REAL-VARIABLE METHODS IN HARMONIC ANALYSIS

ALBERTO TORCHINSKY

Real-Variable Methods
 in Harmonic Analysis

This is Volume 123 in
PURE AND APPLIED MATHEMATICS
A series of Monographs and Textbooks
Editors: Samuel Eilenberg and Hyman Bass
A complete list of titles in this series is available from the Publisher upon request.

Real-Variable Methods in Harmonic Analysis

Alberto Torchinsky
Department of Mathematics
Indiana University
Bloomington, Indiana

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers
San Diego New York Berkeley Boston
London Sydney Tokyo Toronto

Copyright © 1986 by Academic Press. Inc ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS. ELECTRONIC OR MECHANICAL. INCLUDING PHOTOCOPY, RECORDING. OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM. WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, California 92101

United Kingdom Edition published by
ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road. London NWI 7DX

Library of Congress Cataloging in Publication Data

Torchinsky, Alberto.
Real-variable methods in harmonic analysis.
(Pure and applied mathematics)
Bibliography: p.
Includes index.

1. Harmonic analysis. I. Title. II. Series: Pure and
applied mathematics (Academic Press)
QA3.P8 510 s [515'.2433] 86-1096
[QA403]
ISBN 0-12-695460-7 (hardcover) (alk. paper)
ISBN 0-12-695461-5 (paperback) (alk. paper)

PRINTED IN THF (INITED STATES OF AMHRICA

To Massi

This page intentionally left blank

Contents

Preface xi
Chapter I Fourier Series

1. Fourier Series of Functions 1
2. Fourier Series of Continuous Functions 8
3. Elementary Properties of Fourier Series 13
4. Fourier Series of Functionals 16
5. Notes; Further Results and Problems 22
Chapter II Cesàro Summability
6. $(C, 1)$ Summability 28
7. Fejér's Kernel 29
8. Characterization of Fourier Series of Functions and Measures 34
9. A.E. Convergence of $(C, 1)$ Means of Summable Functions 41
10. Notes; Further Results and Problems 43
Chapter III Norm Convergence of Fourier Series
11. The Case $L^{2}(T)$; Hilbert Space 48
12. Norm Convergence in $L^{p}(T), 1 \leqslant p \leqslant \infty$ 51
13. The Conjugate Mapping 52
14. More on Integrable Functions 54
15. Integral Representation of the Conjugate Operator 59
16. The Truncated Hilbert Transform 65
17. Notes; Further Results and Problems 68
Chapter IV The Basic Principles
18. The Calderón-Zygmund Interval Decomposition 74
19. The Hardy-Littlewood Maximal Function 76
20. The Calderón-Zygmund Decomposition 84
21. The Marcinkiewicz Interpolation Theorem 86
22. Extrapolation and the Zygmund $L \ln L$ Class 91
23. The Banach Continuity Principle and a.e. Convergence 94
24. Notes; Further Results and Problems 100
Chapter V The Hilbert Transform and Multipliers
25. Existence of the Hilbert Transform of Integrable Functions 110
26. The Hilbert Transform in $L^{p}(\mathrm{~T}), 1 \leqslant p<\infty$ 115
27. Limiting Results 121
28. Multipliers 126
29. Notes; Further Results and Problems 132
Chapter VI Paley's Theorem and Fractional Integration
30. Paley's Theorem 142
31. Fractional Integration 150
32. Multipliers 156
33. Notes; Further Results and Problems 158
Chapter VII Harmonic and Subharmonic Functions
34. Abel Summability, Nontangential Convergence 167
35. The Poisson and Conjugate Poisson Kernels 171
36. Harmonic Functions 176
37. Further Properties of Harmonic Functions and Subharmonic Functions 181
38. Harnack's and Mean Value Inequalities 187
39. Notes; Further Results and Problems 191
Chapter VIII Oscillation of Functions
40. Mean Oscillation of Functions 199
41. The Maximal Operator and BMO 204
42. The Conjugate of Bounded and $B M O$ Functions 206
43. $W k-L^{p}$ and K_{f}. Interpolation 209
44. Lipschitz and Morrey Spaces 213
45. Notes; Further Results and Problems 216

