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PREFACE 

Advances in the techniques for manufacturing large 
scale integrated (LSI) circuits have, in recent years, 
made it feasible to incorporate most, or in some cases 
all, of the complex logic required for a small digital 
computer system on to a single silicon chip. One 
example of the application of these LSI techniques is in 
the familiar digital pocket calculator, which is in fact a 
specialised digital computer. In these devices all of the 
electronic logic is contained in a single integrated circuit 
package. 

In designing modern electronic systems the engineer 
must now take into account the ready availability of 
microcomputer and microprocessor devices which can 
simplify design, making the end product more versatile 
or more economical to produce. 

One problem which faces the designer planning to use 
a microprocessor is the great multiplicity of devices that 
have become available. Choosing a suitable micro
processor could involve collecting together and search
ing through a mountain of different data sheets and 
manuals. 

In this book condensed data have been provided for 
most of the available types of microprocessor and micro
computer device. For each major type or series a des
cription is given of the internal architecture, instruction 
set, main electrical data and package details. 

Most of the popular devices are manufactured by 
several different suppliers, and a list of alternative 
sources and type numbers have been included in the data 
for each type. Support chips designed for that processor 
have also been listed. 

For convenience the devices have been divided into 
groups covering 4, 8 and 16-bit types and other pro
cessors. It would not be practical to include full details of 
each type, but it is hoped that sufficient information has 
been provided to allow the designer to narrow down his 
choice to perhaps one or two types. The manufacturer's 
data sheets or manuals may then be consulted for more 
detailed operating and application information. 

In order to choose a processor for a project some 
knowledge of the basic principles of the devices is re

quired, and this has been covered in the introductory 
chapter. A general guide has also been included on the 
factors involved when a processor type is chosen. 

A complete system normally consists of a micropro
cessor together with a selection of supporting devices to 
handle input-output, external device control and to 
provide memory. The number of support devices avail
able is even greater than that of microprocessor types, so 
no attempt has been made to include details of all of 
these. Some descriptions have been included covering 
the major support device functions, and data have been 
included on some of the more popular types as a guide to 
the facilities provided by such devices. 

At the end of the book a directory of microprocessor 
manufacturers has been included and there is also a 
glossary of some of the terminology used in the micro
processor field. 

It is hoped that the information given in this book will 
assist designers in choosing suitable devices and that it 
will be generally useful to those engaged in designing or 
planning microprocessor based products. 

One problem encountered in producing any data 
book which deals with a rapidly advancing field, such as 
microprocessors, is that new devices are continually 
being introduced. To deal with this situation plans are 
being made for the publication, from time to time, of a 
supplement giving data on recently introduced devices. 
Readers wishing to have details of these supplements 
should complete and mail the coupon enclosed in this 
book, or alternatively write to the publishers, when they 
will automatically receive advance details of these sup
plements. 

The reader will notice that for a limited number of 
devices in this book only limited data are given. This is 
because at the time of compilation only preliminary 
information was available. The reader is referred to the 
supplement for full information. 

Finally, I would like to express my thanks to all those 
manufacturers and distributors who supplied the data 
and other information which made it possible to compile 
this book. 

VI 
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INTRODUCTION 

In recent years the advent of microprocessors and micro
computers has revolutionised the whole process of digi
tal system design. Projects which, a few years ago, 
might have required tens or hundreds of digital logic 
devices can today be implemented by using perhaps one 
or two LSI circuits. Of course LSI circuits have been 
around for some years, but economic considerations 
have usually limited these to applications, such as digi
tal calculators where high volume production is possible 
and high design costs can be recovered quickly. The 
advantage of the microcomputer is that a standard 
device can be used for many applications merely by 
altering the program of instructions held in its memory. 
Thus design costs can be reduced and a variety of 
products may be built using perhaps a standard circuit 
board. 

Microcomputers, however, bring with them a number 
of new design concepts which may be unfamiliar to the 
system designer used to working with conventional digi
tal logic systems. In this introductory section we shall 
examine the internal organisation of microcomputer 
systems and their general principles of operation. Later 
we shall consider the various factors involved in choosing 
a suitable type of microprocessor for a design project. 

ARCHITECTURE 
The general organisation of a digital computer, whether 
it be a mainframe, a minicomputer or a microcomputer, 
follows the basic arrangement show in fig. 1.1. 
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Fig. 1.1 

At the heart of the system is the central processor 
unit, generally referred to as the CPU. Functionally the 
CPU can be broken down into two subsections, one of 

which is used to control the timing and sequence of 
operations in the system, whilst the other executes the 
required arithmetic and logic operations and handles 
the data being processed. A memory system is con
nected to the CPU and is used to store the list of 
instructions to be executed, known as the program, and 
the data being processed. In most systems a common 
memory is used to hold both the program instructions 
and the data but some types of processor use separate 
memory systems for the data and the instructions. Com
munication with the outside world is handled by a 
number of input and output ports, which allow data to 
be transferred to and from external devices such as 
keyboards, display units and printers. The various 
components of the microcomputer system are tied 
together by a system of bus lines which are common 
to all units. This is, of course, a very much simplified 
description of a microcomputer system and we shall 
now go on to look at each section in more detail. 

BUS SYSTEMS 
Data is transferred between the various units of the 
system over sets of parallel wires known as buses. In 
most systems there are three sets of bus wires, one 
carrying data, a second carrying memory address in
formation and the third carrying a selection of control 
signals. 

