheme 1) . 

The results of such degradation are shown in Table I. It is seen 
that the molar specific activity of the acetone was equal to one-sixth 
of the molar specific activity of the squalene. Since the specific activity 
of the acetic acid, obtained from the acetone after the iodoform reaction 
and which contained equally carbons (w x) and (wr + x)9 was one-
half of that of the methyl carbons of acetone {w9 w')9 carbon atom χ 
contained evidently no C 1 4. The radioactivity of acetone is therefore 
either distributed between w and w' or is contained in only one of these 
carbons. 

The levulinic acid, which was assayed both as the 2,4-dinitrophenyl-