Chapter IX $\quad A_{p}$ Weights

1. The Hardy-Littlewood Maximal Theorem for Regular Measures 223
2. A_{p} Weights and the Hardy-Littlewood Maximal Function 225
3. A_{1} Weights 228
4. A_{p} Weights, $p>1$ 233
5. Factorization of A_{p} Weights 237
6. A_{p} and $B M O$ 240
7. An Extrapolation Result 242
8. Notes; Further Results and Problems 247
Chapter X More about $\boldsymbol{R}^{\boldsymbol{n}}$
9. Distributions. Fourier Transforms 259
10. Translation Invariant Operators. Multipliers 263
11. The Hilbert and Riesz Transforms 266
12. Sobolev and Poincaré Inequalities 270
Chapter XI Calderón-Zygmund Singular Integral Operators
13. The Benedek-Calderón-Panzone Principle 280
14. A Theorem of Zó 282
15. Convolution Operators 284
16. Cotlar's Lemma 285
17. Calderón-Zygmund Singular Integral Operators 286
18. Maximal Calderón-Zygmund Singular Integral Operators 291
19. Singular Integral Operators in $L^{\infty}\left(R^{n}\right)$ 294
20. Notes; Further Results and Problems 295
Chapter XII The Littlewood-Paley Theory
21. Vector-Valued Inequalities 303
22. Vector-Valued Singular Integral Operators 307
23. The Littlewood-Paley g Function 309
24. The Lusin Area Function and the Littlewood-Paley g_{λ}^{*} Function 314
25. Hörmander's Multiplier Theorem 318
26. Notes; Further Results and Problems 321
Chapter XIII The Good λ Principle
27. Good λ Inequalities 328
28. Weighted Norm Inequalities for Maximal $C Z$ Singular Integral Operators 330
29. Weighted Weak-Type (1,1) Estimates for CZ Singular Integral Operators 334
30. Notes; Further Results and Problems 337
Chapter XIV Hardy Spaces of Several Real Variables
31. Atomic Decomposition 340
32. Maximal Function Characterization of Hardy Spaces 350
33. Systems of Conjugate Functions 356
34. Multipliers 359
35. Interpolation 363
36. Notes; Further Results and Problems 366
Chapter XV Carleson Measures
37. Carleson Measures 372
38. Duals of Hardy Spaces 374
39. Tent Spaces 378
40. Notes; Further Results and Problems 383
Chapter XVI Cauchy Integrals on Lipschitz Curves
41. Cauchy Integrals on Lipschitz Curves 392
42. Related Operators 408
43. The $T 1$ Theorem 412
44. Notes; Further Results and Problems 416
Chapter XVII Boundary Value Problems on $\boldsymbol{C}^{\boldsymbol{1}}$-Domains
45. The Double and Single Layer Potentials on a C^{1}-Domain 424
46. The Dirichlet and Neumann Problems 438
47. Notes 444
Bibliography 446
Index 457

Preface

This book is based on a set of notes from a course I gave at Indiana University during the academic year 1984-1985. My purpose in those lectures was to present some recent topics in harmonic analysis to graduate students with varied backgrounds and interests, ranging from operator theory to partial differential equations. The book is an exploration of the unity of several areas in harmonic analysis, emphasizing real-variable methods, and leading to the study of active areas of research including the Calderon-Zygmund theory of singular integral operators, the Muckenhoupt theory of A_{p} weights, the Fefferman-Stein theory of H^{p} spaces, the Burkholder-Gundy theory of good λ inequalities, and the Calderón theory of commutators.

Because I wanted this book to be essentially self-contained for those students with an elementary knowledge of the Lebesgue integral and since ideas rather than generality are stressed, the point of departure is the classical question of convergence of Fourier series of functions and distributions. Chapter I deals with pointwise convergence, Chapter II with Cesàro $(C, 1)$ convergence, Chapters III and V with norm convergence and Chapter VII with Abel convergence. Chapter IV contains the basic working principles of harmonic analysis, centered around the Calderón-Zygmund decomposition of locally integrable functions. Chapter VI discusses fractional integration, and Chapter VIII the John-Nirenberg class of BMO functions. A one semester course in Fourier series can easily be extracted from these first eight chapters.

From this point on our setting becomes R^{n}. In Chapter IX the Muckenhoupt theory of A_{p} weights is developed, and in Chapter X, in addition to briefly reviewing the previous results in this new context, elliptic equations in divergence form are treated. Chapter XI deals with the essentials of the Calderón-Zygmund theory of singular integral operators and Chapter XII with its vector-valued version, Littlewood-Paley theory.

Chapter XIII covers the good λ inequalities of Burkholder-Gundy, Chapter XIV the Fefferman-Stein theory of Hardy spaces of several real variables, and Chapter XV Carleson measures. Chapter XVI contains the Coifman-McIntosh-Meyer real variable approach to Calderón's commutator theorem and Chapter XVII one of its interesting applications, namely, the solution to the Dirichlet and Neumann problems on a C^{1} domain by means of the layer potential methods. This second half of the book is easily adapted to a one- or two-semester topics course in harmonic analysis.

A word about where the material covered in the book fits into the existing literature: The first part of the book is essentially contained in Zygmund's treatise, where the so-called complex method is emphasized, and precedes Stein's book on singular integrals and differentiability properties of functions; the second half continues with the material discussed in Stein's book. These are the two basic sources of reference that my generation of analysts grew up with.

The notations used are standard, and we remark here only that c denotes a constant which may differ at different occurrences, even in the same chain of inequalities. "Theorem 3.2" means that the result alluded to appears as the second item in Section 3 of the same chapter, and "Theorem 3.2 in Chapter X" means that it appears as the second item in the third section of Chapter X . The same convention is used for formulas.

In order to encourage the active participation of the reader, numerous hints are provided for the problems; I hope the book will be "user friendly." It is not meant, however, to make the learning of the material effortless; many of the ideas discussed lie at the very heart of harmonic analysis and as such require some thought.

It is always a pleasure to acknowledge the contribution of those who make a project of this nature possible. A. P. Calderón, a singular analyst and teacher, has always been a source of inspiration to me; his decisive influence in contemporary harmonic analysis and its applications should be apparent to anyone browsing these pages. My colleague B. Jawerth shared with me his ideas on how results should, and should not, be presented. My largest debt, though, is to the students who attended the course and kept me honest when a simple "the proof is easy" was tempting. They are Alp Eden, Don Krug, Hung-Ju Kuo, Paul McGuire, Mohammad Rammaha, Edriss Titi, and Sung Hyun Yoon. The manuscript was cheerfully typed by Storme Day. The staff at Academic Press handled all my questions promptly and efficiently.