The data bus allows signals representing either data 
or program instructions to be transferred between the 
CPU and either the memory or the input-output ports. 
This bus is always bidirectional and its operation is 
controlled by the CPU. Read and write control lines 
from the CPU determine the direction of data flow 
through the data bus so that when a write operation is 
performed the signals always flow from the CPU out to 
memory or I - O ports. A read operation causes signals 
to flow into the CPU from the memory or I - O port. 
Many processors, such as the Motorola types, use a 
single read/write (R/W) control line to control the 
direction of signal flow on the data bus with one state of 
the control line indicating a read operation and the 
other indicating a write operation. Other types, such as 
the Intel and Zilog processors, have separate read and 
write control lines. Normally the data bus is set up for 
read operations as a default condition. There may be 
several memory or I - O devices which can access the 
data bus but only one may be allowed to actually drive 
the bus lines at a time so the bus drive circuits are either 
tri-state or wired OR type circuits. 

The address bus is used to provide an address signal 
which selects one particular location within the memory 
for connection to the data bus. The address bus lines are 
driven by output signals from the CPU. The address 
bus may also be used to select individual input or out
put channels where several are connected to the CPU 
system. 

Some processors use separate memories to hold the 
program instructions and the data. In such a system 
there may be one data and address bus system for the 
instruction memory and a separate data and address bus 
scheme for the data memory. Another variation uses a 
common address bus with separate data buses for the 
instructions and data. 

The control bus provides a selection of control signals 
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to and from the CPU which govern the timing and 
control of data transfers on the other bus lines. Among 
these may be signals for halting the operation of the 
CPU and perhaps disconnecting it from the bus system. 
This facility is important when it is desired to have 
another device take over control of the bus system. 
Typical applications might be in multiprocessor systems 
where a common bus is to be shared between two or 
more CPUs only one of which may control the bus at 
any time. The usual scheme is for the external device to 
send a bus request signal to the CPU when it wants to 
take over the bus system. On receipt of the bus request 
the CPU completes its current instruction then dis
connects itself from the bus and outputs a bus grant 
signal to indicate that the bus is free. When the bus 
request signal is removed the CPU again resumes con
trol of the bus system. 

In a large system the output drivers of the CPU chip 
and other devices may not be capable of driving all of 
the loads on the bus. In such cases bus drivers, or bus 
transceivers are used to drive the common bus system. 

CPU CONTROL UNIT 
Apart from the system timing and control logic the 
control section of the CPU contains a register called the 
program counter (PC), an address register, an instruction 
register, a stack or stack pointer register and some 
interrupt logic. 

The instructions which tell the CPU what to do 
consist simply of a sequence of numbers which are held 
in the memory. Each instruction usually consists of an 
opcode which defines the type of operation to be carried 
out and one or more operands which define the data to 
be used and what is to be done with any results. 

The program counter register holds the memory 
address where the opcode for the next instruction is 
held. When a program is initiated the program counter 
is loaded with the address for the first program instruc
tion. As each instruction is executed the program coun
ter is automatically updated to point to the address of 
the next instruction to be executed. Usually instructions 
are executed in sequence but occasionally the program 
sequence may jump to some new point in memory 
specified by the instruction that has just been executed. 

The first stage in executing an instruction is the fetch 
cycle when the opcode for the instruction is read in 
from the memory and placed in the instruction register. 
During the next phase of execution the opcode is de
coded and the control logic within the CPU is set up to 
perform the desired operation. During the decoding 
phase the CPU will determine whether it needs to read 
in any operand data from the memory. If data is required 
the next phase will be to read in the operand from 
memory. The final phase is the actual execution of the 
instruction. 

The timing of the execution sequence varies according 
to the type of processor involved. In a processor such as 
the 6800 a simple two phase clock program is used and 
all data transfers to and from the memory are made 
during the second half of each clock cycle when the 
phase 2 clock signal is high. A simple instruction such as 
Clear Accumulator A (CLRA) consists of an opcode 
only and executes in two clock cycles. The first cycle is 
used to read the opcode from memory. During the first 
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half of the next clock cycle the decoding is carried out 
and then the instruction is executed during the second 
half of that clock cycle. If the accumulator is to be 
loaded with immediate data, stored in the memory 
location following the opcode, the instruction takes up 
three cycles. The opcode is fetched on the first cycle 
then the address register is incremented and the data 
is read in from memory during the second cycle. If 
the data is to be loaded from an absolute address the 
number of cycles required goes up to four. Again the 
opcode is fetched during the first cycle and the next two 
cycles are used to read in the 16 bit address operand 
from the two memory locations following the opcode. 
This address operand is then transferred to the address 
register and during the fourth cycle the data is read in 
from the appropriate address in memory. In other types 
of processor such as the Z80 and 8086 each instruction 
cycle consists of three or four clock cycles. The clock in 
such processors usually runs at about four times the 
speed of the simple 6800 type clock so that actual in
struction execution times are similar for both types of 
processor. 

One problem with simple processors is that each 
instruction must complete its execution sequence before 
the next instruction is started. To speed up instruction 
execution most of the modern 16- and 32-bit processors 
use a pipeline system for instructions and data. In 
such a system several instructions may be in progress at 
the same time. Whilst one instruction is being executed 
the opcode for the next instruction can be decoded 
and the opcode for the following instruction can be 
fetched from memory and placed in the pipeline queue. 
With this overlapped processing of instructions the 
throughput of the processor can be increased by a factor 
of two or three over that of a system where each in
struction is processed completely before the next starts. 

