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Preface 

Stochastic analysis consists of a study of different types of stochastic 
processes and of their transformations, arising from diverse applications. A 
basic problem in such studies is the existence of probability spaces supporting 
these processes when only their finite-dimensional distributions can be 
specified by the experimenter. The first solution to this problem is provided 
by the fundamental existence theorem of Kolmogorov (1933), according to 
which such a process, or equivalently a probability space, exists if and only if 
the set of all finite-dimensional distributions forms a compatible family. This 
result has been analyzed and abstracted by Bochner (1955), who showed it to 
be a problem on projective systems of probability spaces and who then 
presented sufficient conditions for such a system to admit a limit. The latter 
becomes the desired probability space, and this abstraction has greatly 
enlarged the scope of Kolmogorov's idea. One of the purposes of this book is 
to present the foundations of this theory of Kolmogorov and Bochner and to 
indicate its impact on the growth of the subject. 

An elementary but important observation is that a projective system 
uniquely associates with itself a set martingale. In many cases the latter can be 
represented by a (point) martingale. On the other hand, a (point) martingale 
trivially defines a projective system of (signed) measure spaces. Thus the 
Kolmogorov-Bochner theory naturally leads to the study of martingales in 
terms of the basic (and independent) work due to Doob and Andersen-
Jessen. However, to analyze and study the latter subject in detail, it is 
necessary to turn to the theory of conditional expectations and probabilities, 
which also appears in the desired generality in Kolmogorov's Foundations 
(1933) for the first time. This concept seems simple on the surface, but it is 
actually a functional operation and is nontrivial. To facilitate dealing with 
conditional expectations, which are immensely important in stochastic 
analyses, a detailed structural study of these operators is desirable. But such a 
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X Preface 

general and comprehensive treatment has not yet appeared in book form. 
Consequently, after presenting the basic Kolmogorov-Bochner theorem in 
Chapter I, I devote Chapter II to this subject. The rest of the book treats 
aspects of martingales, certain extensions of projective limits, and applica-
tions to ergodic theory, to harmonic analysis, as well as to (Gaussian) 
likelihood ratios. The topics considered here are well suited for showing the 
natural interplay between real and abstract methods in stochastic analysis. I 
have tried to make this explicit. In so doing, I attempted to motivate the ideas 
at each turn so that one can see the appropriateness of a given method. 

As the above description implies, a prerequisite for this book is a standard 
measure theory course such as that given in the Hewitt-Stromberg or Royden 
textbooks. No prior knowledge of probability (other than that it is a normed 
measure) is assumed. Therefore most of the results are proved in detail (at the 
risk of some repetitions), and certain elementary facts from probability are 
included. Actually, the present account may be regarded as an updating of 
Kolmogorov's Foundations (English translation, Chelsea, 1950, 74 pp.) 
referred to above, and thus a perusal of its first 56 pages will be useful. The 
treatment and the point of view of the present book are better explained by 
the brief outline that follows. A more detailed summary appears at the 
beginning of each chapter. 

After introducing the subject, the main result proved in Chapter I is the 
basic Kolmogorov-Bochner existence theorem referred to above. To facili-
tate later work and to fix some notation and terminology, a résumé of real and 
abstract analysis is included here. Occasionally, some needed results that are 
not readily found in textbooks are presented in full detail. Most of these 
(particularly Section 4) can be omitted, and the reader may refer to them only 
when they are invoked. Chapter II is devoted entirely to conditional 
expectations and probabilities containing several characterizations of these 
operators and measures. The general viewpoint emphasizes that the Kol-
mogorov foundations are adequate for all the known applications. This is 
contrasted with (and is shown to include) the new foundations proposed 
by Rényi (1955). Then the integral representation of Reynolds operators is 
given as an application of these ideas, to be used later for a unified study of 
ergodic-martingale theories. Chapter III contains extensions of the Kolmo-
gorov-Bochner theorem. The existence theorem of Prokhorov and certain 
other results of Choksi are also proved here. A treatment of direct limits of 
measures is necessary. This topic and infinite product conditional probabili-
ties (Tulcea's theorem) are discussed. The work in this chapter is somewhat 
technical, and the reader might postpone the study of it until later. Chapters 
IV and V contain several aspects of (discrete) martingale theory. These 
include both scalar- and vector-valued martingales, their basic convergence, 
and many applications. The latter deal with ergodic theory, likelihood ratios, 
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the Gaussian dichotomy theorem, and some results on the convergence of 
"partial sums" in harmonic analysis on a locally compact group. At the end of 
each chapter there is a problem section containing several facts, including 
important results in information theory, and many additions to the text. Most 
of these are provided with copious hints. 