CHAPTER I

Fourier Series

1. FOURIER SERIES OF FUNCTIONS

A trigonometric polynomial $p(t)$ is an expression of the form

$$
\begin{equation*}
p(t)=\sum_{|j| \leqslant n} c_{j} e^{i j t}, \quad\left|c_{n}\right|+\left|c_{-n}\right| \neq 0 . \tag{1.1}
\end{equation*}
$$

n is the degree of p and the c_{j} 's are (possibly complex) constants. Thus p is a continuous function of period 2π and is therefore determined by its values on $T=(-\pi, \pi]$, or any other interval of length 2π for that matter. On the other hand, given a trigonometric polynomial p of degree $\leqslant n$, we can easily compute the constants c_{j} by means of

$$
c_{j}=\frac{1}{2 \pi} \int_{T} p(t) e^{-i j t} d t, \quad|j| \leqslant n .
$$

This observation follows at once from the fact that

$$
\frac{1}{2 \pi} \int_{T} e^{i j t} d t= \begin{cases}0 & \text { if } \quad j \neq 0 \tag{1.2}\\ 1 & \text { if } \quad j=0\end{cases}
$$

A trigonometric series is an expression of the form

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} c_{j} e^{i j t} \tag{1.3}
\end{equation*}
$$

Since we make no assumption concerning the convergence of this series, (1.3) only formally represents a function of period 2π.

A Fourier series is a trigonometric series for which there is a periodic, Lebesgue summable function f such that

$$
\begin{equation*}
c_{j}=c_{j}(f)=\frac{1}{2 \pi} \int_{T} f(t) e^{-i j t} d t, \quad \text { all } j \tag{1.4}
\end{equation*}
$$

In this case we call the constants c_{j} the Fourier coefficients of f and denote this correspondence by

$$
\begin{equation*}
f \sim \sum_{j} c_{j} e^{i j t} \tag{1.5}
\end{equation*}
$$

A word about the class of functions involved in this definition. It is denoted by $L(T)$ and it consists of those periodic, Lebesgue measurable functions f with finite L^{1} norm, i.e.,

$$
\|f\|_{1}=\frac{1}{2 \pi} \int_{T}|f(t)| d t<\infty
$$

Endowed with this norm and modulo functions which coincide a.e., $L(T)$ becomes a Banach space, one in the scale of $L^{p}(T)$ spaces, where for $1 \leqslant p<\infty$

$$
\begin{gather*}
L^{p}(T)=\{f \text { periodic, measurable: } f: T \rightarrow C, \text { and } \\
\left.\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{T}|f(t)|^{p} d t\right)^{1 / p}<\infty\right\} \tag{1.6}
\end{gather*}
$$

When $p=\infty$, we define the norm in $L^{\infty}(T)$ as the limiting expression in (1.6) as $p \rightarrow \infty$. It turns out that $L^{\infty}(T)$ is also a Banach space with norm $\|f\|_{\infty}=$ ess $\sup _{T}|f(t)|$. By a mild abuse of notation we also denote by $\|f\|_{p}$ the quantity appearing in (1.6) when $0<p<1$, although in this case the triangle inequality is not satisfied and elements in $L^{p}(T)$ are not necessarily locally integrable functions.

Still in the case of Fourier series no assumption concerning the convergence of the series (1.5) is made. More specifically, if $s_{n}(f, t)$ denotes the trigonometric polynomial of degree $\leqslant n$ corresponding to the symmetric partial sum of (1.5) of order n, i.e.,

$$
\begin{equation*}
s_{n}(f, t)=\sum_{|j| \leqslant n} c_{j} e^{i j t}, \tag{1.7}
\end{equation*}
$$

then nothing is known or assumed about the existence of the $\lim _{n \rightarrow \infty} s_{n}(f, t)$ for any $t \in T$.

At times, and especially when dealing with examples, it is convenient to work with the so-called Fourier cosine and sine series of f; this is interchangeable with (1.5). Indeed, suppose, as we often do, that f is real. Then

$$
\begin{align*}
s_{n}(f, t) & =c_{0}+\sum_{j=1}^{n}\left(c_{j} e^{i j t}+c_{-j} e^{-i j t}\right) \\
& =c_{0}+\sum_{j=1}^{n}\left(c_{j}+c_{-j}\right) \cos j t+i\left(c_{j}-c_{-j}\right) \sin j t \\
& =\frac{a_{0}}{2}+\sum_{j=1}^{n} a_{j} \cos j t+b_{j} \sin j t \tag{1.8}
\end{align*}
$$

say, where the a_{j} 's and b_{j} 's are real since $c_{-j}=\overline{c_{j}}$. Conversely, given a cosine and sine series we may recover (1.5) by letting $2 c_{j}=a_{j}-i b_{j}$, and

$$
\begin{equation*}
a_{j}=\frac{1}{\pi} \int_{T} f(t) \cos j t d t, \quad b_{j}=\frac{1}{\pi} \int_{T} f(t) \sin j t d t \tag{1.9}
\end{equation*}
$$

If the function f is even, that is $f(t)=f(-t)$, the coefficients b_{j} vanish and the integral defining a_{j} may be replaced by twice the integral over $(0, \pi)$. If f is odd, that is $f(t)=-f(-t)$, then $a_{j}=0$ and the second integral above may be replaced by twice the integral over $(0, \pi)$.