One problem with fast 16- and 32-bit processors is 
that the speed of access to the main memory system is 
often much slower than the rate at which the CPU can 
process instructions. To overcome this situation many 
systems use a high speed cache memory, built from fast 
static RAM devices, to hold a block of recently executed 
instructions. In many program applications the process 
operates in relatively short loops where a sequence of 
instructions is repeated a number of times. If this se
quence is held in high speed cache memory then the 
program execution will not be slowed by repeated ac
cesses to the slow main memory. When the next re
quested instruction is not in the cache memory a cache 
miss occurs and the main memory is again accessed. 
Some systems use a similar cache system for data where 
recently accessed data is held in a cache memory and 
here again execution can be speeded up where say a 
table of data values is being processed. 

CPU EXECUTION UNIT 
The central part of the execution unit of a microprocessor 
is the arithmetic and logic unit or ALU which performs 
all of the arithmetic and logic functions specified for the 
execution of an instruction. In most processors the 
ALU works in conjunction with a special register called 
the accumulator. 

The ALU has two data inputs and one data output 
and these may be either 4, 8,16 or 32 bits wide according 
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to the type of processor. The accumulator register has 
the same number of bits as the ALU. Under normal 
conditions the accumulator provides one input to the 
ALU whilst the other input is fed either from another 
CPU register or from the external data bus. Output 
data from the ALU is written back into the accumulator. 

In some processor types the external data bus has 
fewer bits than the ALU. For example an 8088 has a 16-
bit ALU but only an 8-bit data bus whilst the 68000 has 
a 32-bit ALU with a 16-bit data bus. In such cases if 
data is taken from memory to the ALU it is read in as 
two bytes or words and then assembled in an internal 
register before being applied to the ALU input. Pro
cessors such as the 6809 have two separate 8-bit accu
mulators which may be used independently or linked 
together to handle 16-bit numbers. 

Apart from the ALU the execution unit will contain a 
status register which gives information about the result 
produced by an instruction. This normally contains a 
series of flag bits which indicate if the result was zero, 
minus or has produced a carry or an overflow condition. 
These flags can be used to determine the future flow of 
program execution according to the state of one or 
more of the flag bits. 

All processors contain some registers which can be 
used for storing data and temporary results. An import
ant advantage of holding data within on chip registers is 
that access to register data is always much faster than 
access to data in the main memory so that program 
execution can be speeded up by using the internal 
registers. Most of the newer 16- and 32-bit processors 
such as the 68000 series have a bank of general purpose 
registers each of which may be used in the same way as 
a dedicated accumulator register. 

Most processors also contain data pointer registers 
which can be used to hold memory address information. 
In this case the pointer register is specified as an operand 
instead of using an actual memory address. The register 
can usually be specified in the instruction opcode so that 
there is no need to read in an operand from memory 
and thus execution is speeded up. This is particularly 
useful where a table of data is being accessed and items 
in the table are stored in successive memory addresses. 
To move through the table the pointer register is in
cremented after each instruction to point to the next 
memory address. In such a scheme the pointer register 
is usually referred to as the index register and in many 
types of processor the incrementing or decrementing of 
this register can be included as part of the action of the 
instruction. 

Typical arithmetic and logic functions provided by 
the ALU and its associated accumulator are ADD, 
SUBTRACT, AND, OR and EXCLUSIVE OR. In 
addition it is usually possible to set the data to zero or to 
set all the bits to the 1 state. Data held in registers can 
also be incremented or decremented. It is also possible 
to shift the data pattern left or right in a register or to 
rotate the data pattern so that bits spilling from one 
end of the register are re-inserted at the other end to 
produce a loop of data bits. In the 6800 series processors 
memory locations can be used as registers and data in 
them can be incremented, decremented, shifted and 
rotated directly. 

All of the 16- and 32-bit processors and some 8-bit 
types provide simple multiply and divide instructions 
which can handle either signed or unsigned data. These 
functions generally use an internally stored sequence of 

operations and may take up many instruction cycles. A 
few more sophisticated types such as the Am29000 use 
parallel logic arrays within the ALU to perform hard
ware multiplication or division and give high execution 
speed. 

Most processors provide only integer arithmetic which 
may use either pure binary or BCD number systems. 
For many applications floating point arithmetic may be 
required in order to deal with large numbers and frac
tional quantities. For the standard processors this is 
usually accomplished by using software routines which 
tend to be relatively slow in execution. An alternative 
approach is to add a dedicated floating point coprocessor 
which is designed specifically to carry out floating point 
operations. The main CPU now passes data and instruc
tions to the coprocessor and then reads back the results 
and this provides a much higher execution rate for 
programs requiring floating point calculations. A few of 
the more advanced processors such as the 80486 and 
some of the RISC type processors have the floating 
point execution unit built into the main processor 
chip. 

A very important facility in all microprocessors is the 
ability to test the results produced by executing an in
struction and then to take alternative courses of action 
according to the results obtained. The tests usually set 
or reset individual bits in a special register called the 
status register which may also be referred to as the 
condition code register. There are four flag bits Z, M, C 
and V which are common to all processors. The Z bit 
indicates that the result was zero and the M bit indicates 
a minus sign or a negative result. The C bit shows that a 
carry has been generated by an arithmetic or logic 
operation. The fourth status bit, usually labelled V, 
indicates an overflow condition where the result is 
outside the range of numbers that can be correctly 
represented in the accumulator register. Sometimes a 
half carry bit is provided which is used when handling 
numbers in the BCD format. Other bits in the status 
register may be used to indicate whether interrupts 
are enabled or disabled and to indicate whether the 
processor is operating in system or user mode. 

