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Preface 

This book is based on a set of notes from a course I gave at Indiana 
University during the academic year 1984-1985. My purpose in those lec
tures was to present some recent topics in harmonic analysis to graduate 
students with varied backgrounds and interests, ranging from operator 
theory to partial differential equations. The book is an exploration of the 
unity of several areas in harmonic analysis, emphasizing real-variable 
methods, and leading to the study of active areas of research including the 
Calderón-Zygmund theory of singular integral operators, the 
Muckenhoupt theory of Ap weights, the Fefferman-Stein theory of Hp 

spaces, the Burkholder-Gundy theory of good λ inequalities, and the 
Calderón theory of commutators. 

Because I wanted this book to be essentially self-contained for those 
students with an elementary knowledge of the Lebesgue integral and since 
ideas rather than generality are stressed, the point of departure is the 
classical question of convergence of Fourier series of functions and distribu
tions. Chapter I deals with pointwise convergence, Chapter II with Cesàro 
(C, 1) convergence, Chapters III and V with norm convergence and Chapter 
VII with Abel convergence. Chapter IV contains the basic working prin
ciples of harmonic analysis, centered around the Calderón-Zygmund 
decomposition of locally integrable functions. Chapter VI discusses frac
tional integration, and Chapter VIII the John-Nirenberg class of BMO 
functions. A one semester course in Fourier series can easily be extracted 
from these first eight chapters. 

From this point on our setting becomes Rn. In Chapter IX the 
Muckenhoupt theory of Ap weights is developed, and in Chapter X, in addi
tion to briefly reviewing the previous results in this new context, elliptic 
equations in divergence form are treated. Chapter XI deals with the essen
tials of the Calderón-Zygmund theory of singular integral operators and 
Chapter XII with its vector-valued version, Littlewood-Paley theory. 

XI 



Xll Preface 

Chapter XIII covers the good λ inequalities of Burkholder-Gundy, Chapter 
XIV the Fefferman-Stein theory of Hardy spaces of several real variables, 
and Chapter XV Carleson measures. Chapter XVI contains the Coifman-
Mclntosh-Meyer real variable approach to Calderóne commutator 
theorem and Chapter XVII one of its interesting applications, namely, the 
solution to the Dirichlet and Neumann problems on a C1 domain by means 
of the layer potential methods. This second half of the book is easily 
adapted to a one- or two-semester topics course in harmonic analysis. 

A word about where the material covered in the book fits into the existing 
literature: The first part of the book is essentially contained in Zygmund's 
treatise, where the so-called complex method is emphasized, and precedes 
Stein's book on singular integrals and differentiability properties of func
tions; the second half continues with the material discussed in Stein's book. 
These are the two basic sources of reference that my generation of analysts 
grew up with. 

The notations used are standard, and we remark here only that c denotes 
a constant which may differ at different occurrences, even in the same chain 
of inequalities. "Theorem 3.2" means that the result alluded to appears as 
the second item in Section 3 of the same chapter, and "Theorem 3.2 in 
Chapter X" means that it appears as the second item in the third section of 
Chapter X. The same convention is used for formulas. 

In order to encourage the active participation of the reader, numerous 
hints are provided for the problems; I hope the book will be "user 
friendly." It is not meant, however, to make the learning of the material ef
fortless; many of the ideas discussed lie at the very heart of harmonic 
analysis and as such require some thought. 

It is always a pleasure to acknowledge the contribution of those who make 
a project of this nature possible. A. P. Calderón, a singular analyst and 
teacher, has always been a source of inspiration to me; his decisive influence 
in contemporary harmonic analysis and its applications should be apparent to 
anyone browsing these pages. My colleague B. Jawerth shared with me his 
ideas on how results should, and should not, be presented. My largest debt, 
though, is to the students who attended the course and kept me honest when a 
simple "the proof is easy" was tempting. They are Alp Eden, Don Krug, 
Hung-Ju Kuo, Paul McGuire, Mohammad Rammaha, Edriss Titi, and Sung 
Hyun Yoon. The manuscript was cheerfully typed by Storme Day. The staff 
at Academic Press handled all my questions promptly and efficiently. 