Harmonic analysis studies, in a broad sense, properties of the series (1.3) and (1.5). For instance, since the sign \sim in (1.5) only means that the constants c_{j} and the function f are connected by the formula (1.4), an important problem is to determine if, and how, the Fourier series of a function represents, or converges to, that function. We address the problem of pointwise convergence in this chapter, that of Cesàro summability in Chapter II, Abel summability in Chapter VII, and norm convergence in Chapters III and V.

We begin our discussion with some general observations concerning Fourier series. In first place note that if the partial sums of a trigonometric series (1.3) converge, in some general sense, to a function $f \in L(T)$, then actually $c_{j}=c_{j}(f)$. More precisely,

Proposition 1.1. If the symmetric partial sums $s_{n}(t)$ of the trigonometric series (1.3) converge in L^{1} norm to $f \in L(T)$, then $c_{j}=c_{j}(f)$.

Proof. Fix an integer j and observe that the sequence $f_{n}(t)=$ $\left(f(t)-s_{n}(t)\right) e^{-i j t}, n=0,1, \ldots$ converges to 0 in $L(T)$. Moreover

$$
c_{j}(f)=\frac{1}{2 \pi} \int_{T}\left(f(t)-s_{n}(t)\right) e^{-i j t} d t+\frac{1}{2 \pi} \int_{T} s_{n}(t) e^{-i j t} d t .
$$

By (1.2) we readily see that the second integral above is c_{j} as soon as $|n| \geqslant j$. Therefore $\left|c_{j}(f)-c_{j}\right| \leqslant\left\|f_{n}\right\|_{1} \rightarrow 0$, as $n \rightarrow \infty$, and consequently, $c_{j}(f)=c_{j}$.

The reader will observe that the conclusion of Proposition 1.1 also obtains from a weaker assumption, namely, the existence of a sequence $n_{j} \rightarrow \infty$ such that $s_{n_{j}}(t)$ converges to f in L^{1}; because such extensions are trivial we prefer to omit them unless they are clearly important. On the other hand, in the course of the above proof we have made use of the interesting fact that

$$
\begin{equation*}
\left|c_{j}(f)\right| \leqslant\|f\|_{1}, \quad \text { all } \quad j \tag{1.10}
\end{equation*}
$$

and there is more we can say in this direction.

Theorem 1.2 (Riemann-Lebesgue). Let $f \in L(T)$. Then $c_{j} \rightarrow 0$ as $|j| \rightarrow \infty$.
Proof. We invoke the well-known fact that trigonometric polynomials are dense in $L(T)$; a proof of this is given in Proposition 2.4 of Chapter II. Now, given $\varepsilon>0$ we show that $\left|c_{j}\right| \leqslant \varepsilon$ provided $|j|>n_{0}$ is large enough. Let p be a trigonometric polynomial such that $\|f-p\|_{1} \leqslant \varepsilon$, and let $n_{0}=$ degree of p. Then for $|j|>n_{0}$ we have

$$
c_{j}=\frac{1}{2 \pi} \int_{T}(f(t)-p(t)) e^{-i j t} d t
$$

and consequently $\left|c_{j}\right| \leqslant\|f-p\|_{1} \leqslant \varepsilon$.
Now that there is some hope that the Fourier series of $f \in L(T)$ may converge, we take a closer look at $s_{n}(f, x)$. It can also be written as

$$
\begin{align*}
s_{n}(f, x) & =\sum_{|, j| \leqslant n}\left(\frac{1}{2 \pi} \int_{T} f(t) e^{-i j t} d t\right) e^{i j x} \\
& =\frac{1}{\pi} \int_{T} f(t)\left(\frac{1}{2} \sum_{|j| \leqslant n} e^{i j(x-t)}\right) d t=\frac{1}{\pi} \int_{T} f(t) D_{n}(x-t) d t \tag{1.11}
\end{align*}
$$

say, where we have denoted by

$$
\begin{equation*}
D_{n}(t)=\frac{1}{2} \sum_{|j| \leqslant n} e^{i j t}, \quad n=0,1, \ldots \tag{1.12}
\end{equation*}
$$

the Dirichlet kernel of order n. We list some properties of these kernels. In the first place by summing the geometric series in (1.12) we get

$$
D_{n}(t)=\frac{1}{2} e^{-i n t} \frac{\left(e^{i(2 n+1) t}-1\right)}{\left(e^{i t}-1\right)}
$$

$$
\begin{align*}
& =\frac{1}{2} \frac{e^{i(n+1) t}-e^{-i n t}}{e^{i t / 2}\left(e^{i t / 2}-e^{-i t / 2}\right)} \\
& =\frac{1}{2} \frac{e^{i(n+1 / 2) t}-e^{-i(n+1 / 2) t}}{e^{i t / 2}-e^{-i t / 2}} \\
& =\frac{1}{2} \frac{\sin (n+1 / 2) t}{\sin (t / 2)}, \quad n=0,1, \ldots \tag{1.13}
\end{align*}
$$