The simplest form of conditional instruction is a skip 
operation. The SKIP instruction examines the status 
bits and compares them with a specified set of conditions. 
Thus SKIPZ would check the state of the zero (Z) bit. If 
the Z bit is set, indicating that the result of the last 
operation was zero, the program execution jumps over 
the next instruction after SKIPZ. If the result was not 
zero then the instruction after SKIPZ is executed. This 
allows the possibility of two alternative courses of action 
depending on whether the result of the test was true or 
false. 

In most processors a conditional instruction called a 
branch is used in conjunction with the status register 
bits to control the flow of the program execution. The 
branch instruction tests for a particular state of one or 
more of the status bits. When the state is true the 
program execution branches to a new point specified by 
the operand of the branch instruction. If the specified 
condition is not met the program continues with execu
tion of the next instruction in the normal way. Usually 
the operand of the Branch instruction is added to the 
value in the program counter to calculate the new 
address from which the program will continue to ex
ecute. Some processors have conditional jump instruc
tions which perform in much the same way as a branch 
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except that the operand specifies the actual address to 
which the program execution must jump. 

SUBROUTINES AND STACKS 
In any program there are some sequences of instruc
tions which are frequently repeated as the program 
executes. Typical examples might be the routine to read 
a character in from a keyboard or some arithmetic 
routines such as number conversions or iterative cal
culations. Whilst these instruction sequences could 
simply be repeated at appropriate points in the program 
a more convenient technique is to make use of a sub
routine. In this technique the sequence of instructions 
is stored at a separate point in memory from the main 
program. The subroutine sequence is often placed im
mediately after the end of the main program code. To 
execute the subroutine sequence a special instruction 
such as CALL or JSR (jump to subroutine) is inserted 
in the main program sequence at the point where the 
subroutine is to be executed. This instruction simply 
tells the CPU that instead of executing the next instruc
tion in the main program it should jump to the first 
instruction of the subroutine sequence. Before making 
this jump however the contents of the program counter 
are saved by the CPU. The short set of subroutine 
instructions is then executed. At the end of the sub
routine sequence another special instruction called 
RET (return) or RTS (return from subroutine) is ex
ecuted. This instruction restores the saved contents of 
the program counter so that the next instruction in the 
main program sequence will be the one to be executed 
next. 

In simple processors a single save register within the 
CPU is used to hold the old program counter value 
whilst the subroutine executes. If a call were made to 
another subroutine from inside the first subroutine a 
new value would be written into the save register. At 
the end of the second subroutine the program would 
return correctly to the first subroutine but the original 
PC value in the main program would have been lost and 
the program would crash because at the end of the first 
subroutine it would not know where to go next. To 
overcome this some processors use two or three registers 
which form a last in first out or LIFO memory which is 
more generally called a stack. This arrangement works 
in a similar fashion to building a pile of cards. The first 
PC value is stored in the lowest register in the stack 
which acts as if it were a single card on a table. When 
another subroutine is called the PC is placed into the 
next higher register which is like placing a new card on 
top of the first. As each new subroutine is started a new 
higher position register is used and a new card is added 
to the pile. As a subroutine ends it reads the PC value 
from the top register in the stack and the next register 
down becomes the new top of the stack. This is equiv
alent to removing a card from the pile. 

In most processor systems the stack is created in the 
memory rather than using dedicated save registers. This 
is achieved by using a stack pointer register which holds 
the address of the top of the stack which is usually the 
empty location to which the next data value will be 
saved. In most systems the stack is arranged to build 
downwards in memory. Thus after a data word has been 

written to the stack the stack pointer contents are 
decrementesd to point to the next free location in the 
memory. When a word is taken off the stack the pointer 
is incremented to pick up the last word written to the 
stack then the word is read out and its location becomes 
the new top of the stack. 

INTERRUPTS 
When communicating with the outside world there will 
be occasions where the processor is ready to transfer 
data but the external device is not or vice versa. One 
solution to this problem is to place the processor in a 
program loop where it repeatedly checks the state of the 
external device to see if it is ready to send or receive 
data. As an example if the processor is outputting data 
to a printer it has to wait for the printer to complete its 
printing operation before a new data character can be 
output. A typical printer might operate at perhaps 100 
characters per second but during the 0.01 second period 
for printing a character the processor could have ex
ecuted some 5000 or more instructions. In the case of 
keyboard input the program would have to be written 
so that it checked the keyboard at regular intervals to 
see if a key had been pressed. These approaches which 
use a regular testing loop are usually referred to as 
polling routines. In a real time controller application 
the processor will need to respond immediately to a 
number of inputs and if the polling techniques is used 
most of the available processing time could be spent in 
checking the status of external devices. 

An alternative and much more efficient method off 
dealing with external devices is to make use of an 
interrupt system. In an interrupt scheme when the 
external device is ready to transfer data it sends a signal 
to a special interrupt request (IRQ) input on the pro
cessor chip. When the IRQ input occurs the processor 
completes its currently executing instruction and then 
branches to an interrupt service routine which deals 
with the data transfer to or from the external device. In 
some ways this is like having a subroutine call which 
is initiated by an external hardware signal. Before 
branching off to the interrupt service routine the CPU 
will automatically save the program counter and the 
status register. Some processors such as the 6800 save 
all of the internal CPU registers to the stack when an 
interrupt occurs. At the end of interrupt service routine 
there is a return from interrupt (RTI) instruction which 
causes the saved CPU register contents to be restored 
so that the program resumes execution from the point 
where it was interrupted. In most of the 16- and 32-bit 
processors interrupts are referred to as exceptions but 
the action is the same. 