CHAPTER 

I 
Fourier Series 

1. FOURIER SERIES OF FUNCTIONS 

A trigonometric polynomial p(t) is an expression of the form 

p(t)= Σ c^\ k | + |c_n |*0. (1.1) 
\j\^n 

n is the degree of p and the c/s are (possibly complex) constants. Thus p 
is a continuous function of period 2π and is therefore determined by its 
values on T = (-77, π ] , or any other interval of length 2π for that matter. 
On the other hand, given a trigonometric polynomial p of degree ^ n, we 
can easily compute the constants c, by means of 

^-L)^ p{t)e-*dt, \j\^n. 

This observation follows at once from the fact that 

277 J T l l if 7 = 0. 

A trigonometric series is an expression of the form 
00 

Σ <**■ (1-3) 
j = -<x> 

Since we make no assumption concerning the convergence of this series, 
(1.3) only formally represents a function of period 2π. 

(1.2)



2 1. Fourier Series 

A Fourier series is a trigonometric series for which there is a periodic, 
Lebesgue summable function / such that 

9 = cj(f) = ^- I f(t)e-ijt dty all / (1.4) 
λττ JT 

In this case we call the constants c, the Fourier coefficients off and denote 
this correspondence by 

f~Lcjeij'. (1.5) 
j 

A word about the class of functions involved in this definition. It is denoted 
by L( T) and it consists of those periodic, Lebesgue measurable functions 
/ with finite L1 norm, i.e., 

2π J | / (0 | A < oo. 

Endowed with this norm and modulo functions which coincide a.e., L( T) 
becomes a Banach space, one in the scale of LP(T) spaces, where for 
I k p <oo 

LP(T) = \ f periodic, measurable: f.T^C, and 

ll/llP = (^j r l / (0N/) , , '<oo| . (1.6) 

When p = oo, we define the norm in L°°( T) as the limiting expression in 
(1.6) as p ->· co. It turns out that V°(T) is also a Banach space with norm 
||/||oo = ess supT|/(r) | . By a mild abuse of notation we also denote by ||/| |p 
the quantity appearing in (1.6) when 0 < p < 1, although in this case the 
triangle inequality is not satisfied and elements in LP(T) are not necessarily 
locally integrable functions. 

Still in the case of Fourier series no assumption concerning the conver
gence of the series (1.5) is made. More specifically, if sn(f, t) denotes the 
trigonometric polynomial of degree ^/ i corresponding to the symmetric 
partial sum of (1.5) of order n, i.e., 

sn(f,t)= Σ cjeijt, (1.7) 

then nothing is known or assumed about the existence of the lim„^oo sn(f, t) 
for any t G T. 
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At times, and especially when dealing with examples, it is convenient to 
work with the so-called Fourier cosine and sine series of / ; this is inter
changeable with (1.5). Indeed, suppose, as we often do, that fis real. Then 

n 

sn(f,t) = c0+^(cjeij' + c.je-ij·) 

n 

= c0 + Y^(cj + c-j) cos jt + i(Cj - c-j) sin jt 

n 

= y + Σ , <*j cos jt + bj sin jt, (1.8) 

say, where the a/s and fc/s are real since c_, = ~c~. Conversely, given a cosine 
and sine series we may recover (1.5) by letting 2c, = a} - ibh and 

<*j= - \ fit) cos jt dt, bj=-\ f{t) sin jtdt. (1.9) 
π JT πJT 

If the function / is even, that is f(t) =f( — t)9 the coefficients bj vanish 
and the integral defining a, may be replaced by twice the integral over 
(0, 7T). Iff is odd, that is f(t) = -f(-t), then a, = 0 and the second integral 
above may be replaced by twice the integral over (0, π). 

Harmonic analysis studies, in a broad sense, properties of the series (1.3) 
and (1.5). For instance, since the sign ~ in (1.5) only means that the 
constants c, and the function / are connected by the formula (1.4), an 
important problem is to determine if, and how, the Fourier series of a 
function represents, or converges to, that function. We address the problem 
of pointwise convergence in this chapter, that of Cesàro summability in 
Chapter II, Abel summability in Chapter VII, and norm convergence in 
Chapters III and V. 