Thus D_{n} is an even function, and by (1.2)

$$
\begin{equation*}
\frac{1}{\pi} \int_{T} D_{n}(t) d t=\frac{2}{\pi} \int_{[0, \pi]} D_{n}(t) d t=1, \quad \text { all } \quad n . \tag{1.14}
\end{equation*}
$$

It is also possible to estimate $D_{n}(t)$. In fact by (1.12),

$$
\begin{equation*}
\left|D_{n}(t)\right| \leqslant \frac{1}{2} \sum_{|j| \leqslant n}\left|e^{i j t}\right|=\frac{2 n+1}{2}=n+\frac{1}{2}, \quad \text { all } \quad n . \tag{1.15}
\end{equation*}
$$

Moreover, since as is readily seen

$$
\begin{equation*}
1 /(2 \sin (t / 2)) \leqslant \pi / 2 t \quad \text { for } \quad 0<t<\pi \tag{1.16}
\end{equation*}
$$

by (1.13) it follows at once that

$$
\begin{equation*}
\left|D_{n}(t)\right| \leqslant \pi / 2|t|, \quad 0<|t|<\pi, \quad \text { all } \quad n \tag{1.17}
\end{equation*}
$$

This is all we need to know about this kernel.
Returning to (1.11), it is useful to replace D_{n} there by the symmetric expression $D_{n}^{*}=\left(D_{n-1}+D_{n}\right) / 2$, which equals
$D_{n}^{*}(t)=\frac{\sin ((n-1 / 2) t)+\sin ((n+1 / 2) t)}{2 \sin (t / 2)}=\frac{\sin n t}{2 \tan (t / 2)}$ all n.
Also note that since $D_{n}(t)-D_{n}^{*}(t)=\left(D_{n}(t)-D_{n-1}(t)\right) / 2=\cos (n t / 2)$, we can rewrite

$$
\begin{align*}
s_{n}(f, x) & =\frac{1}{\pi} \int_{T} f(t) D_{n}^{*}(x-t) d t+\frac{1}{2 \pi} \int_{T} f(t) \cos n(x-t) d t \\
& =s_{n}^{*}(f, x)+A_{n} \tag{1.19}
\end{align*}
$$

say. We claim that the term A_{n} above is an "error term," in the sense that it tends to 0 as $n \rightarrow \infty$, uniformly in x, and may therefore be disregarded. This is easy to see since A_{n} equals

$$
\cos (n x) \frac{1}{\pi} \int_{T} f(t) \cos n t d t+\sin (n x) \frac{1}{\pi} \int_{T} f(t) \sin n t d t
$$

and by the Riemann-Lebesgue theorem both integrals go to 0 as $n \rightarrow \infty$ and the factors in front of them are uniformly bounded by 1 for x in T.

A shorthand notation is useful to express this situation. We write $u_{n}=$ $o\left(v_{n}\right)$ as $n \rightarrow \infty$, provided that $v_{n}>0$ and $\left|u_{n}\right| / v_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus $u_{n}=o(1)$ means that $\lim _{n \rightarrow \infty}\left|u_{n}\right|=0$. If on the other hand $\left|u_{n}\right| / v_{n}$ remains bounded as $n \rightarrow \infty$, we write $u_{n}=O\left(v_{n}\right)$. So $u_{n}=O(1)$ means that for some constant $c,\left|u_{n}\right| \leqslant c$, all large n. With this notation (1.19) becomes $s_{n}(f, x)=s_{n}^{*}(f, x)+o(1)$, uniformly for x in T.

It is also possible to introduce another expression closely related to $s_{n}(f, x)$. First observe that the function

$$
\begin{equation*}
\phi(t)=\left(\frac{1}{2 \tan (t / 2)}-\frac{1}{t}\right) \in L^{\infty}(T) \tag{1.20}
\end{equation*}
$$

So if $f \in L(T)$, then $f \phi \in L(T)$, and, consequently, again by the RiemannLebesgue Theorem and (1.19),

$$
\begin{equation*}
s_{n}(f, x)=\frac{1}{\pi} \int_{T} f(t) \frac{\sin n(x-t)}{x-t} d t+o(1) \tag{1.21}
\end{equation*}
$$

Returning to D_{n}^{*} we list some of its properties. From (1.18) it readily follows that it also is an even function, and from (1.14) that

$$
\begin{equation*}
\frac{1}{\pi} \int_{T} D_{n}^{*}(t) d t=\frac{2}{\pi} \int_{[0, \pi]} D_{n}^{*}(t) d t=1, \quad \text { all } \quad n \tag{1.22}
\end{equation*}
$$

Also estimates (1.15) and (1.17) have a counterpart, to wit

$$
\begin{equation*}
\left|D_{n}^{*}(t)\right| \leqslant \frac{(n-1)+\frac{1}{2}+n+\frac{1}{2}}{2}=n, \quad \text { all } \quad n \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{n}^{*}(t)\right| \leqslant \pi / 2|t|, \quad 0<|t|<\pi . \tag{1.24}
\end{equation*}
$$

As for (1.11), since D_{n}^{*} is even we also have that $s_{n}^{*}(f, x)$ equals either
$\frac{1}{\pi} \int_{T} f(t) D_{n}^{*}(x-t) d t \quad$ or $\quad \frac{1}{\pi} \int_{T} \frac{(f(x+t)+f(x-t))}{2} D_{n}^{*}(t) d t$.
Moreover since the integrand in the last integral above is an even function of t we also have that it equals

$$
\begin{equation*}
\frac{1}{\pi} \int_{[0, \pi]}(f(x+t)+f(x-t)) D_{n}^{*}(t) d t \tag{1.26}
\end{equation*}
$$

We are now ready to prove our first convergence result.