References to the literature are interspersed in the text with (I hope) due 
credits to various authors, backed up by an extensive bibliography. However, 
I have not always given the earliest reference of a given result. For instance, all 
the early work by Doob is referenced to his well-known treatise, and similarly, 
certain others with references to the monumental work of Dunford-Schwartz, 
from which an interested reader can trace the original source. 

The arrangement of the material is such that this book can be used as a 
textbook for study following a standard real variable course. For this 
purpose, the following selections, based on my experience, are suggested: A 
solid semester's course can be given using Sections 1-3 of Chapter I, Chapter 
II (minus Section 6), Sections 1 and 2 of Chapter III, and most of Chapter IV. 
Then one can use any of the omitted sections with a view to covering Chapter 
V for the second semester. (This may be appropriately divided for a quarter 
system.) There is a sufficient amount of material for a year's treatment, and 
several possible extensions and open problems are pointed out, both in the 
text and in the Complements sections of the book. For ease of reference, 
theorems, lemmas, definitions, and the like are all consecutively numbered. 
Thus II.4.2 refers to the second item in Section 4 of Chapter II. In a given 
chapter (or section) the corresponding chapter (and section) number is 
omitted. 

Several colleagues and students made helpful suggestions while the book 
was in progress. For reading parts of an earlier draft and giving me their 
comments and corrections, I am grateful to George Chi, Nicolae Dinculeanu, 
Jerome Goldstein, William Hudson, Tom S. Pitcher, J. Jerry Uhl, Jr., and 
Grant V. Weiland. This work is part of a project that was started in 1968 with 
a sabbatical leave from Carnegie-Mellon University, continued at the 
Institute for Advanced Study during 1970-1972, and completed at the 
University of California at Riverside. This research was in part supported by 
the Grants AFOSR-69-1647, ARO-D-31-124-70-G100, and by the National 
Science Foundation. I wish to express my gratitude to these institutions and 
agencies as well as to the UCR research fund toward the preparation of the 
final version. I should like to thank Mrs. Joyce Kepler for typing the final and 
earlier drafts of the manuscript with diligence and speed. Also D. M. Rao 
assisted me in checking the proofs and preparing the Index. Finally, I 
appreciate the cooperation of the staff of Academic Press in the publication of 
this volume. 
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CHAPTER 

I 

Introduction and Generalities 

This chapter is devoted to a motivational introduction and to pre-
liminaries on real and abstract analysis to be used in the rest of the book. 
The main probabilistic result is the Kolmogorov-Bochner theorem on the 
existence of general, not necessarily scalar valued stochastic processes. Also 
included is a result on the existence of suprema for sets of measurable 
functions. Several useful complements are included as problems. 

1.1 INTRODUCING A STOCHASTIC PROCESS 

Stochastic analysis, in a general sense, is a study of the structural and 
inferential properties of stochastic processes. The latter object may be 
described as an indexed family of random variables {XnteT} on a 
probability space. This brief statement implies much more and contains 
certain hidden conditions on the family. To explain this point clearly and 
precisely, we use the axiomatic theory of probability, due to Kolmogorov, 
and show how the basic probability space may be constructed, with the 
available initial information, in order that a stochastic process may be 
defined on it. Other axiomatic approaches, notably Rényi's, are also 
available, but the methods developed for the Kolmogorov model are 
adequate for all our purposes. This will become more evident in Chapter II, 
which elaborates on conditional probabilities, where Rényi's model is 
discussed and compared. 

Thus, if (Ω, Σ, P) is a probability space, a mapping Xt: Ω -> 1R (real line) 
is a (real) random variable if Xt is a measurable function. To fix the notation 
and for precision, we shall present a resume of the main results from real 
analysis in Section 2, which will then be freely used in the book. Let Tbe an 

1 
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index set and {Xt,te T} be a family of random variables on (Ω, Σ, P). If 
f !,..., tn are n points from T and x l9 ..., xn are in R or are ±00, define the 
function Ftu tn, called the n-dimensional (joint) distribution function of 
(Xtl, ..., Xtn), by the equation 

Ffl,...ffn(xi, ...,x„) = P Q iv'XtMo) < *,·} (1) 

As n and the ί points vary, we get a family of multidimensional distribution 
functions {Ftlt...ttn, i fe T, w > 1}. Since {œ:Xt(œ) < 00} = Ω, from (1) we get 
at once the following pair of relations : 

*ii , . . . , in(X l> —>Xn-U ° ° ) = ^ ί ι , . . · , ί „ - ι ( Χ 1 ' ~">Xn-ll ( 2 ) 