We begin our discussion with some general observations concerning 
Fourier series. In first place note that if the partial sums of a trigonometric 
series (1.3) converge, in some general sense, to a funct ion/e L(T), then 
actually c, = Cj(f). More precisely, 

Proposition 1.1. If the symmetric partial sums sn(t) of the trigonometric 
series (1.3) converge in L1 norm to f e L(T), then c, = c7(/). 

Proof. Fix an integer j and observe that the sequence fn(t) = 
(f(t) - sn(t))e~lJt, n = 0 , 1 , . . . converges to 0 in L(T). Moreover 

cj(f)=^~\ (f(t)-s„(t))e'IJ,dt+^-[ sn(t)e-ij'dt. 



4 /. Fourier Series 

By (1.2) we readily see that the second integral above is c,- as soon as 
|n|^7*. Therefore \cj(f) - Cj\ ^ \\fn\\\ -> 0, as n -» oo, and consequently, 

The reader will observe that the conclusion of Proposition 1.1 also obtains 
from a weaker assumption, namely, the existence of a sequence n} -> oo such 
that sn(t) converges to fin L1; because such extensions are trivial we prefer 
to omit them unless they are clearly important. On the other hand, in the 
course of the above proof we have made use of the interesting fact that 

M/) |« | | / | | „ all j , (1.10) 
and there is more we can say in this direction. 

Theorem 1.2 (Riemann-Lebesgue). L e t / e L( T). Then c, -+ 0 as \j\ -> oo. 

Proof. We invoke the well-known fact that trigonometric polynomials are 
dense in L(T)\ a proof of this is given in Proposition 2.4 of Chapter II. 
Now, given ε > 0 we show that |c,-| ^ ε provided \j\ > n0 is large enough. 
Let p be a trigonometric polynomial such that | | / — ρ | | ι ^ ε , and let 
n0 = degree of p. Then for \j\ > n0 we have 

' 2 T T J T 
( / ( Ì ) - P ( 0 ) * - ' - " A 

and consequently \cj\ ̂  | | / - ρ | | ι ^ ε. ■ 

Now that there is some hope that the Fourier series of fe L(T) may 
converge, we take a closer look at sn(f x). It can also be written as 

*„(/,*)= Σ ( τ - ί f(t)e-ij'dt)eij* 

= - \ f(t)(\ Σ eW*~°i dt=-\ f(t)Dn(x - t) dt, (1.11) 

say, where we have denoted by 

Dn(t) = \ Σ eijt, Λ = 0 , 1 , . . . (1.12) 

the Dirichlet kernel of order n. We list some properties of these kernels. In 
the first place by summing the geometric series in (1.12) we get 

D " ( i ) = 2 e ( e " - l ) 



1. Fourier Series of Functions 

I ei(n+i)t _ e-int 

2 eit/2(eit/2 - e~it/2) 
2 i(n + l/2)i _ - i (n + l/2)f 

2 e'-'/2 _ e - i f / 2 

1 sin(n + l/2)i 
* = 0 , 1 , . . . . (1.13) 2 sin(i/2) ' 

Thus D„ is an even function, and by (1.2) 

- I Dn(t) dt = - \ Dn{t) dt = 1, all n. (1.14) 
π JT ^ J[O,7T] 

It is also possible to estimate Dn(t). In fact by (1.12), 

\Dn{t)\^l-Y^\eijt\ = ^ ^ = n + X- all n. (1.15) 
UN" 

Moreover, since as is readily seen 

l / ( 2 s in ( i / 2 ) ) ^ ττ/2ί for 0 < t < π, (1.16) 

by (1.13) it follows at once that 

|D n ( i ) |^7r /2 | f | , 0 < | f | < 7 7 - , all n. (1.17) 

This is all we need to know about this kernel. 
Returning to (1.11), it is useful to replace Dn there by the symmetric 

expression D* = {Dn_x + D J / 2 , which equals 

= sin((n - 1/2)0 + sin((n + 1/2)0 = _^nnt 
nK) 2sin(i/2) 2tan(r /2) ' 

Also note that since Dn(t) - D*(t) = (Dn(t) - Dn_l(t))/2 = cos(ni/2), we 
can rewrite 

Sn(f, x)=-\ f(t)D*(x - 0 dt + - i - I /(*) cos n(x - r) at 
π JT 2π JT 

= s*(f9x) + An, (1.19) 

say. We claim that the term An above is an "error term," in the sense that 
it tends to 0 as n -> oo, uniformly in x, and may therefore be disregarded. 
This is easy to see since An equals 

i — f(t) cos ntdt + sin(rtx) — 
π JT TT JT 

cos(nx)— | f(t) cos ntdt + sin(rtx) — f(t) sin nt dt, 
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and by the Riemann-Lebesgue theorem both integrals go to 0 as n ̂  oo 
and the factors in front of them are uniformly bounded by 1 for x in T. 