The simple form of interrupt is usually referred to 
as a non-maskable interrupt (NMI) and the interrupt 
service routine is automatically invoked whenever an 
input is applied to the NMI input line. The alternative 
type of interrupt scheme is the masked interrupt which 
is usually triggered by an input to an interrupt request 
(IRQ) input. When this type of interrupt occurs it sets a 
mask bit in the status register which causes the IRQ 
input to be disabled so that any further input signals are 
ignored whilst the interrupt is being serviced. At the 
end of the interrupt routine the mask bit is reset and the 

6 



INTRODUCTION 

IRQ input becomes active again. The mask bit can also 
be controlled by the program so that the interrupt input 
can be enabled or disabled as desired. 

Another type of interrupt is the software interrupt 
(SWI) or TRAP operation in which an instruction in 
the program invokes a branch to an interrupt service 
routine. Sometimes TRAP operations may be invoked 
by an error condition such as a divide by zero error. The 
main difference between a subroutine and a trap is that 
the subroutine call specifies the address to which the 
program must jump whereas the trap does not. 

Most processors use a vectored interrupt or exception 
scheme. When the interrupt or exception occurs the 
address for the start of the interrupt routine is read from 
a vector table in memory. The position of this address in 
the table is determined by the type of interrupt that has 
occurred. As an example in a 6800 processor the vector 
table is located at the top of the memory map in 
locations $FFF8-$FFFF. When an NMI input occurs 
the branch address for the interrupt service routine is 
take from locations $FFFC and $FFFD. If an IRQ input 
triggered the interrupt the address comes from locations 
$FFF8 and $FFF9 whilst an SWI software interrupt 
causes a branch to the address held in locations $FFFA 
and $FFFB. In the more complex processors such as the 
68000 or 8086 there may be a table of perhaps 256 
vector addresses each of which may be assigned to a 
particular type of interrupt or exception. In some sys
tems the vector address is provided by the external 
device which caused the interrupt. In this case when the 
CPU has detected the interrupt it completes its current 
instruction, outputs an interrupt acknowledge signal 
and then expects to receive the vector address from the 
external device via the data bus. Once this address has 
been read in it is transferred to the program counter and 
the program branches to the routine at that address in 
memory. 

In most processor systems the different types of inter
rupt or exception may be assigned a priority level. In 
such a scheme when an interrupt is being serviced it 
may itself be interrupted if a higher priority interrupt 
occurs but interrupts of the same or lower priority levels 
are masked until the current interrupt service routine 
has been completed. The highest priority is usually 
assigned to RESET which triggers an initialisation 
routine and is used when the system is powered up. The 
NMI type interrupt always has a higher priority than the 
normal masked interrupts. 

MEMORY 
The microcomputer memory is used to hold the list of 
program instructions and any data used or produced by 
the program. The memory itself consists of a vast array 
of individual cells each of which can hold one bit of 
data. The array is normally arranged so that a complete 
byte or word of data can be read from or written to the 
memory in parallel. The main memory is usually based 
on dynamic memory devices where the data is stored as 
a charge within the memory cell. The main problem 
with this type of memory is that due to leakage paths 
within the cell the data is held reliably for only a few 
milliseconds. To maintain the data storage a process of 
refreshing is used where the data is read from the memory 

and rewritten at intervals of about 2 milliseconds. An 
alternative type of memory device uses a flip-flop type 
circuit for each memory cell which once set will retain 
its data state indefinitely unless new data is written in. 
This type of memory is referred to as a static memory 
and will generally operate faster than a similar dynamic 
type. The main disadvantage of the static memory is 
that because the circuit is more complex static types are 
smaller in storage capacity than similar dynamic types. 
Both types are usually addressed so that any word in the 
memory array can be selected directly and are referred 
to as a random access memory or RAM. 

In a general purpose microcomputer system the pro
gram and data are usually stored in read/write RAM 
but some initialisation routines or an operating system 
are usually in a read only memory (ROM) so that on 
power up the processor is ready to read in a program to 
be executed. In this type of system the programs are 
usually held on some form of external media such as 
floppy disks and the system ROM will contain the sys
tem program routines needed to load in a new program 
for execution. In single chip microcontrollers the pro
gram is usually stored in on chip ROM or EPROM so 
that on power up the system automatically starts to 
execute its program. Some data such as constants may 
also be held in the ROM whilst on chip RAM is used for 
temporary data storage and as working space for the 
program. 

Most 8-bit processors have a 16-bit address bus which 
allows them to access up to 64k bytes of memory. The 
older 16-bit processors such as the 8086 and 68000 have 
a 20- or 24-bit wide address bus giving direct access to 1 
or 16 megabytes of memory. Later types of 16- and 32-
bit processors use a full 32-bit wide address which can 
directly access up to 4 gigabytes of memory. In order 
to reduce the number of pins required on the device 
package some processors multiplex the data and address 
bus lines on to the same set of pins. For these types 
there is usually an address latch output which indicates 
when an address is set up on the bus. The address 
information is then transferred to an external latch 
which drives the memory address system whilst the data 
transfer is performed. 