Theorem 1.3 (Dini). Let $f \in L(T)$ and suppose there is a constant A such that for an x in T

$$
\begin{equation*}
\int_{[0, \pi]}\left|\frac{f(x+t)+f(x-t)}{2}-A\right| \frac{d t}{t}<\infty . \tag{1.27}
\end{equation*}
$$

Then $\lim _{n \rightarrow \infty} s_{n}(f, x)=A$.
Proof. By (1.19) it suffices to prove the assertion with $s_{n}(f, x)$ replaced by $s_{n}^{*}(f, x)$. Moreover, by (1.26), (1.22), and (1.18), we may write

$$
s_{n}^{*}(f, x)-A=\frac{2}{\pi} \int_{[0, \pi]}\left(\frac{f(x+t)+f(x-t)}{2}-A\right) \frac{\sin n t}{2 \tan (t / 2)} d t .
$$

Now, assumption (1.27) is clearly equivalent to the fact that the function

$$
F_{x}(t)=\left(\frac{f(x+t)+f(x-t)}{2}-A\right) \frac{1}{2 \tan (t / 2)} \in L(T),
$$

since $\tan (t / 2) \sim t$ near 0 . Therefore $s_{n}^{*}(f, x)-A$ is nothing but the nth Fourier sine coefficient of the function $F_{x}(t) \in L(T)$, which by the RiemannLebesgue theorem tends to 0 as $n \rightarrow \infty$.
A word about the value of A above. If x is a point of a removable discontinuity, or a jump, of f, then A is necessarily $f(x)$ or $(f(x+0)+$ $f(x-0)) / 2$. Moreover, since functions $f \in L(T)$ are only determined a.e. we may always assume that $A=f(x)$ by changing the value of f at that point if necessary. Also notice that if $f(x+t)-f(x)=O\left(|t|^{\eta}\right), \eta>0$, then the Fourier series of f converges to $f(x)$ at that x. In particular, this is true if $f^{\prime}(x)$ exists and is finite. If any of these conditions is satisfied uniformly for x in a closed subinterval of T, then $s_{n}(f, x)$ converges uniformly to $f(x)$ in that interval.

To state another simple criterion, this one of a.e. nature, we need a definition. We denote by $w_{1}(f, x)$ the L-modulus of continuity of f, namely,

$$
\begin{equation*}
w_{1}(f, x)=\frac{1}{2 \pi} \int_{T}|f(x+t)-f(t)| d t . \tag{1.28}
\end{equation*}
$$

We then have

Theorem 1.4 (Marcinkiewicz). Suppose that $f \in L(T)$ and that

$$
\int_{[0, \pi]} w_{1}(f, t) \frac{d t}{t}<\infty .
$$

Then $\lim s_{n}(f, x)=f(x)$, a.e. in T.

Proof. Let

$$
I(x)=\int_{[0, \pi]}|f(x+t)-f(x)| \frac{d t}{t} \geqslant 0
$$

By Tonelli's theorem we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{T} I(x) d x & =\int_{[0, \pi]} \frac{1}{2 \pi} \int_{T}|f(x+t)-f(x)| d x \frac{d t}{t} \\
& =\int_{[0, \pi]} w_{1}(f, t) \frac{d t}{t}<\infty
\end{aligned}
$$

Consequently, $I(x)<\infty$ a.e. in T, and therefore also

$$
\int_{[0, \pi]}|f(x+t)+f(x-t)-2 f(x)| \frac{d t}{t}<\infty \quad \text { a.e. in } \quad T
$$

This implies that Dini's theorem applies with $A=f(x)$ a.e. in T.

2. FOURIER SERIES OF CONTINUOUS FUNCTIONS

Although at this point we may intuitively guess that Dini's theorem suffices to assure the convergence of $s_{n}(f, x)$ to $f(x)$ at a point of continuity of f, nothing could be further from the truth. Indeed, the expression

$$
\int_{[0, \pi]}\left|\frac{f(x+t)+f(x-t)}{2}-f(x)\right| \frac{d t}{t}
$$

may diverge everywhere in T, even for a continuous function f (and even with the absolute values removed from the integral); a closely related result will be discussed in Proposition 5.1 of Chapter III. Now we turn around and guess that there may exist a continuous function whose Fourier series does not converge at a point. Statements of this nature are supported in one of two ways: either by constructing a specific function with the desired property or else by assuming that no such function exists and reaching a contradiction. Since each method has its appeal and usefulness, we present both here in our successful quest for a continuous function with a nonconvergent Fourier series at $x=0$.