A shorthand notation is useful to express this situation. We write un = 
o(vn) as n -> oo, provided that vn > 0 and |wn|/u„-»0 as n -> oo. Thus 
un = o(l) means that lim„^oo|Mn| = 0. If on the other hand |un|/i>„ remains 
bounded as n -> oo, we write un = 0(vn). So un = O(l) means that for 
some constant c, |un| ̂  c, all large n. With this notation (1.19) becomes 
Snif, x) = s*(f, x) + ö ( l ) , uniformly for x in T. 

It is also possible to introduce another expression closely related to 
sn(f> x)· First observe that the function 

φ(ή = ( L _ _ - ì j G L°°(T). (1.20) 
ΨΚ ) \2 tan( i /2) t) x } v ; 

So i f / e L(T), then/φ e L(T), and, consequently, again by the Riemann-
Lebesgue Theorem and (1.19), 

sn(f,X)=^\fU)S^^dt+o(l). (1.21) 
πJT x - t 

Returning to D j we list some of its properties. From (1.18) it readily 
follows that it also is an even function, and from (1.14) that 

22) - ί D*„(t)dt=- I D * ( i ) A = l, all n. (1. 
π JT π J[O,TT] 

Also estimates (1.15) and (1.17) have a counterpart, to wit 

| P Î ( 0 | < ( " - 1 ) +
2 * + , , + * = * , all „ (1.23) 

and 

|D*(0 |^7r /2 | r | , 0 < | r | < 7 T . (1.24) 

As for (1.11), since D* is even we also have that s*(/, x) equals either 

i f / i O D Î O c - O * or l [ ( / ( ^ 0 + / ( x - 0 ) D , ( 0 d f ( 1 
7Γ J T 7Γ J T 2 

Moreover since the integrand in the last integral above is an even function 
of t we also have that it equals 

77" J[0,7T 
(f{x+t)+f(x-t))D*n{t)dt. (1.26) 

[Ο,ΤΤ] 

We are now ready to prove our first convergence result. 



1. Fourier Series of Functions 1 

Theorem 1.3 (Dini). L e t / e L(T) and suppose there is a constant A such 
that for an x in T 

\f(x + t)+f(x-t) A 
J [0 ,TT ] I 

Then lim^co sn(f x) = A 

dt 
- < o o . (1.27) 
t 

Proof. By (1.19) it suffices to prove the assertion with sn(f x) replaced by 
s*(f9 x). Moreover, by (1.26), (1.22), and (1.18), we may write 

s*(fx)-A = H / / (* + ' )+ / (*- '>_ Λ «in"' dt 

Now, assumption (1.27) is clearly equivalent to the fact that the function 

. ,„, /7(* + 0+/(*-*) Λ i JfT. 
FÀt) = \ 2 A)2-^ümeLiT)> 

since tan(i/2) ~ t near 0. Therefore s*(/, x) - A is nothing but the nth 
Fourier sine coefficient of the function Fx(t) e L(T), which by the Riemann-
Lebesgue theorem tends to 0 as n -» oo. ■ 

A word about the value of A above. If x is a point of a removable 
discontinuity, or a jump, of / , then A is necessarily f(x) or (f(x + 0) + 
f(x - 0))/2. Moreover, since functions / e L(T) are only determined a.e. 
we may always assume that A = f(x) by changing the value of / at that 
point if necessary. Also notice that i f / (x + t) —f(x) = 0(\t\v), η > 0, then 
the Fourier series of/ converges to f(x) at that x. In particular, this is true 
rf f(x) exists and is finite. If any of these conditions is satisfied uniformly 
for x in a closed subinterval of Γ, then sn(f x) converges uniformly to / (x ) 
in that interval. 