Many of the newer processors are also designed to 
operate using a virtual memory scheme similar to that 
used on minicomputers and mainframe machines. This 
type of memory scheme is generally used when the 
processor is handling a multi-tasking or multi-user en
vironment where several different programs may be in 
progress at the same time. In fact only one program is 
actually being executed at any instant in time but other 
programs are being held in memory. When the executing 
program is held up whilst waiting for an external device 
such as a printer it is temporarily suspended and another 
program starts executing. When the first program is 
ready to start execution again the new program is 
suspended and the first program resumes execution. 
The programs held in memory are normally assigned 
levels of priority and the CPU executes the highest 
priority program that is not being held up for input or 
output. The switching of programs for execution is 
carried out by a special operating system program called 
a scheduler. 

One problem with multi-tasking is that the physical 
memory attached to the CPU has to be shared between 
the various programs or tasks that are scheduled to be 
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processed. In a virtual memory system each task may be 
allowed access to a memory space which can be equal to 
the size of the maximum physical memory space of the 
computer. The memory space referenced by the program 
is called a virtual memory. Since there is only a limited 
amount of physical memory the scheduler allocates 
blocks or pages of this memory to each of the tasks 
being processed. Thus for each task only a small part of 
the complete program is loaded into memory at a time. 
When this section of program has completed execution 
or the instructions call for a jump to a new section of 
program then a new chunk of program is loaded in from 
the disk memory. In the memory management unit the 
virtual program memory address is translated to an 
equivalent address in the block of physical memory 
assigned to that program. 

A multi-user system operates in a similar fashion to 
multi-tasking with each user being treated as a separate 
task. The users are often placed at the same priority 
level and the use of the processor is then shared by 
allocating each user a fixed time period and then cycling 
through the user programs in sequence. If the user 
program is able to use its time slot it will execute but if it 
is not ready to execute then control passes to the next 
user in sequence. In these shared task schemes all of the 
resources of the system are allocated by the scheduler 
including any external devices such as a printer or disk 
memory. 

INPUT-OUTPUT 
To be of any use the microprocessor must be able to 
communicate with the outside world. In a typical system 
there might be a keyboard or keypad which is used for 
input and a video display or printer for output. Digital 
data may be transferred between the CPU and these 
input and output devices via channels called ports. 

A typical output port consists of a data register whose 
inputs are connected to the data bus when data is to be 
output. After the data transfer the register retains the 
data pattern and provides a constant signal on a set of 
output lines. An input port may also contain a latch 
register and the output of this is briefly connected to the 
data bus to allow data to be transferred into the CPU. 

In single chip microcontrollers the input and output 
port registers are part of the CPU itself and instructions 
are included for carrying out data transfers to or from 
the input and output ports. In a general purpose pro
cessor system the input and output port registers are 
often treated as if they were locations in the memory 
and a part of the memory map address space is set aside 
for them. Each port can then be selected for data 
transfer by using the appropriate memory address in the 
load or store instruction. Some processors such as the 
Intel types have special IN and OUT instructions for 
data transfer to I/O ports and assign a separate address 
map for input-output operations. In this case the state 
of an M/IO control line indicates whether the data 
transfer is to memory or an I/O channel and the lower 8 
bits of the address bus are then used to address the 
input-output ports if several are connected. 

Apart from their data lines the input and output 
channels may also have additional lines which are used 
for handshaking. These usually consist of a request line 
which indicates that a data transfer is required and a 
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status line which indicates that the data transfer has 
been performed. In the case of a printer system the 
processor would test the status signal from the printer to 
see if it was busy printing a character. If the printer 
were not busy the data would be placed on the port data 
lines and a strobe pulse would be output on the request 
line to tell the printer to accept a new data word and 
print the corresponding character. As soon as the printer 
accepts the data it would set its status line to busy until 
the character had been printed. These handshake lines 
are particularly important where the processor and the 
external device are operating at different speeds. 

WORD LENGTH 

Microprocessors work with binary data consisting of 
groups of binary digits or bits which are called data 
words. In a typical microprocessor system the words 
may be made up from 4, 8,16 or 32 bits according to the 
type of processor being used. 

Early microprocessors and many modern low cost 
microcontrollers work with 4-bit data words which are 
sometimes referred to as nibbles. In these processors 
the data bus and the ALU are all 4 bits wide. A 4-bit 
word in which each bit can be either on or off can have 
16 possible combinations and could be used to represent 
the numbers from 0 to 15. Larger numbers are processed 
by dealing with the data in 4-bit segments. The 4-bit 
microcontrollers are often used to process data in the 
binary coded decimal format where each decimal digit 
of the number is coded as a 4-bit word with a value from 
0 t o 9 . 

Many of the popular general purpose microprocessors 
such as the 6502, 6809 and Z80 use an 8-bit data word 
which is generally referred to as a byte. In these pro
cessors the ALU and data bus are 8 bits wide and the 
numerical value represented by a single data word can 
be from 0 to 255 or from —128 to +127 if a signed 
number format is used. The byte is also convenient for 
representing alphanumeric character codes where up to 
256 different characters can be defined. Once again 
large numbers can be represented by using two or more 
data bytes. 

More recently general purpose processors such as the 
Intel 80x86 and Motorola 68xxx series use 16-bit or 32-
bit data bus systems. In most cases the width of the data 
bus is used to define the type of processor but there are 
some anomalies in this definition. In the 68000 pro
cessor the internal registers and data bus are 32 bits 
wide but the external data bus is only 16 bits wide so the 
processor is sometimes referred to as a 16/32-bit pro
cessor. The 8088 is another case where the internal 
system is the same as that of the, 16-bit 8086 but the 
external data bus is only 8 bits wide. 