We begin by considering the so-called Lebesgue constants L_{n}. They are given by

$$
L_{n}=2\left\|D_{n}\right\|_{1}=\frac{1}{\pi} \int_{T}\left|D_{n}(t)\right| d t, \quad n \geqslant 0
$$

This is why. By (1.11) it is plain that

$$
\left|s_{n}(f, 0)\right| \leqslant \frac{1}{\pi} \int_{T}\left|f(t)\left\|D_{n}(t) \mid d t \leqslant\right\| f \|_{\infty} L_{n}\right.
$$

Therefore by setting $f(t)=\operatorname{sgn} D_{n}(t), t \in T$, i.e.,

$$
f_{n}(t)=\left\{\begin{aligned}
1 & D_{n}(t)>0 \\
0 & D_{n}(t)=0 \\
-1 & D_{n}(t)<0
\end{aligned}\right.
$$

we readily see that $\left\|f_{n}\right\|_{\infty}=1$ and

$$
\sup _{f \in L^{\infty}(T),\|f\|_{\infty} \leqslant 1}\left|s_{n}(f, 0)\right|=L_{n} .
$$

Since the function $f_{n}(t)$ is real valued and discontinuous at a finite number of points, it is easy to modify its values in small neighborhoods of those points to obtain, now, that also for continuous functions

$$
\begin{equation*}
\sup _{f \in C(T),\|f\|_{\infty} \leqslant 1}\left|s_{n}(f, 0)\right|=L_{n} \tag{2.1}
\end{equation*}
$$

It becomes, then, important to study the behavior of L_{n} for large n.
Proposition 2.1. $L_{n} \sim\left(4 / \pi^{2}\right) \ln n$, as $n \rightarrow \infty$.
Proof. Since $D_{n}(t)$ is even and $\sin (t / 2)>0$ for $0<t<\pi$, we have that

$$
\begin{aligned}
L_{n}= & \frac{2}{\pi} \int_{[0, \pi]}\left|\sin \left(\left(n+\frac{1}{2}\right) t\right)\right|\left(\frac{1}{2 \sin (t / 2)}-\frac{1}{t}\right) d t \\
& +\frac{2}{\pi} \int_{[0, \pi]}\left|\sin \left(\left(n+\frac{1}{2}\right) t\right)\right| \frac{d t}{t}=A_{n}+B_{n}
\end{aligned}
$$

say. By a statement similar to (1.20) we see at once that $A_{n}=O(1)$. We take a look at B_{n} now. The change of variables $\left(n+\frac{1}{2}\right) t=s$ gives

$$
\begin{aligned}
B_{n} & =\frac{2}{\pi} \int_{[0,(n+1 / 2) \pi]}|\sin s| \frac{d s}{s} \\
& =\frac{2}{\pi} \int_{[\pi, n \pi]}|\sin s| \frac{d s}{s}+O(1)=B_{n}^{\prime}+O(1)
\end{aligned}
$$

say. Thus we will be done once we show that

$$
\begin{equation*}
B_{n}^{\prime} \cong \frac{4}{\pi^{2}} \ln n+O(1) \tag{2.2}
\end{equation*}
$$

We rewrite

$$
\begin{aligned}
B_{n}^{\prime} & =\frac{2}{\pi} \sum_{k=1}^{n-1} \int_{[k \pi,(k+1) \pi]} \frac{|\sin s|}{s} d s \\
& =\frac{2}{\pi} \sum_{k=1}^{n-1} \int_{[0, \pi]} \frac{|\sin (k \pi+t)|}{k \pi+t} d t \\
& =\frac{2}{\pi} \int_{[0, \pi]}(\sin t)\left\{\sum_{k=1}^{n-1} \frac{1}{k \pi+t}\right\} d t .
\end{aligned}
$$

The expression in $\{\cdot\}$ in the above integral can be estimated below and above, uniformly for $t \in(0, \pi]$, by

$$
\begin{equation*}
\frac{1}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1}=\frac{1}{\pi} \sum_{k=1}^{n} \frac{1}{k}-\frac{1}{\pi} \quad \text { and } \quad \frac{1}{\pi} \sum_{k=1}^{n-1} \frac{1}{k} \tag{2.3}
\end{equation*}
$$

respectively. By (2.3) then, and since $\int_{[0, \pi]} \sin t d t=2$, we finally obtain

$$
\frac{4}{\pi^{2}} \sum_{k=1}^{n} \frac{1}{k}-O(1) \leqslant B_{n}^{\prime} \leqslant \frac{4}{\pi^{2}} \sum_{k=1}^{n} \frac{1}{k}
$$

In other words (2.2) holds and we are done.
Corollary 2.2. If $f \in L^{\infty}(T)$, then $s_{n}(f, x)=O(\ln n)$.
We now know that for each (large) n there is a continuous function f, $|f(x)| \leqslant 1$, and

$$
\begin{equation*}
\left|s_{n}(f, 0)\right| \sim \frac{4}{\pi^{2}} \ln n . \tag{2.4}
\end{equation*}
$$

It is natural then to search for a single continuous function f whose Fourier series has large partial sums at 0 . Assuming that no such function exists we will reach a contradiction. Suppose, then, that the Fourier series of every continuous function converges at 0 ; in particular, the partial sums will be bounded there, i.e., $\left|s_{n}(f, 0)\right| \leqslant c_{f}<\infty$, all n, each $f \in C(T)$. By (1.11) this is equivalent to

$$
\begin{equation*}
\left|\int_{T} f(t) D_{n}(t) d t\right| \leqslant c_{f}<\infty, \quad \text { all } n, \quad \text { each } \quad f \in C(T) \tag{2.5}
\end{equation*}
$$

We now show that (2.5) cannot hold. Since the idea needed to do this can also be used in other settings, we prefer to cast the statement in a general context. In the application of this general result we will make use of the well known fact that $C(T)$ is a complete metric space, and that therefore any decreasing sequence of closed balls with radius approaching 0 , has a nonempty intersection (consisting of a single point).