To state another simple criterion, this one of a.e. nature, we need a 
definition. We denote by wx(f x) the L-modulus of continuity of/ namely, 

^(/ *) = 7- f l/(* + o -/oldt- d·28) 2T7 J T 

We then have 

Theorem 1.4 (Marcinkiewicz). Suppose t h a t / G L(T) and that 

f i , ^dt 

Wi(/,0 — <°°. 
J[0,7T] * 

Then lim 5„(/ x) = / ( x ) , a.e. in T. 
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Proof. Let 

no, 
By Tonelli's theorem we have 

/(*)=[ \f(x + t)-f(x)\^0. 
J[0,7T] * 

-î- f /(*) dx = f -î- f |/(x + 0 -/(x)| d>4' 
Ιττ jT J[0>7Γ] ζ π J T ί 

-I W i ( / , i ) - - < c x ) . 
[0,77] « 

Consequently, J(x) < oo a.e. in T, and therefore also 

I \f{x+t)+f{x-t)-2f{x)\^<cc a.e. in T. 

This implies that Dini's theorem applies with A = f(x) a.e. in Γ. 

2. FOURIER SERIES OF CONTINUOUS FUNCTIONS 

Although at this point we may intuitively guess that Dini's theorem suffices 
to assure the convergence of sn(f9 x) to f(x) at a point of continuity of/, 
nothing could be further from the truth. Indeed, the expression 

r \f(x + t)+f(X-t) 
; f(x) 

J[0,7T]I ^ 

dt 
t 

may diverge everywhere in T, even for a continuous function / (and even 
with the absolute values removed from the integral); a closely related result 
will be discussed in Proposition 5.1 of Chapter III. Now we turn around 
and guess that there may exist a continuous function whose Fourier series 
does not converge at a point. Statements of this nature are supported in 
one of two ways: either by constructing a specific function with the desired 
property or else by assuming that no such function exists and reaching a 
contradiction. Since each method has its appeal and usefulness, we present 
both here in our successful quest for a continuous function with a nonconver-
gent Fourier series at x = 0. 

We begin by considering the so-called Lebesgue constants L„. They are 
given by 

L„ = 2| |Dn| | 1=- I |Dn(i)|A, H ^ O . π JT 
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This is why. By (1.11) it is plain that 

sn(f,0)\^~ f \f(t)\\Dn(t)\dt 
7Γ JT 

| |oo^n· 

Therefore by setting/(i) = sgn Dn(t), t e T, i.e., 

f 1 Dn(t)>0 
fn(t) = \ 0 Dn(t) = 0 

[-1 Dn(t)<0 

we readily see that ||oo = 1 and 

sup \sn(fO)\ = Ln. 

Since the function/,, (i) is real valued and discontinuous at a finite number 
of points, it is easy to modify its values in small neighborhoods of those 
points to obtain, now, that also for continuous functions 

sup \sn(fO)\ = Ln. 
/eCiD.II /Hco^l 

It becomes, then, important to study the behavior of Ln for large n. 

(2.1) 

Proposition 2.1. Ln ~ (4/7Γ2) In n, as n -> αο. 

Proof. Since Dn(t) is even and sin(i/2) > 0 for 0 < t < π, we have that 

^ = !LI S K("4)0I ( ÏA7«-7 )* 

π J[O,7T]I \ \ 2 / / | 

A 
= A, + ^n, 

say. By a statement similar to (1.20) we see at once that An = O(l) . We 
take a look at £„ now. The change of variables (n + \)t = s gives 

2 f i . i * 
ß n = — | s ins | — 

π J [ 0 , ( M + 1/2)TT] 5 

Γ . . i ds 
|sin Ä| — 

J [ΤΓ,ΠΤΓ] $ 

2_ + 0(1) = £'„ + 0(1), 

say. Thus we will be done once we show that 

4 
B'n= — lnn + O(l) . 

77" 
(2.2) 
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We rewrite 

*:. = -£[ Μ * 
7 7 fc = i J[k-n-,(fc+l)7r] 5 

_ 2 r1^1 f |sin(/c7T + t)\ 

= -\ (sinoÎEirr;!*· 
The expression in {·} in the above integral can be estimated below and 
above, uniformly for t e (0, π], by 

1 S7 1 1 ^ 1 1 , 1 ^ 1 
- Σ Τ Τ Τ — L 7 - " a n d " Σ - Τ ' (2.3) 

respectively. By (2.3) then, and since J[0jir] sin tdt = 2, we finally obtain 

4 ti-°o>*««pti. 
fc=i * π k = ì K 

In other words (2.2) holds and we are done. ■ 

Corollary 2.2. I f / e L°°(T), then sn(/, x) = 0(ln n). 