In the 16-bit processors a data word is normally 16 
bits wide and a 32-bit data value is usually referred to as 
a long word or double word. For 32-bit processors it is 
usual to define a 16-bit value as a half word and use the 
name word for a 32-bit value. 

TYPES OF DEVICE 
Microprocessor based devices are usually available in 
three forms which are dedicated microcontrollers or 
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microcomputers, general purpose microprocessors and 
bit slice devices. 

The first type of device is the single chip micro
computer which is often called a microcontroller. This 
type of chip contains the CPU, some ROM or EPROM 
to contain the program and some RAM for use as 
working storage. In addition these chips usually contain 
several input-output ports for both parallel and serial 
input and output. There may also be on chip counter-
timers and perhaps an analogue-to-digital converter to 
handle analogue inputs. This type of device is normally 
used for dedicated applications such as controllers 
in domestic appliances, video recorders or industrial 
equipment. 

The general purpose microprocessor usually con
tains only the basic CPU functions including the ALU, 
working registers and general control logic. Address 
and data bus systems are used to communicate either 
with an external memory which holds the program and 
its data or with a series of input-output ports for com
munication with other devices. 

Among the popular 8-bit general purpose micro
processors are the 6502 and Z80 which are widely used 
in home computer systems and the 6809 which is popular 
for industrial applications. Among the more powerful 
16-bit microprocessor devices are the 8086 and 68000 
which are widely used in personal computer systems for 
home and business use. The more powerful personal 
computers and professional workstations use 32-bit 
processors such as the 80386 or 68030. 

One trend in the general purpose microprocessors 
has been that more and more complex instructions have 
been built into these devices as their power increased. 
This type of processor has generally come to be referred 
to as a complex instruction set computer or CISC type. 
After some analysis of the actual activity of such a 
processor when executing a typical program it was 
found that the frequently used instructions represented 
only a part of the available instruction set and that in 
general these tended to be relatively simple operations. 
The result was that a different approach was tried in 
the design of the processor. In this approach the basic 
widely used operations were implemented and most 
operations were performed on data held in on chip 
registers. The result was that instructions could be 
executed quickly and although there were more instruc
tions making up a program the actual execution speed 
could still be higher than that of a CISC type processor. 
This new style of processor is referred to as a reduced 
instruction set computer or RISC type and has become 
popular particularly for applications which require 
large amounts of repetitive processing operations 
such as image processing and complex data analysis 
tasks. 

The third type of processor device is the bit slice 
processor where each function of the processor is built 
up from small segments known as slices. Thus the ALU 
might be assembled from a number of 4-bit wide ALU 
elements each fabricated on a separate chip. In the 
same way the control section which is usually referred 
to as a microsequencer is also built up from 4- or 8-bit 
wide segments. The early types of bit slice processors 
were fabricated using high speed bipolar logic and were 
used to build very fast processors. More recently this 
type of processor device has been fabricated using 
CMOS techniques and has retained high execution speed 
with very low power consumption. 

FABRICATION TECHNOLOGY 
The earliest types of microprocessor device were based 
on the technology of chips designed for electronic pocket 
calculators and often used PMOS (p channel metal 
oxide semiconductor) type circuits which were based 
around p channel field effect transistor elements. This 
was largely because this type of integrated circuit was 
easier to fabricate than circuits based on n channels fets. 
As technology improved most microprocessors were 
fabricated using NMOS (n channel metal oxide semi
conductor) techniques which provided higher operating 
speed and allowed the circuits to operate from a single 5 
volt power supply. Many of the popular 8- and 16-bit 
types used today are NMOS devices. 

An alternative form of fabrication which became 
popular in the late 1970s is complementary metal oxide 
semiconductor or CMOS which combines the use of 
p and n channel fets on the same chip. The major ad
vantage of the CMOS type of device is that its power 
requirements are very much lower than a similar NMOS 
type and thus processors fabricated using CMOS were 
ideal for low power applications such as portable and 
battery powered equipment. Early CMOS types tended 
to be slower than similar NMOS types but improve
ments in CMOS fabrication technology has resulted in 
modern CMOS processors which are just as fast as their 
NMOS counterparts whilst providing lower power 
requirements. 

An important factor to be considered when using 
NMOS and CMOS devices is that they have extremely 
high impedance inputs and can be prone to damage 
from static electricity charges. Although all modern 
devices have built in protection diodes to help prevent 
the build up of static charges on the device inputs it is 
still a wise precaution to store these devices with the 
pins shorted together via metal foil or conductive plastic 
and to take precautions against the build up of static 
electric charges when handling such devices. 

CHOOSING A MICROPROCESSOR 
Unfortunately for the system designer there is no con
venient magic formula by which the optimum micro
processor or microcomputer device can be selected for 
a particular application. It is of course fairly easy to 
choose one or more processors which may be technically 
suited for the project but generally the final choice will 
be dictated by software and economic considerations. 

Basically the process of choosing a suitable micro
processor can be broken down into the following stages: 

(1) Define exactly what the system is going to do. 
(2) Decide whether the system should be based on 

the use of a general purpose microprocessor or a single 
chip microcontroller. 

(3) Choose the most suitable word length for the 
application. 

(4) Consider the hardware factors such as speed, 
power requirements and the availability of existing 
hardware modules. 

(5) Consider the software design with particular 
regard to in-house expertise and available in-house 
development aids. 