We state and prove the Uniform Boundedness Principle.

Theorem 2.3 (Banach-Steinhaus). Let X be a complete metric space and let Y be a normed linear space. Furthermore, let $\left\{T_{\alpha}\right\}_{\alpha \in A}$ be a family of bounded linear operators from X into Y with the property that for each $x \in X$ the family $\left\{T_{\alpha} x\right\}_{\alpha \in A}$ is bounded in Y, i.e., $\left\|T_{\alpha} x\right\|_{Y} \leqslant c_{x}<\infty$, all $\alpha \in A$. Then the family T_{α} is uniformly bounded, in other words there is a constant c such that

$$
\sup _{\|x\|_{X} \leqslant 1}\left\|T_{\alpha} x\right\|_{Y} \leqslant c, \quad \text { all } \quad \alpha \in A
$$

Proof. Suppose we can show that for some $x_{0} \in X, \varepsilon>0$ and a constant K we have $\left\|T_{\alpha} x\right\|_{Y} \leqslant K$ whenever $\left\|x_{0}-x\right\|_{X} \leqslant \varepsilon$, i.e., the family $\left\{T_{\alpha} x\right\}_{\alpha \in A}$ is uniformly bounded at a ball $B\left(x_{0}, \varepsilon\right)$ about x_{0}. Then we are done. Indeed, for $x \neq 0,\|x\|_{X} \leqslant 1$, we put $z=\varepsilon x /\|x\|_{X}+x_{0} \in B\left(x_{0}, \varepsilon\right)$. Then $\left\|T_{\alpha} z\right\|_{X} \leqslant$ K and by the triangle inequality

$$
\begin{equation*}
\frac{\varepsilon}{\|x\|_{X}}\left\|T_{\alpha} x\right\|_{Y}-\left\|T_{\alpha} x_{0}\right\|_{Y} \leqslant\left\|T_{\alpha} z\right\|_{Y} \leqslant K \tag{2.6}
\end{equation*}
$$

Letting $c=K+\sup _{\alpha}\left\|T_{\alpha} x_{0}\right\|_{Y}<\infty$, we may rewrite (2.6) as $\left\|T_{\alpha} x\right\|_{Y} \leqslant c / \varepsilon$, c independent of α, which is precisely what we wanted to prove. So, to complete the proof we must show that such a ball exists. We argue by contradiction and assume no such ball exists.

Fix a ball $B_{0}=B\left(x_{0}, 2\right)$, then there exist $x_{1} \in B_{0}$ and $\alpha_{1} \in A$ such that $\left\|T_{\alpha_{1}} x_{1}\right\|_{Y}>1$. Also by continuity $\left\|T_{\alpha_{1}} x\right\|_{Y}>1, x \in B_{1}=B\left(x_{1}, \varepsilon_{1}\right) \subseteq B_{0}$, $\varepsilon_{1}<1$. The family $\left\{T_{\alpha} x\right\}$ is still not uniformly bounded on B_{1}. So recursively, and after $B_{0} \supseteq B_{1} \supseteq \cdots \supseteq B_{k-1}$ have been chosen, with radius $\varepsilon_{j}<1 / j$ and centers x_{j} such that $\left\|T_{\alpha_{i}} x_{j}\right\|_{Y}>j, 1 \leqslant j \leqslant k-1$, we then select a ball $B_{k}=$ $B\left(x_{k}, \varepsilon_{k}\right), B_{k} \subseteq B_{k-1}, \varepsilon_{k}<1 / k, \alpha_{k} \neq \alpha_{j}, j<k$, and $\left\|T_{\alpha_{k}} x\right\|_{Y}>k$ for x in B_{k}. Since X is complete there is a point $z \in \bar{B}\left(x_{k}, \varepsilon_{k}\right)$ for all k. The fact that $\left\|T_{\alpha_{k}} z\right\|_{Y} \geqslant k$, all k, contradicts the assumption that $\left\{T_{\alpha} z\right\}_{\alpha \in A}$ is bounded.

As anticipated we apply the theorem with $X=C(T), Y=C$, and put

$$
T_{n} f=s_{n}(f, 0)=\frac{1}{\pi} \int_{T} f(t) D_{n}(t) d t, n \geqslant 0
$$

By (2.1) and (2.4),

$$
\begin{equation*}
\sup _{\|f\|_{C(T)} \leqslant 1}\left|T_{n} f\right| \sim \frac{4}{\pi^{2}} \ln n . \tag{2.7}
\end{equation*}
$$

Now, were (2.5) to hold, then by the Uniform Boundedness Principle, (2.7) would imply there is a constant c such that $\left(4 / \pi^{2}\right) \ln n \leqslant c$, all n, which is impossible. Therefore there is a continuous function f such that