^ , - , ^ ι ' • • • ' X Ü = ^ι , . · . , ί„ ( χ 1> " ·>*»«)> ( 3 ) 

where (ί1? ..., ί„) is any permutation of (1, ..., n). The functions {Ft, te T} are 
monotone, nondecreasing, nonnegative, and left continuous. Moreover, 
Filf...>in(+oo, ..., + 00) = 1 and Ftu^ tn(xl,x2, ..., x„_1? - 00) = 0. The re-
lations (2) and (3) are called the Kolmogorov compatibility conditions of the 
family {Ftu„.ttn:ti€T,n>l}. Thus any indexed family of (real) random 
variables on a probability space (or equivalently a stochastic process) 
determines a compatible collection of finite-dimensional distribution func-
tions whose cardinality is that of D, the directed set (by inclusion) of all 
finite subsets of T. 

The preceding description shows that even if the question of existence of 
a probability space (Ω, Σ, P) is not settled, it is simple to exhibit compatible 
families of distribution functions. It will then be natural to inquire into their 
relation to some (or any) probability space. To see that such families exist, 
let / i , .. .,/„ be positive, measurable functions on the line each of which has 
integral equal to 1. Define F1>2,...,n (=Fn, say): 

Fn(xl, ...,xn) — fi(ti)--Utn)dtn...dtv (4) 

It is clear that {Fn9 n > 1} is a family of distribution functions satisfying (2) 
and (3) with T= N there. A less simple collection is the Gaussian family of 
distribution functions given by 

C/n(xl5 ...,xn) — Cn 

* 1 

exp[- i ( i - *)K-\t - a)'] dtn... dtl9 (5) 

where K = (fefj·) is a real symmetric positive definite matrix, a = (al5 ..., <xn) is 
a point of R", Cn = [(2^"det(X)]"1/2, det(X) = determinant(K), and a prime 
denotes the transpose. An easy computation, which we omit, shows that the 
family {G„, n > 1} of (5) satisfies (2) and (3). Thus one can find many 



1.2. Résumé of Real Analysis 3 

compatible families of distribution functions on {W1, n > 1}. A fundamental 
theorem of Kolmogorov states that every such compatible family of distri-
bution functions yields a probability space and a stochastic process on it 
such that the (joint) finite-dimensional distributions on the process are 
precisely the given distributions. We shall prove this (in a slightly more 
general form) in Section 3. Thus the existence of a probability space is 
equivalent to the selection of a compatible family of distributions. 
Depending on the type of this family (i.e., Gaussian, Poisson, etc.), the 
probability space (Ω, Σ, P), or the stochastic process, is referred to by the 
same name. Let us first recall some measure theoretical results for con-
venient reference. 

1.2 RESUME OF REAL ANALYSIS 

In this section we present an account of certain results from measure 
theory, mostly without proofs. Our purpose is to fix some notation and to 
make certain concepts precise since the reader is expected to have this 
background. (The omitted proofs may be found in Halmos [1], Hewitt-
Stromberg [1], Royden [1], Sion [1], or Zaanen [1].) 

Most of the references to measure will be to the abstract theory set forth 
by Càrathéodory as follows. Let sé be a collection of subsets of a point set 
Ω for which 0 esé and let v. sé -► [R+ be a function such that τ(0) = 0. We 
define the set function μ on Ω by 

C GO 00 ^ 

μ(Α) = inf j £ τ(Β>) . B ^ ^ A Œ \J ΒΛ, A c= Ω, (1) 

where inf(0) = 4-00. We say that μ is generated by the pair (τ, sé). Then μ 
is an outer measure. Let Μμ = {A c Ω: μ(Τ) = μ(Α π T) + μ(Α* η Τ) for all 
Τ a Ω}. The following results holds. 

1. Theorem (a) The restriction of μ to Μμ, denoted by μ\Μμ, is σ-additive, 
and Μμ is a σ-algebra, containing the class of its μ-null sets (i.e., Μμ is 
complete)', 

(b) if sé is a semi-ring and τ is additive, then sé c Μμ and μ is an séa-
outer measure, i.e., for any A a Ω, μ(Α) = ϊηΐ{μ(Β):Beséa, B => A), where 
séa is the closure of sé under countable unions', 

(c) under the hypothesis of(b), μ\sé = τiffτis σ-additive', and 
(d) if μ(Ω) < co,for each A a Ω there exists a Beséaô (the closure of séa 

under countable intersections), B 3 A, such that μ(Β) = μ(Α). 
\Hence each A has a measurable cover B if μ is finite and the hypothesis of(b) 
holds.~] 