(6) Examine any economic factors. 
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At each of these stages it should be possible to 
eliminate a number of the available microprocessor 
types until there are perhaps two or three possible 
contenders from which a final choice can be made. 

The first stage may seem very obvious and yet it is 
surprising how many system designers will progress to 
detailed design before they have defined exactly what 
is required. At this stage the system specification can 
be divided into two broad areas. First there are the 
requirements that are absolutely essential and secondly 
there are features which, whilst not essential, may be 
desirable since they will produce a more versatile or 
more attractive product. These features may be arranged 
in a list with some sort of priority or value rating given 
to each item. The secondary system requirements may 
become useful later in the selection process where a 
choice has to be made between two more or less equally 
suitable devices. 

Once the system requirements have been decided it 
is important to ask the question 'Is a microprocessor 
needed at all?' Consider what would be involved in 
meeting the system requirements using conventional 
discrete logic devices, programmed logic arrays or off-
the-shelf dedicated circuits. In most cases it is likely 
that these approaches will be impractical and a micro
processor based system is then inevitable. Where these 
other approaches are possible alternatives they should 
be considered along with the microprocessor based 
solutions. It would be ridiculous to use a microprocessor 
based system when a simple logic system could provide 
a cheaper or simpler solution. 

The choice between a bit slice system, an embedded 
single chip microcontroller or a general purpose micro
processor can usually be determined by technical con
siderations. The bit slice approach may be attractive for 
very high speed or rather specialised applications but 
generally the choice will be between a single chip micro
controller or a general purpose microprocessor. 

The single chip microcontroller is most suitable for 
applications where space is limited or for equipment 
which is likely to be produced in large quantities. This 
type of device is widely used in consumer equipment 
such as domestic appliances, video recorders, micro
wave ovens, TV receivers and automobile systems. The 
embedded controller is also attractive in various types 
of industrial equipment such as digital servo systems 
and test instruments where a fixed program can be 
used. 

Most of the standard versions of microcontroller chip 
use a mask programmed on chip ROM to carry the 
program instructions. The initial cost of producing the 
mask is likely to be quite high and normally a production 
run of some 5000 or more units will be required in order 
to justify this initial cost. For a project where mass 
production can be used the cost per unit for the single 
chip embedded controller approach will be much less 
than the cost of using a general purpose microprocessor 
based system. Another factor to be considered here is 
that the single chip controller will have fewer lead 
connections and is thus likely to be more reliable than a 
multichip approach. The size of circuit boards and the 
cost of assembly is also likely to be lower when a single 
chip controller is used. 

For prototype and small batch production the mask 
programmed single chip device becomes uneconomical. 
Most of the manufacturers of such chips do however 
produce alternative versions which use an on chip PROM 

or EPROM instead of a mask programmed ROM. This 
type of device can therefore be programmed in the field 
and is ideal when only a small number of units are to be 
produced. Typical examples of such devices are the 
8748 and 8751 series from Intel and the 68701 or 68705 
devices from Motorola. The EPROM versions are ideal 
for prototype development since the EPROM can be 
erased by using an ultraviolet light source and can then 
be reprogrammed with a modified version of the soft
ware program. This process may be repeated a number 
of times until the system performs correctly. The versions 
which have a PROM on the chip are often referred to as 
'one time programmable' or OTP devices since they 
cannot be erased. This type of device is suited to pro
duction runs involving perhaps a few tens or hundreds 
of units. 

For applications where a wide range of options are 
required or where the programming must be flexible to 
cope with a range of different tasks the general purpose 
microprocessor approach is ideal. Typical of such appli
cations are general purpose computer systems such as 
personal computers, point of sale systems, production 
control systems and graphics or CAD workstations. 
Other applications where this type of device is appro
priate might be robotics, numerically controlled machine 
tools and image processing. This type of application can 
often be handled by one of the popular processors such 
as the Z80, 6809, 8086 or the more advanced 80386 or 
68000 series types. For high speed applications or those 
where there is very high level of mathematical compu
tation, such as in image processing, one of the newer 
RISC type processors is likely to be attractive. 

The word length can often be determined from the 
basic technical specifications for the system. In a simple 
appliance controller which is basically replacing a dis
crete logic sequencer the 4-bit processor is ideally suited. 
Inputs can be fed in as BCD digits from a keypad and 
outputs are usually made to simple digital indicators 
such as LED, LCD or VF type numeric displays. The 
8-bit word length becomes attractive where text in
formation is to be handled and is suitable for more 
complex controllers particularly those which have ana
logue input requirements and where some degree of 
computation is required as well as simple logic sequence 
control. The 8-bit types also have the capability of 
accessing a large external memory of up to 64 kbytes 
and are useful for applications involving either large 
programs or large amounts of data. 

For applications involving general purpose computing 
tasks the 16- or 32-bit word length are usually better 
than 8-bit types since they usually execute programs at a 
much higher speed and are capable of handling very 
large memory systems. If the system is to perform 
multitask operations or have a mutli-user capability 
then the modern 32-bit microprocessors such as the 
68030 or 80386 become essential. 

The choice of fabrication technology generally comes 
down to a decision of whether to use conventional 
NMOS type devices which have fairly high power re
quirements or to use CMOS versions which operate at 
much lower power. In the early days CMOS devices 
tended to be slower in operation than NMOS types but 
improvements in CMOS technology have made modern 
CMOS processors just as fast as their NMOS equiv
alents. For battery operated or portable equipment 
CMOS types are the obvious choice but for other appli
cations where power demand is not a consideration the 
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