We now know that for each (large) n there is a continuous function f, 
\f(x)\ *s 1, and 

kaO)|~Aln"· (2.4) 
It is natural then to search for a single continuous function / whose Fourier 
series has large partial sums at 0. Assuming that no such function exists we 
will reach a contradiction. Suppose, then, that the Fourier series of every 
continuous function converges at 0; in particular, the partial sums will be 
bounded there, i.e., \sn(f,0)\ ^ cf < oo, all n, e a c h / e C(T). By (1.11) this 
is equivalent to 

li, f(t)Dn(t)dt cf<oo, all n, each feC(T). (2.5) 

We now show that (2.5) cannot hold. Since the idea needed to do this can 
also be used in other settings, we prefer to cast the statement in a general 
context. In the application of this general result we will make use of the 
well known fact that C(T) is a complete metric space, and that therefore 
any decreasing sequence of closed balls with radius approaching 0, has a 
nonempty intersection (consisting of a single point). 

We state and prove the Uniform Boundedness Principle. 
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Theorem 2.3 (Banach-Steinhaus). Let X be a complete metric space and 
let y be a normed linear space. Furthermore, let {Ta}aeA be a family of 
bounded linear operators from X into Y with the property that for each 
x e X the family {Tax}aeA is bounded in Y, i.e., | |Γαχ| |ν ^ cx < oo, all 
a e A. Then the family Ta is uniformly bounded, in other words there is a 
constant c such that 

sup || Γαχ|| Y ^ c, all a e A 
llxllx^i 

Proof. Suppose we can show that for some x0 e X, ε > 0 and a constant 
X we have || Tax|| Y ^ K whenever ||x0 - x\\x ^ ε, i.e., the family {Tax)a&A 
is uniformly bounded at a ball B(x0, ε) about x0. Then we are done. Indeed, 
for x ¥■ 0, ||x||x ^ 1, we put z = εχ/ | |χ | | χ + x0 e £(x0 , ε). Then | |Ταζ||χ ^ 
K and by the triangle inequality 

—\-\\Tax\\Y-\\Tax0\\Y^\\Taz\\Y^K. (2.6) 

Letting c = K + supa || Tax0|| Y < oo, we may rewrite (2.6) as || Tax|| Y ^ c/ε, 
c independent of a, which is precisely what we wanted to prove. So, to 
complete the proof we must show that such a ball exists. We argue by 
contradiction and assume no such ball exists. 

Fix a ball B0 = B(x0, 2), then there exist X! e B0 and a1 e A such that 
II^Xill Y > 1· Also by continuity | |Ta ix| |y > 1, x e Βλ = B(xl9 εχ) ç B0, 
εχ < 1. The family {Tax) is still not uniformly bounded on Bx. So recursively, 
and after B0 3 Bx ^ · · · ̂  Bk_x have been chosen, with radius ε] < \/j and 
centers x, such that || Ta.Xj\\ Y > j , 1 ̂  j' ^ k - 1, we then select a ball Bk = 
B(xk, £k), Bk ç Bk_x, εΙί < 1/fc, ak * aj9 j < k9_ and | |7a kx| |y > k for x in 
Bfc. Since X is complete there is a point z e ß (xfc, efc) for all /c. The fact 
that | |Takz||y ^ /c, all /c, contradicts the assumption that {Taz}a&A is 
bounded. ■ 

As anticipated we apply the theorem with X = C(T), Y = C, and put 

Tnf=sn(f0) = - I /(ΟΑ,(ί) dt, n^O. π JT 

By (2.1) and (2.4), 

sup \Tnf\~—2\nn. (2.7) 
ll/Hcm^i ^ 

Now, were (2.5) to hold, then by the Uniform Boundedness Principle, (2.7) 
would imply there is a constant c such that (4/ π2) In n ^ c, all n9 which is 
impossible. Therefore there is a continuous function / such that 


