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PREFACE 

This volume contains invited lectures of the NSF-CBMS Regional Confer-
ence on the Numerical Solution of Nonlinear Algebraic Systems with Applica-
tions to Problems in Physics, Engineering and Economics, which was held 
July 10-14, 1972. The host for the conference was the Department of Mathe-
matics, University of Pittsburgh and the principal lecturer was Professor Werner 
C. Rheinboldt of the University of Maryland. 

Professor Rheinboldt's lectures will appear in a companion volume, which 
will be published in the SIAM Regional Conference Series in Applied Mathe-
matics, as required by CBMS. Since his lectures did serve as the main theme of 
the conference, those contained in this volume serve fairly specific purposes. 
These purposes include motivating methods for solving nonlinear systems by 
examining their origins in methods for linear systems, discussing where nonlinear 
systems arise, reviewing methods for the nonlinear least squares problem, pre-
senting and reviewing specific methods for solving nonlinear problems, and 
reviewing the contractor theory for nonlinear systems. 

The conference committee which was responsible for the arrangements 
consisted of Professors George D. Andria and Martin J. Marsden, along with the 
editors. 

We gratefully acknowledge the support of the National Science Founda-
tion (Grant GJ-33612); the Conference Board of the Mathematical Sciences for 
their choice of the University of Pittsburgh as host for the conference; the 
understanding advice of the Academic Press staff; and the patience and fortitude 
of our typist, Miss Nancy Brown. We also acknowledge Professor Werner C. 
Rheinboldt for his thorough preparation of the principal lectures, his personal 
interest in and advice on the execution of the conference. Finally, we thank the 
participants in the conference for their enthusiasm and exhiliarating discussions. 
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NONLINEAR ALGEBRAIC EQUATIONS IN CONTINUUM MECHANICS 

W. F. Ames 

1.  Introduction.  

Nonlinear algebraic equations are not ubi-

quitous in continuum mechanics. However, they do 

occur regularly and in a variety of forms which are 

often difficult to analyze. The diversity of forms, 

ranging from complex polynomials to simultaneous 

transcendental forms, is discussed here by means of 

five examples. These correspond to mathematical 

models of problems in mechanics whose solution depends 

substantially upon the solution of nonlinear alge- 

braic equations. 

The first example arises during the stability 

analysis of a density stratified gas flow over a 

liquid. The possible occurrence of periodic free 

vibrations of a coupled nonlinear system generates 

the second set of nonlinear equations. The third 
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WILLIAM F. AMES 

example is that of diffusion in distinct regions, 

separated by a moving boundary or interface. Problem 

four concerns the approximate development, by col-

location, of an invariant solution for boundary layer 

flow of a viscous fluid. The last set of nonlinear 

equations is obtained when an implicit numerical 

method is employed to study equations of the form 

u = im (x,t,u,u ,u ). 
xx c t 

2.  Polynomials with Complex Coefficients  

(Sontowski et al., [14]). 

Consider two inviscid fluids in a steady 

state of horizontal streaming (x direction) and 

superimpose a disturbance upon this state. Assuming 

the disturbance to be small and neglecting terms of 

order higher than the first, we obtain six linear 

perturbation equations in six unknowns as a result 

of the physical requirements of flow continuity, 

incompressibility, momentum and interface kinematics. 

The method of normal modes, discussed by 

Chandrasekhar [6], is now employed. Solutions are 
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EQUATIONS IN CONTINUUM MECHANICS 

sought whose dependence upon x (horizontal direction), 

y (normal direction), z (vertical direction) and time 

t is given by 

(1) w(z) exp [i (kxx + kyy + nt)]. 

Upon substitution of (1) into the perturbation equa-

tions six equations are obtained which, by a process 

of elimination, reduce to one equation in one unknown. 

This equation is 

d
2  

2 d2U g~k2 dp  w  
I(11+~(U)1

--d-z

-2-1( }14 - 
k

xd 2
, r  dz n+kxU 

(2)  

+ r dz{
(n+k

xU) dz - 
k

xdz w)
- 0 

where w depends only on z and the product w times 

exp[i(kxx + k_y + nt)] is the perturbation of the 

z-component of velocity. The wave number k is 

defined to equal (k2 + 
k2)1/2. 

In addition it is 
x  y 

required that the quantity w/(n+kxU) be continuous 

across the interface and also that 
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WILLIAM F. AMES 

dU Ds{r(n+kcU) dz  pk
x dz 

w} 

(3) 

gk
2~

D   s(r) 
w  

g s n+k U s 
c 

where D (f) = lim [f -f ]  and z repre- 
s e+0 z=z +e z=z -e s 

s s 

sents the undisturbed interface position. 

Application of the above mathematics to the 

case described in Fig. 1 generates the equations 

2 

d 
2 b 

dz
- k2j1  ßg 2 w=0 z> 0 

dz c (n+kXUa) 

d2w/dz2 - kw = 0 

whose general solutions are 

w = A e
m+z m-z + B e  

a a 

z < 0, 

z > 0, 

w = 
Abekz 

+ Bbe

-kz 

z < 0, 

where Aa, Ba, 
b 

and Bb are arbitrary constants and 

1/2
m = +[(12 + k2 1 - gR  . 
+ (n+kXUa)2 

Boundary conditions disallow disturbances which 
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Fig. 1  The assumed stationary state 
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WILLIAM F. AMES 

increase exponentially as the outer bounds of the 

fluids are approached. Thus 

w= Be
m-z 

a 

w = Abe 
kz 

z > 0, 

z < 0, 

with the requirement 

Re 

that 

b
2 
l + k

2 

1- 
2/ 

gß )1/2 >
~  — 2 

n+k U ( x a) 

Continuity of w/(n+k U) across the interf ace leads 
x 

to the following solution in terms of one arbitrary 

constant A: 

w = A(n+kxUa)em-z z > 0, 

w = A(n+kxUb)e
kz 

z < 0. 

Substitution into the second interface condition, 

(3), yields the eigenvalue equation whose dimension-

less form is 

(4) r*bk(v+kxUa)2 - K(n+k*Ub)2 + [(1-r*) + sk] 

~~ 



EQUATIONS IN CONTINUUM MECHANICS 

2b 1/2 

= r*(n+k+Ua)
2 1 - 2 

(n+k*Ua) 

in terms of the eigenvalue v. The additional require- 

ment 

2b 

(5) 
Re 

(l - k 2 > b
k 

(v+k*Ua) 

completes the specification of the eigenvalue pro- 

blem. According to the definition, 

1/4 

_ + k2 _kc _ pa n _ 

 

(02 

kg 
n,k* _  

($'  T 
2 k = 

+k

2

]

K=
[(12  k 

2 
1/2'pk  gPb

k2, 

K ~3)2 

2 +k 

1/4 2  1/4 

_ _ G 
2 +k __ __ L [(02+k2~~ 
( )  
\/   Ua 

1/2 
Ua
,  Ub 

g g1/2 
Ub 

From the form of the disturbance in (1), it 

follows that the flow is unstable if and only if any 

one or more of the eigenvalues v has a negative 

imaginary part. For a complete stability analysis 

1/2 
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WILLIAM F. AMES 

the characteristic values of v must be examined for 

all values of the vector k = [kx,ky]. 

The nature of the eigenvalues must now be 

determined. With the substitutions 

(6) x = v+k*Ua,  h = v+k*Ub K-r
*ßk[k*~Ua-Ub)], 

Kr b  (1-r )+s 
(7) h~ 

= ,t k  2[k*~Ua-Ub)]2 + K_r 
k 

(K-r*bk) * k 

in (4) and (5) we find 

r* 2b 1/2 

(8) h2 + K-r
* 

b
k 

x2 1 2k h0 

and 

(9) Re(1 - 2bk/x2)
1/2 
? b 

which, in conjunction with the auxiliary relationship 

(10) x-h = (K/(K-r*ßk))[k*(Ua Ub)], 

is equivalent to the eigenvalue problem. Because of 

(9) this problem is nonalgebraic. Therefore, it is 

advantageous to construct a parent algebraic system 

k 
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EQUATIONS IN CONTINUUM MECHANICS 

possessing the eigenvalue problem as a subsystem. If 

all restrictions on Re(1-(2bk/x
2))1/2 

are removed 

then (8), together with (10), is equivalent to a 

fourth degree polynomial in v and this is taken as 

the parent system. Let us distinguish two branches 

of the parent system, calling our eigenvalue problem 

the principal or P-branch and the remainder of the 

system, where Re(1-(2Rk/x
2
))
1/2 

<  k' the subsidiary 

or S-branch. In mathematical form 

2 
h + 

R* 2b 

)3172 

2 k 2 = no
, 

0 K-r*ßk x 1 
x2 

P branch 

Re(1 

- 
2ßk 1/2 
x2  

R* 2ß 1/2 
2 

S-branch hR2 +  1 
2k 

= no 

Part 1 
Sl 2b 1/2 

0<Rel- 22
k <ßk, 
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